Advertisement for orthosearch.org.uk
Results 1 - 20 of 1260
Results per page:
Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_2 | Pages 64 - 64
1 Feb 2020
Darwish O Grover H McHugh D Carlson E Dacus E Van Citters D
Full Access

Introduction. Large-scale retrieval studies have shown backside wear in tibial inserts is dependent on the surface roughness of the tibial tray. Manufacturers acknowledge this design factor and have responded with the marketing of mirror-finished trays, which are clinically proven to have lower wear rates in comparison to historically “rough” (e.g. grit blasted) trays. While the relationship between wear and surface roughness has been explored in other polymer applications, the quantitative dependence of backside wear rate on quantitative surface finish has not yet been established for modern devices. The present study evaluates small-excursion polyethylene wear on pucks of a variety of surface roughnesses. The objective of this study is to determine where inflection points exist in the relationship between surface roughness and wear rate. Materials and Methods. An AMTI Orthopod, 6-station pin on disk tribotest was designed to mimic worst-case in vivo backside wear conditions based on published retrieval analyses. Titanium (Ti6Al4V) pucks with six different surface roughness preparations (Sa ranges from 0.06 um to 1.06 um) were characterized with white light profilometry. Never implanted polyethylene tibial inserts (never irradiated, EtO sterilized) were machined into 6 mm diameter cylindrical pins. Fretting-type motion was conducted in a 2mm square pattern at 2Hz under 100 N constant force in 25% bovine serum lubricant for 1.35 million cycles in triplicate. Mass measurements were taken every 225 thousand cycles. Results. Over the range of surface roughness studied (Sa = 0.06 – 1.06 µm), wear rate grew logistically. The wear rate for highly polished titanium (Sa = 0.06 µm) was not statistically different from less-polished titanium with Sa of 0.14 µm (p > 0.1). Titanium pucks having the highest surface roughness (Sa > 0.5µm), removed material significantly faster than those with roughness less than 0.3µm. The results of these tests suggest that Ti trays with Sa less than 0.15µm may yield equivalent clinical backside wear results, while pucks with Sa greater than 0.15µm begin to have increased wear rates that may be clinically significant. The two pucks with Sa greater than 0.5 µm yielded wear rates failing to be statistically differentiable (p = 0.059), corresponding with the flattening of the logistic curve. Discussion. These results suggest that baseplates with Sa less than 0.15 µm may ultimately yield clinically equivalent outcomes. The wear rate curve changes slope between Sa 0.14 and 0.22 µm and continues to increase across the range of surface roughnesses studied. The wear rates on rough pucks (Sa > 0.5 µm) showed high variation, reducing the ability to distinguish the two statistically (p = 0.059). Further study will better distinguish wear properties at higher surface roughnesses. Conclusion. These findings demonstrate that there may be a range of finishes between a mirror polish and grit blast that may produce clinically equivalent wear rates. This work provides justification for further study into the relationship between backside wear, baseplate tray roughness, and material choices. For any figures or tables, please contact authors directly


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_34 | Pages 383 - 383
1 Dec 2013
Kurdziel M Peers S Moravek J Budge M Newton M Baker K Wiater JM
Full Access

Purpose:. Although short term outcomes of reverse total shoulder arthroplasty (rTSA) have been promising, long-term success may be limited due to complications, including scapular notching. Scapular notching has been explained primarily as a mechanical erosion, however, generation of wear debris may lead to further biologic changes contributing to the severity of scapular notching. Highly cross-linked ultra-high molecular weight polyethylene (UHMWPE) has been used routinely in constrained joint applications such as total hip arthroplasty for reduction of wear debris particles. Although rTSA shares similarity in design conformity, conventional UHMWPE remains the gold standard. Methods:. A commercially available hip simulator was converted to a 12-station rTSA wear simulator. Conventional and highly cross-linked UHMWPE humeral liners were subjected to 5,000,000 cycles of alternating abduction-adduction and flexion-extension loading profiles. Every 250,000 cycles, liners were evaluated with gravimetric wear measurements and test serum was collected for morphological characterization of wear particles. Results:. Highly cross-linked UHMWPE liners (36.5 ± 10.0 mm. 3. /million cycle) exhibited significantly lower volumetric wear rates compared to conventional UHMWPE liners (83.6 ± 20.6 mm3/million cycle) (p < 0.001) (Figure 1). The flexion-extension loading profile exhibited significantly higher wear rates for both conventional (p < 0.001) and highly cross-linked UHMWPE (p < 0.001) compared to the abduction-adduction loading profile. Highly cross-linked wear particles had an equivalent circle diameter significantly smaller than wear particles from conventional UHMWPE (p < 0.001) (Figure 2). Highly cross-linked wear particles were also significantly less fibrillar than conventional UHMWPE particles with respect to particle aspect ratio (p < 0.001) and particle roundness (p < 0.001). Conclusion:. This is the first study to examine the effect of cross-linked PE in a rTSA wear simulation. Highly cross-linked UHMWPE liners significantly reduced UHWMPE wear and subsequent particle generation. More favorable wear properties with the use of highly cross-linked UHMWPE may lead to increased rTSA device longevity and fewer complications but must be weighed against the impact of reduced mechanical properties


