Advertisement for orthosearch.org.uk
Results 1 - 20 of 368
Results per page:
Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_6 | Pages 55 - 55
2 May 2024
McCann C Ablett A Feng T Macaskill V Oliver W Keating J
Full Access

Subtrochanteric femoral fractures are a subset of hip fractures generally treated with cephalomedullary nail fixation\[1\]. Single lag screw devices are most commonly-used, but integrated dual screw constructs have become increasingly popular\[2,3\]. The aim of this study was to compare outcomes of fixation of subtrochanteric femoral fractures using a single lag screw (Gamma3 nail, GN) with a dual screw device (InterTAN nail, IN). The primary outcome was mechanical failure, defined as lag screw cut-out, back-out, nail breakage or peri-implant fracture. Consecutive adult patients (18yrs) with subtrochanteric femoral fracture treated in a single centre were retrospectively identified using electronic records. Patients that underwent surgical fixation using either a long GN (2010–2017) or IN (2017–2022) were included. Medical records and radiographs were reviewed to identify complications of fixation. Cox regression analysis was used to determine the risk of mechanical failure and secondary outcomes by implant design. Multivariable regression models were used to identify predictors of mechanical failure. The study included 622 patients, 354 in the GN group (median age 82yrs, 72% female) and 268 in the IN group (median age 82yrs, 69% female). The risk of any mechanical failure was increased two-fold in the GN group (HR 2.44 \[95%CI 1.13 to 5.26\]; _p=0.024_). Mechanical failure comprising screw cut-out (_p=0.032_), back-out (_p=0.032_) and nail breakage (_p=0.26_) was only observed in the GN group. Technical predictors of failure included varus >5° for cut-out (OR 19.98 \[2.06 to 193.88\]; _p=0.01_), TAD;25mm for back-out (8.96 \[1.36 to 58.86\]; p=0.022) and shortening 1cm for peri-implant fracture (7.81 \[2.92 to 20.91\]; _p=<0.001_). Our results demonstrate that an intercalated screw construct is associated with a lower risk of mechanical failure compared with the a single lag screw device. Intercalated screw designs may reduce the risk of mechanical complications for patients with subtrochanteric femoral fractures


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_1 | Pages 18 - 18
1 Jan 2018
Zagra L De Vecchi E Bortolin M Romanò C Drago L
Full Access

Reliability of microbiological diagnosis of prosthetic joint infection [PJI] strongly depends on the ability to dislodge microorganisms from biofilm and on the rate of contaminating samples during collection in the operating room and processing. The aim of a correct protocol is to avoid false negative and false positive results in order to adapt the correct therapy for each patient. The object of the present study was to evaluate the impact of a novel closed bag system designed for samples collection and processing based on dithiothreitol (DTT), which is a sulfydryl compound able to remove bacteria from biofilm (MicroDTTect, 4i, Italy), on isolation of contaminant microorganisms in hip prostheses. Specimens (prostheses, spacers, periprosthetic tissues) were aseptically collected according to a standard protocol into the device, which was transported to the laboratory for culture. Three different models of the system were prospectively evaluated, each being a development of the previous one. The first generation device consisted in an “open” system (DTT eluate was collected with a syringe and dispensed into sterile tubes), the second generation device in a “partially closed” system (DTT eluate collected directly in sterile vacuum tubes) and the third generation device in a “completely closed system” (DTT reservoir directly connected with sealed tubes inside the device). PJI was diagnosed following criteria established by MSIS. The overall contamination rate, sensitivity and specificity of the first generation “open” system MicroDTTect were respectively 2.6% (1/39), 82.3% and 95.4% in 39 hips. The second generation “partially closed” device was characterized by a contamination rate of 1.96% (1/51), a sensitivity of 84% and a specificity of 96.1% in 51 hips. Contamination rate further decreased in the third generation “closed” system (1.89%, 2/106), while sensitivity (91.3%) and specificity (96.7%) improved in 106 hips. Differences have been also observed in hips (106) when compared to knees (70 cases) prosthetic infections (sensitivity 91.3% vs 89.3% and specificity 96.7% vs 100%). Our data show as, thanks to its ease of use, low contamination rate and high sensitivity, MicroDTTect can represent a useful tool for improving the microbiological diagnosis of PJIs in hip revisions and has replaced sonication in our practice


