Aims. In the UK, the NHS generates an estimated 25 megatonnes of
Introduction. Recently ventral plating implants made of
Objectives. The purpose of this study was to evaluate in vivo biocompatibility
of novel single-walled
Introduction. Total hip replacement with metal-on-polymer (MoP) hip prostheses is a successful treatment for late-stage osteoarthritis. However, the wear debris generated from the polymer acetabular liners remains a problem as it can be associated with osteolysis and aseptic loosening of the implant. This has led to the investigation of more wear resistant polymers in orthopaedics. Cross-linked polyethylene (XLPE) is now the gold-standard acetabular liner material. However, we asked if
Introduction. Currently, there is a focus on the development of novel materials to articulate against cartilage. Such materials should either eliminate or delay the necessity of total joint replacement. While cobalt-chromium (CoCr) alloy is still a material of choice and used for hemi-arthroplasties, spacers, and repair plugs, alternative materials are being studied. Pyrolytic
Smoking is negatively implicated in healing and may increase the risk of surgical complications in orthopaedic patients.
Patient education programmes prior to hip and knee arthroplasty reduce anxiety and create realistic expectations. While traditionally delivered in-person, the Covid-19 pandemic has necessitated change to remote delivery. We describe a ‘Virtual Joint School’ (VJS) model introduced at Ysbyty Gwynedd, and present patient feedback to it. Eligible patients first viewed online educational videos created by our Multi-Disciplinary Team (MDT); and then attended an interactive virtual session where knowledge was reinforced. Each session was attended by 8–10 patients along with a relative/friend; and was hosted by the MDT consisting of nurses, physiotherapists, occupational therapists, and a former patient who provided personal insight. Feedback on the VJS was obtained prospectively using an electronic questionnaire. From July 2022 to February 2023, 267 patients attended the VJS; of which 117 (44%) responded to the questionnaire. Among them, 87% found the pre-learning videos helpful and comprehensible, 92% felt their concerns were adequately addressed, 96% felt they had sufficient opportunity to ask questions and 96% were happy with the level of confidentiality involved. While 83% felt they received sufficient support from the health board to access the virtual session, 63% also took support from family/friends to attend it. Only 15% felt that they would have preferred a face-to-face format. Finally, by having ‘virtual’ sessions, each patient saved, on average, 38 miles and 62 minutes travel (10,070 miles and 274 hours saved for 267 patients). Based on the overwhelmingly positive feedback, we recommend implementation of such ‘Virtual Joint Schools’ at other arthroplasty centres as well.
Total knee arthroplasty with a rotating hinge knee with carbon-fibre-reinforced (CFR)-PEEK as an alternative bushing material with enhanced creep, wear and fatigue behaviour has been clinically established [1-4]. The objective of our study was to compare results from in vitro biotribological characterisation to ex vivo findings on a retrievals. A modified in vitro wear simulation based on ISO 14243-1 was performed for 5 million cycles on rotating hinge knee (RHK) designs (EnduRo®) out of cobalt-chromium and ZrN-multilayer ceramic coating. The rotational & flexion axles-bushings and the flanges are made of CFR-PEEK with 30% polyacrylonitrile fibre content. Analysis of 12 retrieved EnduRo® RHK systems in cobalt-chromium and ZrN-multilayer in regard to loosening torques, microscopic surface analysis, distinction between different wear modes and classification with a modified HOOD-score has been performed. For the RHK design with the polyethylene gliding surface and bushings and flanges made out of CFR-PEEK, a cumulative volumetric wear was measured to be 12.9±3.95 mm3 in articulation to cobalt-chromium and 1.3±0.21 mm3 to ZrN-multilayer coating - a significant 9.9-fold decrease (p=0.0072). For the CFR-PEEK flexion bushing and flanges the volumetric wear rates were 2.3±0.48 mm3/million cycles (cobalt-chromium) and 0.21±0.02 mm3/million cycles (ZrN-multilayer) (p=0.0016). The 5 million cycles of in vitro wear testing reflect a mean in vivo service life of 2.9 years, which is in accordance to the time in vivo of 12–60 months of the retrieved RHK components [5]. The main wear modes were comparable between retrievals and in vitro specimens, whereby the size of affected area on the retrieved components showed a higher variation. For the EnduRo® RHK design the findings on retrieved implants demonstrate the high suitability of CFR-PEEK as a biomaterial for highly loaded bearings, such as RHK bushings and flanges in articulation to cobalt-chromium and to a ZrN-multilayer coating.