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_3 | Pages 8 - 8
1 Feb 2017
Al-Hajjar M Vasiljeva K Heiner A Kruger K Baer T Brown T Fisher J Jennings L
Full Access

Introduction. Previous studies have shown that third body damage to the femoral head in metal-on-polyethylene hip replacement bearings can lead to accelerated wear of the polyethylene liners. The resulting damage patterns observed on retrieved metal heads are typically scratches and scrapes. The damage created in vitro must represent the third body damage that occurs clinically. A computational model was developed to predict the acceleration of wear of polyethylene articulating against in vitro damaged femoral heads. This involved using a damage registry from retrieval femoral heads to develop standardized templates of femoral head scratches statistically representative of retrieval damage. The aim of this study was to determine the wear rates of polyethylene liners articulating against retrievals and artificially damaged metal heads for the purpose of validating a computational wear prediction model; and to develop and validate an in vitro standardised femoral head damage protocol for pre-clinical testing of hip replacements. Materials and Methods. Twenty nine, 32mm diameter, metal-on-moderately cross-linked polyethylene bearings (Marathon. TM. ) inserted into Ti-6Al-4V shells (Pinnacle. ®). were tested in this study. All products were manufactured by DePuy Synthes, Warsaw, Indiana, USA. Following a retrieval study seven different damage patterns were defined, and these were applied to the femoral heads using a four-degree-of-freedom CNC milling machine (Figure 1). The ProSim 10-station pneumatic hip joint simulator (Simulation Solutions, UK) was used for experimental wear simulation using standard gait cycles and testing each experimental group for 3 million cycles. The acetabular cups were inclined at 35° on the simulator (equivalent to 45° in vivo). The wear volumes were determined using a microbalance (Mettler-Toledo XP205, Switzerland) at one million cycle intervals. Statistical analysis used was one way ANOVA followed by a post hoc analysis with significance taken at p<0.05. Results. Different damage patterns accelerated the wear of polyethylene at different rates (Figure 2). The moderately scratched and severely scratched heads caused a 2 fold (p<0.01) and 5.5 fold (p<0.01) increase when compared to the wear rate of the undamaged head group. However, the scraped damage caused a lower increase than the scratched heads, with a 1.4 fold (p=0.2) increase for the moderately scraped heads and 2.6 fold (p<0.01) increase for the severely scraped heads. The moderate hybrid and severe hybrid groups resulted in a similar increase to the scraped heads with 1.8 fold (p<0.01) increase with the moderate hybrid and 3 fold (p<0.01) increase with the severe hybrid. The wear of polyethylene against the mild hybrid and retrieved heads was not significantly different (p= 0.9) to the wear against undamaged heads. Discussion. A standardised protocol for generating in vitro damage representative of clinically occurring damage on femoral heads for preclinical testing purposes is needed. The wear rates of polyethylene liners articulating against the retrieval heads were similar to those articulating against the undamaged femoral heads. This study has shown the variations in wear rate of polyethylene bearing under different damage patterns generated in vitro. The wear prediction computational model predict similar trends of the wear acceleration reported in the experimental study


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_3 | Pages 91 - 91
1 Feb 2017
Baykal D Day J Underwood R
Full Access