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_12 | Pages 37 - 37
1 Oct 2019
Berend KR Crawford DA Adams JB Morris MJ Lombardi AV
Full Access

Background. Recurrent instability and dislocation after total hip arthroplasty are difficult complications. In certain cases, a constrained acetabular device can address these issues. The purpose of this study is to report the midterm outcomes and survivorship of a single constrained liner device. Methods. A retrospective review as performed on all procedures (except first stage exchange for infection) in which a Freedom® Constrained (Zimmer Biomet, Warsaw, IN) liner was used between December 2003 to November 2016. Patients with 2-year minimum follow-up or failure were included, yielding a cohort of 177 patients. Procedures were 130 revisions, 40 reimplantations following infection eradication, and 7 complex primaries. The constrained mechanism was implanted in 46 hips (26%) to treat active instability and 131 hips (74%) for increased risk of instability or intraoperative instability. Patients had on average 3.4 previous surgeries. Results. With an average 7.1-year follow-up, 11 hips dislocated (6.2%), and 13 hips (7.3%) were revised for aseptic loosening of the acetabular component, resulting in an overall constrained mechanism aseptic or mechanical failure rate of 14.1%. Nineteen hips (10.7%) failed from infection with 58% of these having had a previous infection. Patients with active instability had significantly higher failure for dislocation than patients who were at-risk (15.2% vs. 3%, p=0.01). All-cause survival rate at 7 years was 74.8%%, aseptic survival was 83.6%, and survival for instability was 91.8%. Conclusion. Revision for instability remains challenging as many patients have had numerous previous surgeries and at-risk anatomy. Constrained inserts are one option to manage instability, but a high rate of recurrence still occurs. For any tables or figures, please contact the authors directly


The Journal of Bone & Joint Surgery British Volume
Vol. 93-B, Issue 9 | Pages 1194 - 1200
1 Sep 2011
Akiyama H Yamamoto K Tsukanaka M Kawanabe K Otsuka H So K Goto K Nakamura T

We retrospectively reviewed 40 hips in 36 patients who had undergone acetabular reconstruction using a titanium Kerboull-type acetabular reinforcement device with bone allografts between May 2001 and April 2006. Impacted bone allografts were used for the management of American Academy of Orthopaedic Surgeons Type II defects in 17 hips, and bulk bone allografts together with impacted allografts were used for the management of Type III defects in 23 hips. A total of five hips showed radiological failure at a mean follow-up of 6.7 years (4.5 to 9.3), two of which were infected. The mean pre-operative Merle d’Aubigné score was 10 (5 to 15) vs 13.6 (9 to 18) at the latest follow-up. The Kaplan-Meier survival rate at ten years, calculated using radiological failure or revision of the acetabular component for any reason as the endpoint, was 87% (95% confidence interval 76.3 to 97.7). A separate experimental analysis of the mechanical properties of the device and the load-displacement properties of bone grafts showed that a structurally hard allograft resected from femoral heads of patients with osteoarthritis should be preferentially used in any type of defect. If impacted bone allografts were used, a bone graft thickness of < 25 mm was acceptable in Type II defects. This clinical study indicates that revision total hip replacement using the Kerboull-type acetabular reinforcement device with bone allografts yielded satisfactory mid-term results


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_1 | Pages 76 - 76
1 Jan 2018
Marsden-Jones D McKenna R Jones C Walter W
Full Access