Introduction. The health sector contributes the equivalent of 4.4% of global net emissions to the climate
The development of more wear resistant biomaterials and better locking mechanisms for the polyethylene into the tibial base has significantly reduced polyethylene wear as a reason for revision TKA. Aseptic loosening is now the primary cause for revision TKA. Loosening can be caused by multifactorial operative issues: 1] patient selection, 2] implant alignment, 3] cementing technique. Furthermore, aseptic loosening occurs at a consistent rate over time. Increased cement penetration is important to counter bone resorption. Increasing penetration also improves cement mantle toughness leading to better mechanical integrity of the bone-cement interface and reduces bone-cement interface stress. It is important to recognise that a cleaner and drier interface does improve bone-cement penetration. Techniques to improve the process include better cement formulations, drilling sclerotic bone, devices and implant features to increase pressurization, using negative pressure suction ports in the tibia. We have extensive experience with CarboJet, a method of CO. 2. gas jet cleaning and drying. This experience was developed during 20 years of performing TKA with NO tourniquet. Schnetler et al found that the “use of a tourniquet in TKA causes a paradoxical increase in total blood loss”. So, NO tourniquet TKA is becoming the new paradigm for knee arthroplasty in reconstructive orthopaedics. Goldstein reported that pressurised
The development of more wear resistant biomaterials and better locking mechanisms for the polyethylene into the tibial base has significantly reduced polyethylene wear as a reason for revision TKA. Aseptic loosening is now the primary cause for revision TKA. Loosening can be caused by multifactorial operative issues: 1] patient selection, 2] implant alignment, 3] cementing technique. Furthermore, aseptic loosening occurs at a consistent rate over time. Increased cement penetration is important to counter bone resorption. Increasing penetration also improves cement mantle toughness leading to better mechanical integrity of the bone-cement interface and reduces bone-cement interface stress. It is important to recognise that a cleaner and drier interface does improve bone-cement penetration. Techniques to improve the process include better cement formulations, drilling sclerotic bone, devices and implant features to increase pressurization, using negative pressure suction ports in the tibia. We have extensive experience with CarboJet, a method of CO2 gas jet cleaning and drying. This experience was developed during 20 years of performing TKA with NO tourniquet. Schnetler et al found that the “use of a tourniquet in TKA causes a paradoxical increase in total blood loss”. So, NO tourniquet TKA is becoming the new paradigm for knee arthroplasty in reconstructive orthopaedics. Goldstein reported that pressurised
INTRODUCTION. Joint replacement is one of the most common orthopaedic procedures, with over 2 million surgeries performed each year across the globe. Loss of implant fixation, or aseptic loosening, is the leading cause of revision following primary joint replacement, accounting for ∼25% of all revision cases [1]. However, diagnosis of aseptic loosening and its underlying causes remain challenging due to the low sensitivity and specificity of plain radiographs. To address this, we propose a novel approach inspired by [2] involving the use of a self-sensing bone cement (by imparting strain-dependent electrical conductivity or piezoresistivity) combined with electrical impedance tomography (EIT). Piezoresistivity is imparted to cement via incorporation of micro/nanoscale conductive fillers. Therefore mechanical effects such as loosening and cracks will manifest as a conductivity change of the cement. This work explores if EIT is able to detect strains and cracks within the bone cement volume. METHODS. Experiments were designed to determine whether EIT combined with piezoresistive cement can be used to detect strains and cracks (Fig. 1). The setup consists of a tank filled with water, 16 electrodes, sample, a loading machine (MTS), and an EIT system. To develop the piezoresistive bone cement, microscale
Introduction. Despite the positive outcomes in shoulder joint replacements in the last two decades, polyethylene wear debris in metal-on-polyethylene artificial shoulder joints is well-known as a limitation in the long-term survival of shoulder arthroplasties systems. Consequently, there is an interest in the use of novel materials as an alternative to hard bearing surfaces such as pyrolytic