In the retrieval analysis of explanted hip joints, the estimation of wear volume and visualization of wear pattern are commonly used to evaluate in-vivo performance. While many studies report wear volumes from explanted hips, it is important to understand the limitations of these estimates including the sources and magnitude of uncertainty of the reported results. This study builds on a previous uncertainty analysis by Carmignato et al. to quantify the magnitude of uncertainty caused by the assumption that the as-manufactured shape of an explanted hip component is a perfect sphere. Synthetic data sets representing idealized measurements of spheroidal explants (prolate, oblate and pinched) with a nominal diameter of 50 mm were generated. These data sets represent the shape and magnitude of form deviations observed for explanted hip components (Figure 1). Data were simulated for either unworn components or those with a known volume and magnitude of wear simulated to represent 5 µm penetration of a 49.90 mm femoral head into an acetabular cup (Table 1). The volume of wear and wear pattern were estimated using a custom Matlab script developed for analysis of metrology data from explanted hip joints. This script fits a least squares sphere to data points in unworn, as manufactured regions of the surface to estimate the as-manufactured shape of the component. The diameter of the best fit sphere, and wear volume were compared to the known wear depths and volumes from the synthetic datasets. The results showed that the Matlab script estimated a wear volume of up to 1.4 mm. 3. for an unworn cup with a radial deviation of 10 µm. The maximum error of 13.3 mm. 3. was for a pinched cup with wear at the pole. The complete results are shown in Table 2. In some cases with aspherical form deviations, the least squares sphere fitted to the synthetic data was displaced in the Z direction with respect to the origin of the spheroid and the radius of the least squares sphere was outside the range of the principal radii of the spheroid. For instance, in case 5, the center was shifted 22 µm vertically from the mathematical center. The results from this study show that the magnitude of uncertainty due to form deviations on wear volume varies depending on the shape and magnitude of the form deviations and in some cases was greater than 10 mm. 3. A further important finding is that in some instances, the diameter and center of the least squares sphere fitted to the unworn regions may not be consistent with the mathematical radius and center of the synthetic data. This may have important implications for the “reverse engineering” of the as-manufactured dimensions from worn explanted hip joints. Please contact authors directly for the figure:. Figure 1 Graphical depiction of a) synthetic data set, b) deviation map of a hemispherical acetabular cup with simulated wear, c) deviation map of a prolate spheroid with simulated wear at rim with color bar set to ±5 microns, d) deviation map of pinched ellipsoid with simulated wear at 45 degrees from pole


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_34 | Pages 214 - 214
1 Dec 2013
Abdelgaied A Brockett C Liu F Jennings L Jin Z Fisher J
Full Access

Introduction:. Backside wear has been previously reported through in-vitro and in-vivo to have a significant contribution to the total wear in rotating bearing TKRs. The present study investigated the contribution of backside wear to the total wear in the PFC Sigma rotating platform mobile bearing TKR. In addition, the wear results were compared to the computed wear rates of the PFC Sigma fixed bearing TKR, with two different bearing materials. Materials and Methods:. The commercially available PFC Sigma rotating platform mobile bearing and PFC Sigma fixed bearing total knee replacements, size 3 (DePuy, UK) were tested, with either conventional or moderately cross-linked (5 MRad) GUR1020 UHMWPE bearing materials. The computational wear model for the knee implants was based on the contact area and an independent experimentally determined non-dimensional wear coefficient [1,2,3]. The experimental wear test for the mobile bearing was force controlled using the ISO anterior-posterior force (ISO14243-1-2009). However, due to time limitation of the explicit simulation required to run the force controlled model, the simulation was run using the AP displacements taken from the experimental knee simulator which was run under the ISO AP force. The Sigma fixed bearing TKR was run under high level of anterior-posterior displacements (maximum of 10 mm). Results and Discussion:. The rotating platform bearing showed lower wear rates, compared to that of the PFC Sigma fixed bearing, for both conventional and moderately cross-linked UHMWPE bearing materials (Fig. 1). Moreover, the results showed a high contribution of backside wear to the total wear, approximately 1 mm. 3. /million cycles (∼30% of the total wear). The computational wear predictions were in good agreements with the clinical and experimental measurements [4,5]. Contrasting the effect of bearing material on wear prediction, introducing the moderately cross-linked UHMWPE as a bearing material reduced the predicted wear rates by approximately 1 mm. 3. /million cycles in rotating platform bearing, compared to more than 5 mm. 3. /million cycles in PFC fixed bearing TKR. This reduced effect of cross-linking on wear in mobile bearing was mainly attributed to the lower cross-shear ratios in these bearings, compared to fixed bearings, and the less dependency of wear in moderately cross-linked UHMWPE on the degree of cross-shear, compared to conventional UHMWPE. Decreasing the degree of cross-shear from higher values (Sigma curved insert, high kinematic) to lower ones (rotating platform bearing) changed the predicted wear rates from 8.7 to 3.3 and from 3.4 to 2.4 (mm. 3. /million cycles), for conventional and moderately cross-linked UHMWPE materials respectively (Fig. 2). Conclusion:. The modelling confirmed the previous experimental observations of very low wear with the rotating platform knee. The models also determined the level of wear from the backside of the rotating platform knee which was approximately 1 mm. 3. /million cycles. The fixed bearing knee with moderately cross linked polyethylene also showed low wear at approximately 3 mm. 3. /million cycles. These low wear rates were determined under high kinematic walking cycles conditions. Future work will consider additional conditions