The pelvis is known to undergo significant movement during Total Hip Replacement (THR). We developed a 4D-tracking device employing an inertial measurement unit (IMU) to track changes in pelvic orientation during THR. The IMU was mounted on the iliac crest in 39 cases with tracking initiated at the commencement of surgery and digital logging of significant intra-operative milestones (i.e. acetabular impaction). The system was validated by videoing a select number of cases and the 4D model linked in real-time. Data were processed using a custom Java-based infrastructure to calculate roll (left/right) and tilt (flexion/extension). 19 patients underwent direct anterior approach (DAA) and 20 posterior approach (PA). Comparing DAA to PA, at acetabular impaction there was mean pelvic roll seen of 3.7°(range 0.5–10.1°) in the DAA group, and 5.6°(range 0.1–16.2°) in the PA group. Mean tilt in the DAA group was 3.7°(range: 0.2–7.1°) and in the PA group was 1.7°(range: 0.2–4.3°). Mean BMI in the DAA group was 25.2(range: 18.4–34.2) and 29.1(range: 21.5–42.4). There was no direct correlation between BMI and the amount of roll or tilt recorded for individual patients. The IMU tracking device provided a useful and real-time method of assessing pelvic orientation during THR via both the DAA and posterior approach. Specific variations in tilt and roll are consistent with previous literature. Significant variation in the pattern of pelvic movement was noted to be dependent on the approach and the position of the patient on the operating table


The Journal of Bone & Joint Surgery British Volume
Vol. 89-B, Issue 1 | Pages 26 - 31
1 Jan 2007
Kawanabe K Akiyama H Onishi E Nakamura T

We retrospectively evaluated 42 hips which had undergone acetabular reconstruction using the Kerboull acetabular reinforcement device between September 1994 and December 1998. We used autogenous bone chips from the ilium and ceramic particle morsellised grafts, even in large acetabular bone defects, in the early stages of the study. Thereafter, femoral head allograft was used as bulk graft in patients with large acetabular defects. Ceramic blocks and the patients’ contralateral femoral head were also used as bulk graft. The mean follow-up period was 8.7 years (4.3 to 12). Survivorship analysis was performed using radiological failure of the acetabular component, irrespective of whether it was revised, or not, as the end-point. The survival rate of the morsellised graft group (25 hips) and the bulk graft group (17 hips) at ten years was 53% (95% confidence interval (CI) 42.5% to 63.5%) and 82% (95% CI 72.4% to 91.6%), respectively. The mid-term results of revision total hip replacement with the Kerboull device were better when bulk graft was used in any size of bone defect


The Bone & Joint Journal
Vol. 100-B, Issue 6 | Pages 725 - 732
1 Jun 2018
Gibon E Barut N Courpied J Hamadouche M

Aims. The purpose of this retrospective study was to evaluate the minimum five-year outcome of revision total hip arthroplasty (THA) using the Kerboull acetabular reinforcement device (KARD) in patients with Paprosky type III acetabular defects and destruction of the inferior margin of the acetabulum. Patients and Methods. We identified 36 patients (37 hips) who underwent revision THA under these circumstances using the KARD, fresh frozen allograft femoral heads, and reconstruction of the inferior margin of the acetabulum. The Merle d’Aubigné system was used for clinical assessment. Serial anteroposterior pelvic radiographs were used to assess migration of the acetabular component. Results. At a mean follow-up of 8.2 years (5 to 19.3), the mean Merle d’Aubigné score increased from 12.5 (5 to 18) preoperatively to 16.5 (10 to 18) (p < 0.0001). The survival rate at ten years was 95.3% (. sd. 4.5; 95% confidence interval (CI) 86.4 to 100) and 76.5% (. sd. 9.9, 95% CI 57.0 to 95.9) using aseptic loosening and radiological loosening as the endpoints, respectively. Conclusion. These results show that the use of the KARD with reconstruction of the inferior margin of the acetabulum in revision THA is associated with acceptable clinical results and survival at mid-term follow-up with, however, a high rate of migration of the acetabular component of 21.6%. Cite this article: Bone Joint J 2018;100-B:725–32