Introduction. Hip replacements are falling short of matching the life expectancy of coxarthritis patients, due to implanting THR in younger patients and due to increasingly active patients. The most frequently implanted hip prostheses use cross linked (XL) polyethylene (PE) on metal bearings in the USA and most of the Western world. Concerns remain in the long term around the potential of wear debris-induced aseptic loosening. Thus exploring lower-wearing alternative bearings remains a major research goal. PEEK (poly-ether-ether-ketone) is a thermoplastic polymer with enhanced mechanical properties. This study compared the wear of PEEK to the wear of cross linked polyethylene, when sliding against cobalt chrome (CoCr) metallic counterfaces, and compared the wear of carbon-fibre reinforced (CFR)-PEEK to cross linked polyethylene when sliding against metallic and ceramic counterfaces under different contact stresses within the hip joint. Methods. The following materials were studied: unfilled PEEK (OPTIMA, Invibio) and CFR-PEEK (MOTIS, Invibio) against either high
This study explored the shared genetic traits and molecular interactions between postmenopausal osteoporosis (POMP) and sarcopenia, both of which substantially degrade elderly health and quality of life. We hypothesized that these motor system diseases overlap in pathophysiology and regulatory mechanisms. We analyzed microarray data from the Gene Expression Omnibus (GEO) database using weighted gene co-expression network analysis (WGCNA), machine learning, and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis to identify common genetic factors between POMP and sarcopenia. Further validation was done via differential gene expression in a new cohort. Single-cell analysis identified high expression cell subsets, with mononuclear macrophages in osteoporosis and muscle stem cells in sarcopenia, among others. A competitive endogenous RNA network suggested regulatory elements for these genes.Aims
Methods
Introduction. Fretting crevice-corrosion (tribocorrosion) of metallic biomaterials is a major concern in orthopedic, spinal, dental and cardiovascular devices. 1. Stainless steel (i.e., 316L SS) is one alloy that sees extensive use in applications where fretting, crevices and corrosion may be present. While fretting-corrosion of this alloy has been somewhat studied, the concept of fretting-initiating crevice corrosion (FICC), where an initial fretting corrosion process leads to ongoing crevice-corrosion without continued fretting, is less understood. This study investigated the susceptibility of 316L SS to FICC and the role of applied potential on the process. The hypothesis is crevice-corrosion can be induced in 316L SS at potentials well below the pitting potential. Materials and Methods. A pin-on-disk fretting test system similar to that of Swaminathan et al. 2. was employed. Disks were ∼35 mm in diameter and the pin area was ∼500 mm. Samples were polished to 600 mm finish, cleaned with ethanol and distilled water. An Ag/AgCl wire as the reference, a
Introduction. Hip implant research has been carried out for decades using hip simulators to reflect situations in vivo. With regards to metal on metal (MoM) implant testing, it has been reported that there is no significant difference between the wear generated by various cobalt chromium (CoCr) microstructures. On the contrary, higher wear, metal ion levels and subsequent failures have been reported in heat treated (high
Introduction. In total hip arthroplasty, press-fit anchorage is one of the most common fixation methods for acetabular cups and mostly ensures sufficient primary stability. Nevertheless, implants may fail due to aseptic loosening over time, especially when the surrounding bone is affected by stress-shielding. The use of acetabular cups made of isoelastic materials might help to avoid stress-shielding and osteolysis. The aim of the present numerical study was to determine whether a modular acetabular cup with a shell made of polyetheretherketone (PEEK) may be an alternative to conventional titanium shells (Ti6Al4V). For this purpose, a 3D finite element analysis was performed, in which the implantation of modular acetabular cups into an artificial bone stock using shells made of either PEEK or Ti6Al4V, was simulated with respect to stresses and deformations within the implants. Methods. The implantation of a modular cup, consisting of a shell made of PEEK or Ti6Al4V and an insert made of either ceramic or polyethylene (PE), into a bone cavity made of polyurethane foam (20 pcf), was analysed by 3D finite element simulation. A two-point clamping cavity