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_2 | Pages 50 - 50
10 Feb 2023
Eagles A Erian C Kermeci S Lovell D Weinrauch P
Full Access

Arthroscopic hip surgery is increasingly common in Australia. Hip arthroscopy is indicated for a range of diagnostic and therapeutic purposes, including labral tears, capsular laxity and femoral-acetabular impingement (FAI). Despite this, previous cohort studies aiming to characterise hip pathology seen on arthroscopic examination are mostly limited to patients with known diagnoses of FAI. Therefore, little is known of the native articular wear patterns encountered in other disease states. Therefore, we aimed to define common osteochondral wear patterns for a cohort of patients managed via hip arthroscopy. We retrospectively analysed intraoperative data for 1127 patients managed via hip arthroscopy between 2008 and 2013, for either therapeutic or diagnostic purposes. Intraoperative data was categorized by location (A-E as defined by Fontana et al. 2016) and chondral damage (0-4 scale as defined by Beck et al. 2005) with respect to both acetabulum and femoral head. Data for 1127 patients were included. Location of acetabular chondral pathology was variable with locations C. 1. and D. 1. representing the most common regions of damage. Labral tears predominated in locations C and D. Femoral chondral pathology was evenly distributed. The degree of femoral chondral injury was predominantly grade 1, whilst acetabular wear was evenly distributed. Large proportions of wear were observed at the peripheral superior and anterior regions of the lunate surface of the acetabulum in keeping with prior works. However, we observed higher rates of central wear and lower rates of grade 4 acetabular damage extending into superior/posterior zones, in our cohort. Our work characterises common articular wear patterns encountered at the time of hip arthroscopy. Further inquiry into the natural history of osteochondral lesions is needed to better understand and manage these conditions


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_4 | Pages 95 - 95
1 Jan 2016
Teeter M Parikh A Taylor M Vandekerckhove P Sprague J Naudie D
Full Access

We sought to determine what dimensional changes occurred from wear testing of a total knee implant, as well as whether any changes developed within the polyethylene subsurface. Three fixed bearing implants underwent wear simulator testing to 6.1 million cycles. Gravimetric analysis and micro-CT scans were performed pre-test, mid-test, and post-test. Wear volume and surface deviations were greater during 0–3.2 million cycles (91±12 mm. 3. ) than from 3.2–6.1 million cycles (52±18 mm. 3. ). Deviations (wear and creep) occurred across all surfaces of the tibial inserts, including the articular surface, backside surface, sides, and locking mechanism. No subsurface changes were found. The micro-CT results were a useful adjunct to gravimetric analysis, better defining the dimensional changes that occurred with testing and ruling out subsurface fatigue


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_34 | Pages 363 - 363
1 Dec 2013
Juszczyk M Hintner M Kaddick C Kelnberger A Heinrich W
Full Access

Introduction:. Failure of the polyethylene glenoid component is the most common complication of Total Shoulder Arthroplasty (TSA) and accounts for a majority of the unsatisfactory results after this procedure. Nowadays, most of the shoulder prostheses consist of metal on polyethylene bearing components. Repetitive contact between the metal ball and the polyethylene socket produces progressive abrasion of the implant if the moving part is made of polyethylene. Its debris may then lead to an active osteolysis and implant loosening. Failure of the glenoid component is often manifested clinically by pain, loss of function, and the presence of a clunking noise and leads to revision surgery. The use of ceramic balls aims at the reduction of this phenomenon. In many studies regarding knee and hip replacement it has been shown that the use of ceramic on polyethylene is more beneficial in terms of polyethylene wear and failure, when compared to metal on polyethylene. This is to our knowledge the first study to address in direct comparison wear in both TSA and RTSA. Materials and methods:. Two different wear tests were conducted in order to address both TSA and RTSA kinematics. Since up to day, there is no test standard for wear testing neither for TSA nor for RTSA a customised joint simulators were used to create worst-case scenarios motions in both cases. In the TSA testing setup, the orientation of the glenoid component and humeral component was chosen according to M. A. Wirth (2009) study but with the humeral component assembled inferiorly. For the RTSA the applied kinematics was based on a study of G. Kohut (2012) and ISO 14242-1 (2012) standard. Three articulating couples for each material were tested for both TSA and RTSA for total of 5 million cycles. Standard midterm gravimetric measurements were conducted at each 1 million cycles. Results:. The tests are currently ongoing and all results will be presented during next ISTA meeting