The Journal of Bone & Joint Surgery British Volume
Vol. 89-B, Issue 12 | Pages 1581 - 1585
1 Dec 2007
McConway J O’Brien S Doran E Archbold P Beverland D

Between April 1992 and July 2005, 310 posterior lip augmentation devices were used for the treatment of recurrent dislocation of the hip in 307 patients who had received primary total hip replacements (THRs) using Charnley/Charnley Elite components with a cemented acetabulum. The mean number of dislocations before stabilisation with the device was five (1 to 16) with a mean time to this intervention from the first dislocation of 3.8 years (0 days to 22.5 years). The mean age of the patients at this reconstruction was 75.4 years (39 to 96). A retrospective clinical and radiological review was carried out at a mean follow-up of six years and nine months (4.4 months to 13 years and 7 months). Of the 307 patients, 53 had died at the time of the latest review, with a functioning THR and with the posterior lip augmentation device in situ. There were four revisions (1.3%), one for pain, two for deep infection and one for loosening of the acetabular component. Radiolucent lines around the acetabular component increased in only six cases after insertion of the device which was successful in eliminating instability in 302 patients, with only five further dislocations (1.6%) occurring after its insertion


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_10 | Pages 20 - 20
1 Oct 2020
Engh CA Ho H Bhal V Housman LR Masonis JL Noble JW Hopper RH Su EP
Full Access

Introduction

The BIRMINGHAM HIP Resurfacing is a metal-on-metal (MOM) hip implant system approved by the US FDA in 2006. The approval required a multicenter, prospective, post-approval study (PAS). Our purpose is to report the current minimum 10-year results.

Methods

253 patients (280 hips) had surgery between October 2006 and December 2009 at one of 5 sites. We report revisions, survivorship, EQ-5D, Harris Hip Score (HHS), radiographic findings, and metal levels including cobalt (Co) and chromium (Cr). The mean age at surgery was 51 years, 74% male, BMI 28, osteoarthritis 95%. 243 (87%) of hips have known outcome or 10-year minimum follow-up (fup). Prior to 10 years, 5 patients died, 20 hips were revised, and 37 hips did not complete 10-year fup.


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_9 | Pages 19 - 19
1 May 2018
McMahon S Magill P Bopf D Beverland D
Full Access

Introduction. Radiological inclination (RI) is determined in part by operative inclination (OI), which is defined as the angle between the cup axis or handle and the sagittal plane. In lateral decubitus the theatre floor becomes a surrogate for the pelvic sagittal plane. Critically at the time of cup insertion if the pelvic sagittal plane is not parallel to the floor either because the upper hemi pelvis is internally rotated or adducted, RI can be much greater than expected. We have developed a simple Pelvic Orientation Device (POD) to help achieve a horizontal pelvic sagittal plane. The POD is a 3-sided square with flat footplates that are placed against the patient's posterior superior iliac spines following initial positioning (figure 1). A digital inclinometer is then placed parallel and perpendicular to the patient to give readings of internal rotation and adduction, which can then be corrected. Methods. A model representing the posterior aspect of the pelvis was created. This permitted known movement in two planes to simulate internal rotation and adduction of the upper hemi pelvis, with 15 known pre-set positions. 20 participants tested the POD in 5 random, blinded position combinations, providing 200 readings. The accuracy was measured by subtracting each reading from the known value. Results. 2 statistical outliers were identified and removed from analysis. The mean adduction error was 0.73°. For internal rotation, the mean error was −0.03°. Accuracy within 2.0° was achieved in 176 of 190 (93%) of readings (Table 1). The maximum error was 3.6° for internal rotation and 3.1° for adduction. Conclusion. In a model pelvis the POD provided an accurate and reproducible method of achieving a horizontal sagittal plane. Applied clinically, this simple tool has the potential to reduce the high values of RI sometimes seen following THA in lateral decubitus. For any figures and tables, please contact the authors directly


Bone & Joint 360
Vol. 4, Issue 5 | Pages 34 - 36
1 Oct 2015
Starkie R


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_5 | Pages 21 - 21
1 Jul 2020
Nandra R Ahmed U Berryman F Brash L Dunlop D Matharu G
Full Access