was chosen to represent a worst-case situation in terms of shell deformation. Five materials were considered; with Ti6Al4V and ceramic being defined as linear elastic and PE and PEEK as plastic materials. The artificial bone stock was simulated as a crushable foam. Contacts were generated between the cavity and shell (μ = 0.5) and between the shell and insert (μ = 0.16). In total, the FE models consisted of 45,282 linear hexahedron elements and the implantation process was simulated in four steps: 1. Displacement driven insertion of the cup; 2. Relief of the cup; 3. Displacement driven placement of the insert; 4. Load driven insertion of the insert (maximum push-in force of 500 N). The FE model was evaluated with respect to the radial deformations of the shell and insert as well as the principal stresses in case of the ceramic inserts. The model was experimentally validated via comparison of nominal strains of the titanium shells. Results. The maximum radial deformation of the shell made of PEEK was 581 μm (insertion) and 470 μm (relief) and therefore multiple times higher compared to the Ti6Al4V shell (42 μm and 21 μm). As a result, larger deformations occurred at the PE and ceramic inserts in combination with the PEEK shell. Partially, the deformations were above an usual clearance of 100 μm. When the ceramic insert was combined with the shell made of PEEK, maximum principal stresses in the ceramic insert amounted to 30 MPa and were clearly lower than approved bending strength of the ceramic material (948 MPa). Conclusion. The examined acetabular shell made of PEEK was intensively deformed during insertion compared to the geometrically identical Ti6Al4V shell and is therefore not suitable for modular acetabular cups. In future studies it should be clarified to what extent acetabular cups with shells made of
The major benefit of TKA with tourniquet is operating in a bloodless field. A possible secondary benefit is a better cement-bone interface for fixation. The disadvantages of tourniquet use for TKA include multiple risk factors both local and systemic: Nerve damage, Altered hemodynamics with limb exsanguinations (15–20% increase in circulatory volume) and reactive hyperemia with tourniquet release (10% increase in limb size increasing soft tissue tension and secondary pain), Delay in recovery of muscle function, Increased risk of DVT with direct trauma to vessel walls and increased levels of thrombin-antithrombin complexes, A 5.3x greater risk for large venous emboli propagation and transesophageal echogenic particles, Vascular injury with higher risk in atherosclerotic, calcified arteries, Increase in wound healing disturbances, Obese patients TKA with tourniquet show impaired endothelial function and more DVTs. Our initial experience with TKA without tourniquet was in high risk patients with previous DVT or PE, multiple scarring, or compromised cardiovascular status. We have used this method on all patients for the last 14 years. The protocol includes regional anesthesia, incision and approach made with 90-degree knee flexion, meticulous hemostasis, jet lavage and filtered
Background. Recent advances in materials and manufacturing processes for arthroplasty have allowed fabrication of intricate implant surfaces to facilitate bony attachment. However, refinement and evaluation of these new design strategies is hindered by the cost and complications of animal studies, particularly during early iterations in development process. To address this problem, we have constructed and validated an ex-vivo bone bioreactor culture system to enable empirical testing of candidate structures and materials. In this study, we investigated mineralization of a titanium wire mesh scaffold under both static and dynamic culturing using our ex vivo bioreactor system. Methods. Cancellous cylindrical bone cores were harvested from bovine metatarsals and divided into five groups under different conditions. After incubation for 4 & 7 weeks, the viability of each bone sample was evaluated using Live-Dead assay and microscopic anatomy of cells were determined using histology stain H&E. Matrix deposits on the scaffolds were examined with scanning electron microscopy (SEM) while its chemical composition was measured using energy-dispersive x–ray spectroscopy (EDX). Results. The viability of bone cores was maintained after seven weeks using our protocol and ex vivo system. From SEM images, we found more organic matrix deposition along with crystallite like structures on the metal samples pulled from the bioreactor indicating the initial stages of mineralization. EDX results further confirmed the presence of