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_8 | Pages 72 - 72
1 May 2016
Juszczyk M de Uhlenbrock A Kelnberger A Heinrich W
Full Access

Introduction. Failure of the polyethylene glenoid component is the most common complication of Total Shoulder Arthroplasty (TSA) and accounts for a majority of the unsatisfactory results after this procedure. Nowadays, most of the shoulder prostheses consist of metal on polyethylene bearing components. Repetitive contact between the metal ball and the polyethylene socket produces progressive abrasion of the implant if the moving part is made of polyethylene. Its debris may then lead to an active osteolysis and implant loosening. Failure of the glenoid component is often manifested clinically by pain, loss of function, and the presence of a clunking noise and leads to revision surgery. The use of ceramic balls aims at the reduction of this phenomenon. In many studies regarding knee and hip replacement it has been shown that the use of ceramic on polyethylene (CoP) is more beneficial in terms of polyethylene wear and failure, when compared to metal on polyethylene (MoP). Since a human shoulder is very different from a hip and a knee, it is not a self-centering, neither congruent joint. And its stability is provided by healthy muscles of the rotator cuff. We decided to compare CoP against MoP in semi- force controlled test setup. Where, for a given governing angular motion the translational motion was a function of contact (frictional) forces between the tested couple (humeral head and PE). This is to our knowledge the first study to address in direct comparison wear in TSA in semi force controlled test setup. Materials and methods. Up today, there is no test standard for wear testing of TSA. A customised joint simulator was used to create worst-case scenario motion allowing for simulation of the muscles in two perpendicular axes: inferior – superior (I-S) and anterior – posterior (A-P). Were a governing angular motion (GAM) was the abduction – adduction (±30°) in I-S. A system of springs was created so that the I-S translation and the A-P rotation were a result of the GAM. The stiffens of the springs was tuned based on the MoP pair initial kinematic (1000 cycles) to result in: about 2mm I-S translation, and about ±10° A-P rotation. All samples were tested at the same test station in order to obtain maximal repeatability. Axial load was in range of 100N to 750 N. Three articulating couples for each material were tested for total of 2M cycles. Standard midterm gravimetric measurements were conducted at each 0.5 M cycles. Results. Wear rates after 2Mc were: MoP-30.48 ± 4.86 mg/M cycles; against CoP-16.33 ± 1.95 mg/M cycles


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_2 | Pages 26 - 26
1 Jan 2016
Hammouche S Fisher J Tipper J Williams S
Full Access