Introduction

Many worldwide regulatory authorities recommend regular surveillance of metal-on-metal hip arthroplasty patients given high failure rates. However concerns have been raised about whether such regular surveillance, which includes asymptomatic patients, is evidence-based and cost-effective. We determined: (1) the cost of implementing the 2015 MHRA surveillance in “at-risk” Birmingham Hip Resurfacing (BHR) patients, and (2) how many asymptomatic hips with adverse reactions to metal debris (ARMD) would have been missed if patients were not recalled.

Methods

All BHR patients subject to the 2015 MHRA recall (all females, and males with head sizes 46mm or below, regardless of symptoms) at one specialist centre were invited for review (707 hips). All patients were investigated (Oxford Hip Score, radiographs, blood metal ions, and targeted cross-sectional imaging) and managed accordingly. Surveillance costs were calculated using finance department data, as was the number needed to treat (NNT) to avoid missing one case of asymptomatic ARMD.


Bone & Joint Research
Vol. 13, Issue 6 | Pages 272 - 278
5 Jun 2024
Niki Y Huber G Behzadi K Morlock MM

Aims. Periprosthetic fracture and implant loosening are two of the major reasons for revision surgery of cementless implants. Optimal implant fixation with minimal bone damage is challenging in this procedure. This pilot study investigates whether vibratory implant insertion is gentler compared to consecutive single blows for acetabular component implantation in a surrogate polyurethane (PU) model. Methods. Acetabular components (cups) were implanted into 1 mm nominal under-sized cavities in PU foams (15 and 30 per cubic foot (PCF)) using a vibratory implant insertion device and an automated impaction device for single blows. The impaction force, remaining polar gap, and lever-out moment were measured and compared between the impaction methods. Results. Impaction force was reduced by 89% and 53% for vibratory insertion in 15 and 30 PCF foams, respectively. Both methods positioned the component with polar gaps under 2 mm in 15 PCF foam. However, in 30 PCF foam, the vibratory insertion resulted in a clinically undesirable polar gap of over 2 mm. A higher lever-out moment was achieved with the consecutive single blow insertion by 42% in 15 PCF and 2.7 times higher in 30 PCF foam. Conclusion. Vibratory implant insertion may lower periprosthetic fracture risk by reducing impaction forces, particularly in low-quality bone. Achieving implant seating using vibratory insertion requires adjustment of the nominal press-fit, especially in denser bone. Further preclinical testing on real bone tissue is necessary to assess whether its viscoelasticity in combination with an adjusted press-fit can compensate for the reduced primary stability after vibratory insertion observed in this study. Cite this article: Bone Joint Res 2024;13(6):272–278


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_12 | Pages 70 - 70
23 Jun 2023
Muratoglu OK Asik MD Nepple CM Wannomae KK Micheli BR Connolly RL Oral E
Full Access

Majority of ultra-high molecular weight polyethylene (UHMWPE) medical devices used in total joint arthroplasty are crosslinked using gamma radiation to improve wear resistance. Alternative methods of crosslinking are urgently needed to replace gamma radiation due to rapid decline in its supply. Peroxide crosslinking is a candidate method with widespread industrial applications. Oxidative stability and biocompatibility, which are critical requirements for medical device applications, can be achieved using vitamin-E as an additive and by removing peroxide by-products through high temperature melting, respectively. We investigated compression molded UHMWPE/vitamin-E/di-cumyl peroxide blends followed by high-temperature melting in inert gas as a material candidate for tibial knee inserts. Wear resistance increased and mechanical properties remained largely unchanged. Oxidation induction time was higher than most of the other clinically available formulations. The material passed the local-end point biocompatibility tests per ISO 10993. Compounds found in exhaustive extraction were of no concern with margin-of-safety values well above the accepted level, indicating a desirable toxicological risk profile. Peroxide crosslinked, vitamin-E stabilized, and high temperature melted UHMWPE has recently been cleared for clinical use in tibial knee inserts. With all the salient characteristics needed in a material that can provide superior long-term performance in total joint patients, peroxide crosslinking can replace gamma radiation crosslinking of UHMWPE for use in all total joint replacement implant including acetabular liners


