Abstract
Background
Recent advances in materials and manufacturing processes for arthroplasty have allowed fabrication of intricate implant surfaces to facilitate bony attachment. However, refinement and evaluation of these new design strategies is hindered by the cost and complications of animal studies, particularly during early iterations in development process. To address this problem, we have constructed and validated an ex-vivo bone bioreactor culture system to enable empirical testing of candidate structures and materials. In this study, we investigated mineralization of a titanium wire mesh scaffold under both static and dynamic culturing using our ex vivo bioreactor system.
Methods
Cancellous cylindrical bone cores were harvested from bovine metatarsals and divided into five groups under different conditions. After incubation for 4 & 7 weeks, the viability of each bone sample was evaluated using Live-Dead assay and microscopic anatomy of cells were determined using histology stain H&E. Matrix deposits on the scaffolds were examined with scanning electron microscopy (SEM) while its chemical composition was measured using energy-dispersive x–ray spectroscopy (EDX).
Results
The viability of bone cores was maintained after seven weeks using our protocol and ex vivo system. From SEM images, we found more organic matrix deposition along with crystallite like structures on the metal samples pulled from the bioreactor indicating the initial stages of mineralization. EDX results further confirmed the presence of carbon and calcium phosphates in the matrix.
Conclusion
A bone bioreactor can be used a tool alternate to in-vivo for bone ingrowth studies on new implant surfaces or coatings.