Introduction. Hip replacements are falling short of matching the life expectancy of coxarthritis patients, due to implanting THR in younger patients and due to increasingly active patients. The most frequently implanted hip prostheses use cross linked (XL) polyethylene (PE) on metal bearings in the USA and most of the Western world. Concerns remain in the long term around the potential of wear debris-induced aseptic loosening. Thus exploring lower-wearing alternative bearings remains a major research goal. PEEK (poly-ether-ether-ketone) is a thermoplastic polymer with enhanced mechanical properties. This study compared the wear of PEEK to the wear of cross linked polyethylene, when sliding against cobalt chrome (CoCr) metallic counterfaces, and compared the wear of carbon-fibre reinforced (CFR)-PEEK to cross linked polyethylene when sliding against metallic and ceramic counterfaces under different contact stresses within the hip joint. Methods. The following materials were studied: unfilled PEEK (OPTIMA, Invibio) and CFR-PEEK (MOTIS, Invibio) against either high carbon (HC) CoCr or Biolox Delta ceramic plates. The comparative control material was a moderately cross-linked PE (Marathon, DePuy Synthes). A simple geometry wear study was undertaken. A rotational motion of ±30° across a sliding distance of ±28 mm (cross shear of 0.087), and contact pressures of 1.6 or 4 MPa were applied. The lubricant was 25% (v/v) bovine serum and the wear test was conducted for 1 million cycles at 1 Hz. Wear was assessed gravimetrically. A validated soak control method was used to adjust for serum absorption-induced mass changes during the wear test. Surface profilometry was assessed pre and post wear test. Results. Unfilled PEEK produced a six-fold higher wear factor than XL PE against HC Co Cr (p value <0.0001). CFR-PEEK vs. Biolox Delta produced a two-fold lower wear factor than XL PEvs. HC Co Cr (p value = 0.003). CFR-PEEK vs. Biolox Delta had the lowest wear factor among all studied combinations. The wear of CFR-PEEK vs. HC CoCr was higher than XL PEvs. HC CoCr (Figure 1). The counterface surfaces were scratched when articulating against CFR-PEEK. This was more evident on CoCr plates, with the average surface roughness increasing from 0.005 µm to 0.32 µm (p value = 0.0048). This might explain the accelerated wear in the CFR-PEEK vs. HC CoCr combinations. Higher contact pressures led to a 30 % reduction in the wear factor of CFR-PEEK vs. Biolox Delta combination (p value = 0.048), while no significant impact was noted against HC CoCr (Figure 2). Conclusions. The injection moulded carbon fibre reinforced PEEK vs. Biolox Delta ceramic generated significantly lower wear compared with XL PE (even under higher contact pressures). CFR-PEEK vs. Biolox Delta may lead to longer lasting hip replacements, and will be the subject of further investigations


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_2 | Pages 39 - 39
10 Feb 2023
Lutter C Grupp T Mittelmeier W Selig M Grover P Dreischarf M Rose G Bien T
Full Access

Polyethylene wear represents a significant risk factor for the long-term success of knee arthroplasty [1]. This work aimed to develop and in vivo validate an automated algorithm for accurate and precise AI based wear measurement in knee arthroplasty using clinical AP radiographs for scientifically meaningful multi-centre studies. Twenty postoperative radiographs (knee joint AP in standing position) after knee arthroplasty were analysed using the novel algorithm. A convolutional neural network-based segmentation is used to localize the implant components on the X-Ray, and a 2D-3D registration of the CAD implant models precisely calculates the three-dimensional position and orientation of the implants in the joint at the time of acquisition. From this, the minimal distance between the involved implant components is determined, and its postoperative change over time enables the determination of wear in the radiographs. The measured minimum inlay height of 335 unloaded inlays excluding the weight-induced deformation, served as ground truth for validation and was compared to the algorithmically calculated component distances from 20 radiographs. With an average weight of 94 kg in the studied TKA patient cohort, it was determined that an average inlay height of 6.160 mm is expected in the patient. Based on the radiographs, the algorithm calculated a minimum component distance of 6.158 mm (SD = 81 µm), which deviated by 2 µm in comparison to the expected inlay height. An automated method was presented that allows accurate and precise determination of the inlay height and subsequently the wear in knee arthroplasty based on a clinical radiograph and the CAD models. Precision and accuracy are comparable to the current gold standard RSA [2], but without relying on special radiographic setups. The developed method can therefore be used to objectively investigate novel implant materials with meaningful clinical cohorts, thus improving the quality of patient care


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_15 | Pages 59 - 59
1 Mar 2013
Esposito C Roques A Tuke M Zicat B Walter WK Walsh W Walter WL
Full Access