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_11 | Pages 7 - 7
7 Jun 2023
Vandeputte F Hausswirth C Dille J Corten K
Full Access

Total Hip Arthroplasty (THA) surgery is a physical and cognitive challenge for surgeons. Data on stress levels, cognitive and physical load of orthopaedic surgeons, as well as ergonomic impact, are limited. With and without the use of an automated impaction device, operational efficiency and the surgeon's ergonomic, mental, and physical load was investigated. In a total of thirty THA procedures, a standard manual technique was compared with an automated impaction device. Three computerized cognitive tasks (Simon, pattern comparison, and pursuit rotor) and five physical tests (isometric wall-sit, plank-to-fatigue, handgrip, supra-postural task, and shoulder endurance) were used to assess psychophysiological load of the surgeon. Surgeon's cortisol concentration was evaluated from saliva samples. Postural risk was assessed by Rapid Upper Limb Assessment (RULA) and Rapid Entire Body Assessment (REBA). Efficiency was assessed by timing surgical steps and instrumentation flow. Cognitive performances after automated impaction showed faster response times and lower error rates with a greater time-on-target (+1.5 s) and a lower mouse deviation from target (−1.7 pixels). Manual impaction showed higher physical exhaustion in the isometric wall-sit test (10.6% vs. 22.9%), plank-to-fatigue (2.2% vs. 43.8%), the number of taps in the supra-postural task (−0.7% vs. −7.7%), handgrip force production in the dominant (−6.7% vs. −12.7%) and contralateral hand (+4.7% vs. +7.7%), and in shoulder endurance (−15s vs. −56s). An increase of 38.2% in salivary cortisol concentration between the midday (1.31 nmol/l) and afternoon session (1.81 nmol/l) was observed with manual impaction. After using automated impaction, salivary cortisol concentration decreased (−51.2%). Manual broaching time was on average 6′20’’ versus 7’3’’ with automated impaction. RULA of manual impaction scored 6 for cup impaction and 5 for femoral broaching, versus 3 and 3 for automated impaction, respectively. REBA of manual impaction scored 9 for cup impaction and 5 for femoral broaching, versus 4 and 3 for automated impaction, respectively. Automated impaction lowers surgeons’ cognitive and physical fatigue and leads to reduced stress and improved ergonomics without loss of surgical efficiency


The Bone & Joint Journal
Vol. 105-B, Issue 3 | Pages 261 - 268
1 Mar 2023
Ruhr M Huber G Niki Y Lohner L Ondruschka B Morlock MM

Aims. The aim of the study was to investigate whether the primary stability of press-fit acetabular components can be improved by altering the impaction procedure. Methods. Three impaction procedures were used to implant acetabular components into human cadaveric acetabula using a powered impaction device. An impaction frequency of 1 Hz until complete component seating served as reference. Overimpaction was simulated by adding ten strokes after complete component seating. High-frequency implantation was performed at 6 Hz. The lever-out moment of the acetabular components was used as measure for primary stability. Permanent bone deformation was assessed by comparison of double micro-CT (µCT) measurements before and after impaction. Acetabular component deformation and impaction forces were recorded, and the extent of bone-implant contact was determined from 3D laser scans. Results. Overimpaction reduced primary acetabular component stability (p = 0.038) but did not significantly increase strain release after implantation (p = 0.117) or plastic deformations (p = 0.193). Higher press-fits were associated with larger polar gaps for the 1 Hz reference impaction (p = 0.002, R. 2. = 0.77), with a similar trend for overimpaction (p = 0.082, R. 2. = 0.31). High-frequency impaction did not significantly increase primary stability (p = 0.170) at lower impaction forces (p = 0.001); it was associated with smaller plastic deformations (p = 0.035, R. 2. = 0.34) and a trend for increased acetabular component relaxation between strokes (p = 0.112). Higher press-fit was not related to larger polar gaps for the 6 Hz impaction (p = 0.346). Conclusion. Overimpaction of press-fit acetabular components should be prevented since additional strokes can be associated with increased bone damage and reduced primary stability as shown in this study. High-frequency impaction at 6 Hz was shown to be beneficial compared with 1 Hz impaction. This benefit has to be confirmed in clinical studies. Cite this article: Bone Joint J 2023;105-B(3):261–268


