Abstract
Total Hip Arthroplasty (THA) surgery is a physical and cognitive challenge for surgeons. Data on stress levels, cognitive and physical load of orthopaedic surgeons, as well as ergonomic impact, are limited. With and without the use of an automated impaction device, operational efficiency and the surgeon's ergonomic, mental, and physical load was investigated.
In a total of thirty THA procedures, a standard manual technique was compared with an automated impaction device. Three computerized cognitive tasks (Simon, pattern comparison, and pursuit rotor) and five physical tests (isometric wall-sit, plank-to-fatigue, handgrip, supra-postural task, and shoulder endurance) were used to assess psychophysiological load of the surgeon. Surgeon's cortisol concentration was evaluated from saliva samples. Postural risk was assessed by Rapid Upper Limb Assessment (RULA) and Rapid Entire Body Assessment (REBA). Efficiency was assessed by timing surgical steps and instrumentation flow.
Cognitive performances after automated impaction showed faster response times and lower error rates with a greater time-on-target (+1.5 s) and a lower mouse deviation from target (−1.7 pixels). Manual impaction showed higher physical exhaustion in the isometric wall-sit test (10.6% vs. 22.9%), plank-to-fatigue (2.2% vs. 43.8%), the number of taps in the supra-postural task (−0.7% vs. −7.7%), handgrip force production in the dominant (−6.7% vs. −12.7%) and contralateral hand (+4.7% vs. +7.7%), and in shoulder endurance (−15s vs. −56s). An increase of 38.2% in salivary cortisol concentration between the midday (1.31 nmol/l) and afternoon session (1.81 nmol/l) was observed with manual impaction. After using automated impaction, salivary cortisol concentration decreased (−51.2%). Manual broaching time was on average 6′20’’ versus 7’3’’ with automated impaction. RULA of manual impaction scored 6 for cup impaction and 5 for femoral broaching, versus 3 and 3 for automated impaction, respectively. REBA of manual impaction scored 9 for cup impaction and 5 for femoral broaching, versus 4 and 3 for automated impaction, respectively.
Automated impaction lowers surgeons’ cognitive and physical fatigue and leads to reduced stress and improved ergonomics without loss of surgical efficiency.