Introduction. Edge loading commonly occurs in all bearings in hip arthroplasty. Edge loading wear can occur in these bearings when the biomechanical loading axis reaches the edge and the femoral head loads the edge of the cup producing wear damage on both the head and cup edge. When the biomechanical loading axis passes through the polished articulating surface of the acetabular component and does not reach the edge, the center of the head and the center of the cup are concentric. The resulting wear known as concentric wear is low in metal-on-metal (MOM) bearings, and is negligible in ceramic-on-ceramic (COC) bearings. Edge loading is well defined in COC hip bearings. However, edge loading is difficult to identify in MOM bearings, since the metal bearing surfaces do not show wear patterns macroscopically. The aims of this study are to compare edge loading wear rates in COC and MOM bearings, and to relate edge loading to clinical complications. Materials and Methods. Twenty-nine failed large diameter metal-on-metal hip bearings (17 total hips, 12 resurfacings) were compared to 54 failed alumina-on-alumina bearings collected from 1998 to 2011. Most COC bearings were revised for aseptic loosening or periprosthetic bone fracture, while most MOM bearings were revised for pain, soft tissue reactions or impingement. The median time to revision was 3.2 years for the metal hip bearings and 3.5 years for alumina hip bearings. The surface topography of the femoral heads was measured using a RedLux AHP (Artificial Hip Profiler, RedLux Ltd, Southampton, UK). Results. Forty-five out of fifty-four bearings (83%) alumina bearings and 15 out 29 (52%) metal bearings had edge loading wear (p<0.01). There was no difference in the median volumetric wear rates, which were 0.25 mm. 3. /yr for metal femoral heads and 0.18 mm. 3. /yr for alumina heads (means 7.87 mm. 3. /yr and 0.78 mm. 3. /yr respectively). The median volumetric wear rate was 1.77 mm. 3. /yr (mean 16.51 mm. 3. /yr) for metal heads with edge loading and 0.01 mm. 3. /yr (mean 0.19 mm. 3. /yr) for metal heads without edge loading (p=0.1). Conclusions. The median wear rates for COC and MOM bearings were the same, however MOM bearings have the potential for much higher wear rates when edge loading occurs. Most of the reasons for revision of MOM bearings were related to a biological response to the wear debris. Therefore, it may be the reactivity of the wear debris, and not the wear rate that is an important determinant for the survivorship of MOM bearings


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXV | Pages 83 - 83
1 Jun 2012
Haider H Kaddick C
Full Access

Some mobile bearing knee replacement designs have shown truly excellent long-term clinical results. The higher laxity of a mobile bearing helps reduce the shear forces and torques transmitted to the prosthesis-bone interface, and this could only help reduce the risk of loosening. Some argue that self-alignment of a mobile bearing rotationally can produce more central patellar tracking. However, the most commonly assumed benefit of mobile bearings is the reduction in contact stress, which is typically expected to reduce fatigue and wear. In a rotating platform TKR for example, wear is also expected to be less because the rolling/sliding motion is separated from the transverse rotational motion onto two separate articulating surfaces, thus less cross-paths and less wear. Such expectations may have dominated the thinking and perhaps even clouded the expectations of TKR wear test engineers. Such wear reduction however has not really been categorically proven clinically. This paper combines in-vitro wear results from two separate laboratories, one in Nebraska USA and one in Germany. These two (industrially unattached labs) possess between them a very large set of in-vitro wear testing results across the widest variety of fixed and mobile bearing TKR designs. Fortunately, the wear testing methodology using the force-control regime used in the two labs was largely similar, and was highly consistent within each lab. The fixed and the mobile bearings were subjected to the exact same force fields, allowing their Anterior-Posterior translation and internal-external rotation kinematics to vary based on the individual TKR design. Tens of implant designs have been tested, both fixed and mobile, in total (bycondylar) form and unicompartmental, of various sizes. Some mobile bearings had rotating platforms and some were rotating-translating. Some of the tests specifically compared mobile to fixed bearing tibial components using identical femoral components. Between both labs, and across all tests, no statistically significant difference resulted in wear between fixed and mobile bearings. Yet, such differences did clearly feature with known superior bearing materials (for wear) and other favored design features. Also, generally, the force-control test methodology has proven highly discriminatory in its simulation and measurement of wear as a potential clinical failure mode. The take home message to test engineers is to expect the wear of both mobile and fixed bearings to depend more on the detailed design and materials of the TKR than on the mobility of the bearing. The results of this study re-confirm the need for wear testing to be performed prior to any clinical use on all implant designs, despite seemingly similar predicates or success of some mobile bearings


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XL | Pages 153 - 153
1 Sep 2012
Reinders J Sonntag R Bitsch R Jaeger S Rieger JS Kretzer JP
Full Access