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_12 | Pages 30 - 30
23 Jun 2023
Shimmin A Plaskos C Pierrepont J Bare J Heckmann N
Full Access

Acetabular component positioning is commonly referenced with the pelvis in the supine position in direct anterior approach THA. Changes in pelvic tilt (PT) from the pre-operative supine to the post-operative standing positions have not been well investigated and may have relevance to optimal acetabular component targeting for reduced risk of impingement and instability. The aims of this study were therefore to determine the change in PT that occurs from pre-operative supine to post-operative standing, and whether any factors are associated with significant changes in tilt ≥13° in posterior direction. 13° in a posterior direction was chosen as that amount of posterior rotation creates an increase in functional anteversion of the acetabular component of 10°. 1097 THA patients with pre-operative supine CT and standing lateral radiographic imaging and 1 year post-operative standing lateral radiographs (interquartile range 12–13 months) were reviewed. Pre-operative supine PT was measured from CT as the angle between the anterior pelvic plane (APP) and the horizontal plane of the CT device. Standing PT was measured on standing lateral x-rays as the angle between the APP and the vertical line. Patients with ≥13° change from supine pre-op to standing post-op (corresponding to a 10° change in cup anteversion) were grouped and compared to those with a <13° change using unpaired student's t-tests. Mean pre-operative supine PT (3.8±6.0°) was significantly different from mean post-operative standing PT (−3.5±7.1°, p<0.001), ie mean change of −7.3±4.6°. 10.4% (114/1097) of patients had posterior PT changes ≥13° supine pre-op to standing post-op. A significant number of patients, ie 1 in 10, undergo a clinically significant change in PT and functional anteversion from supine pre-op to standing post-op. Surgeons should be aware of these changes when planning component placement in THA


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_16 | Pages 90 - 90
19 Aug 2024
Sakai T Kaneoka T Okazaki T Matsuki Y Kawakami T Yamazaki K Imagama T
Full Access

Recently, some smart media devices including portable accelerometers have been used to measure objective physical activity (OPA) after total hip arthroplasty (THA). The aim of this study was to longitudinally assess OPA changes in patients who underwent THA using a compact triaxial accelerometer and to investigate the impact of this recovery process on patient-reported outcomes. This prospective cohort study involved 163 consecutive patients who had unilateral osteoarthritis of the hip and were followed up for 12 months after THA. There were 132 women and 31 men with average age of 66 years. OPA was measured using a compact triaxial accelerometer preoperatively and at 1, 3, 6, and 12 months postoperatively. This study investigated the recovery process of OPA in four patient groups classified by the median of age and preoperative activity levels (younger and higher activity (YH), younger and lower activity (YL), older and higher activity (OH), and older and lower activity (OL)), and examined its impact on patient-reported outcomes, including forgotten joint score-12 (FJS-12). The target period for regaining preoperative activity levels was approximately 3 months for patients with lower preoperative activity, and about 6 months for those with higher preoperative activity. The OPA at 12 months postoperatively was higher in the patients with higher preoperative activity levels than in those with lower preoperative activity levels. In patients with higher preoperative activity levels, FJS-12 scores significantly increased between 6 and 12 months postoperatively (p=0.018). FJS-12 at 12 months postoperatively was best in YH (81.7±18.9), followed by YL (73.5±22.9), OH (73.2±17.4), and OL (66.3±21.8). Differences in the recovery process of postoperative activity levels impacted the duration required for improvement in FJS-12 scores. These results can serve as indicators for setting activity goals in patients undergoing THA


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_16 | Pages 70 - 70
19 Aug 2024
Heimann AF Kowal JH Lane PM Amundson AJ Tannast M Murphy SB
Full Access

Mixed Reality has the potential to improve accuracy and reduce required dissection for the performance of peri-acetabular osteotomy. The current work assesses initial proof of concept of MR guidance for PAO. A PAO planning module, based on preoperative computed tomography (CT) imaging, allows for the planning of PAO cut planes and repositioning of the acetabular fragment. 3D files (holograms) of the cut planes and native and planned acetabulum positions are exported with the associated spatial information. The files are then displayed on mixed reality head mounted device (HoloLens2, Microsoft) following intraoperative registration using an FDA-cleared mixed reality application designed primary for hip arthroplasty (HipInsight). PAO was performed on both sides of a bone model (Pacific Research). The osteotomies and acetabular reposition were performed in accordance with the displayed holograms. Post-op CT imaging was performed for analysis. Cutting plane-accuracy was evaluated using a best-fit plane and 2D angles (°) between the planned and achieved supra (SA)- and retroacetabular (RA) osteotomy and retroacetabular and ischial osteotomies (IO) were measured. To evaluate the accuracy of acetabular reorientation, we digitized the acetabular rim and calculated the acetabular opening plane. Absolute errors of planned and achieved operative inclination and anteversion (°) of the acetabular fragment, as well as 3D lateral-center-edge (LCE) angles were calculated. The mean absolute difference between the planned and performed osteotomy angles was 3 ± 3°. The mean absolute error between planned and achieved operative anteversion and inclination was 1 ± 0° and 0 ± 0° respectively. Mean absolute error between planned and achieved 3D LCE angle was 0.5 ± 0.7°. Mixed-reality guidance for the performance of pelvic osteotomies and acetabular fragment reorientation was feasible and highly accurate. This solution may improve the current standard of care by enabling reliable and precise reproduction of the desired acetabular realignment


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_12 | Pages 11 - 11
23 Jun 2023
Lombardi AV Alexander JS Berend KR Houserman DJ Adams JB Crawford DA
Full Access

Previous studies have reported excellent results with tapered, titanium alloy, porous plasma-sprayed components in patients undergoing uncemented primary total hip arthroplasty (THA). The purpose of this study was to examine survival and clinical results at minimum 25-year follow-up. We reviewed all patients who underwent primary THA at our center through 1995 with a specific femoral component, the Mallory-Head Porous (MHP; Zimmer Biomet, Warsaw, IN). This device, marketed in the U.S. until December 2021, was essentially unchanged since its 1984 introduction, except the porous coating was continued circumferentially along the lateral aspect in 1987, a hydroxyapatite-coated option was offered in 1988, and an offset option was added in 1999 after the study period. Three hundred thirty-two patients (396 THA) had a minimum of 25-year follow-up. Mean age at surgery was 47.6 years (range, 21–70 years). Mean follow-up in non-failed patients was 28.7 years (range, 25 to 37 years). There were 31 femoral revisions (7.8%): 9 infection, 3 failure of ingrowth, 5 aseptic loosening, 8 osteolysis revised well-fixed, 2 periprosthetic fracture, 2 polyethylene wear with trochanteric avulsion, 1 component breakage, and 1 malalignment well-fixed. Kaplan-Meier survival with endpoint of stem revision for all causes was 94.8% (95% CI: ±0.9%) at 36.7 years, and survival with endpoint of aseptic loosening/failure of ingrowth was 98.7% (95% CI: ±0.5) at 36.7 years. Harris hip scores improved significantly from 43 preoperatively to 76 most recently. This tapered, titanium, porous plasma spray-coated femoral component continues to demonstrate high long-term survival with a low rate of femoral component revision for any reason or aseptic loosening/failure of ingrowth