Background. Polyethylene (PE) wear is known as a limiting factor for total knee replacements (TKR). Thus, preclinical wear testing is an important tool to assess the suitability of new designs and new materials. However, standardized testing (e.g. according to ISO 14243) does not cover the individual situation in the patient. Consequentially, this study investigates the following two parameters:. a). Testing-Frequency: Patients with TKR's show a humiliated walking frequency (down to 0,5Hz) compared to standardized testing (1Hz±0.1). In the first part of this study, the influence of a decreased test frequency on the PE wear behavior is investigated. b). Interval of lubricant replacement: For in-vitro testing bovine serum is used as a substitute for the synovial fluid. Physiologically a continuous regeneration and removement of destructed components is taking place. In contrast, for simulator testing the bovine serum is typically changed completely every 500.000 cycles/steps. Therefore the goal of the second part of this study was to test if the serum replacing interval affects the PE wear behavior. Material and Methods. Wear tests were conducted on an AMTI force controlled knee simulator. A cruciate substituting (ultracongruent) implant design (TC Plus, Smith & Nephew, Rotkreuz, Switzerland) was used. First, a reference wear study with a test frequency of 1Hz and a lubricant replacement interval (RI) of 500.000 cycles according to ISO 14243-1:2009 was carried out. Tests were run to a total of 5 million cycles. A second wear test was run with a reduced frequency of 0.5 Hz. The reduced frequency resulted in an extended testing period for the same number of cycles. To exclude an influence of the extended time period, the lubricant was changed, in the first half of testing every 500.000 cycles corresponding to 12 days (cycle depending (CD)), and in the second part every 250.000 cycles corresponding to 6 days (time depending (TD)). Tests were run to a total of 3 million cycles. A third test was run with a frequency of 1 Hz. For this test a reduced serum RI of 150.000 cycles was choosen. This test was run to a total of 1.500.000 cycles. Results. The results of wear testing are given in Fig. 1 & 2. There was no difference for testing at a lower frequency in the case, that the serum replacement occurred at the same time interval (p=0.234). However, if the replacement interval is extended or reduced, the wear rate decreases (2.69mg/Mc) or increases respectively (15.87mg/Mc) (p=0.001;p≤0.001). There is a great time depending influence of the serum RI. This influence is shown in Fig. 3, comparing the wear rates in dependency to the time period of lubricant change. Conclusion. This study shows that there is no influence of the reduced testing frequency in a TKR wear simulator study on the PE wear rate. However, there is a massive influence of the lubricant replacement interval. Thus the interval of replacing is of crucial importance for the interpretation of wear simulator studies. The reasons for the changes in the tribological behavior of the bovine serum have to be investigated in further studies


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_1 | Pages 64 - 64
1 Feb 2020
Hopwood J Redmond A Chapman G Richards L Collins S Brockett C
Full Access

Background. Total ankle arthroplasty (TAA) is an alternative to ankle arthrodesis, replacing the degenerated joint with a mechanical motion-preserving alternative. Implant loosening remains a primary cause of TAA revision, and has been associated with wear-mediated osteolysis. Differing implant designs have a major influence on the wear performance of joint replacements. Providing a range of implant sizes allows surgeons a greater intra-operative choice for varying patient anatomy and potential to minimise wear. Minimal pre-clinical testing exists in the literature that investigates the effect of implant size on the wear behaviour. The aim of this study therefore was to investigate the effect of two different implant sizes on the wear performance of a TAA. Materials & Methods. Six ‘medium’ and six ‘extra small’ BOX® (MatOrtho Ltd, UK) TAA implants, of the same conceptual design and polyethylene insert thickness, were tested in a modified 6 station pneumatic knee simulator. 5 million cycles (Mc) of wear simulation were completed for each implant size, under kinematics aiming to replicate an ankle gait cycle (Figure 1) [1]. The simulator used had six degrees of freedom, of which four were controlled. The maximum axial load was 3150N, equivalent to 4.5 times body weight of a 70kg individual. The flexion profile ranged from −15° plantarflexion to 15° dorsiflexion. Rotation about the tibial component ranged from −2.3° of internal rotation to 8° external rotation, and anterior/posterior (AP) displacement ranged from 3.1 mm anterior to −0.9 mm posterior displacement. The lubricant used was 25% bovine serum supplemented with 0.04% sodium azide to prevent bacterial degradation. The wear of the TAA polyethylene inserts were determined gravimetrically after each Mc, with unloaded soak controls used to compensate for the uptake of moisture by the polyethylene. Results. There were no significant differences (P = 0.872) in the mean wear rates (± 95% confidence limits) between the medium (11.00 ± 3.06 mm3/Mc) and extra small (10.64 ± 4.61 mm3/Mc) implant sizes (Figure 2). An observation of insert surfaces showed clear signs of abrasive wear and burnishing (Figure 3). There was evidence of polyethylene transfer and scratching on the tibial components, while talar components displayed fine linear scratching in similar directions for both implant sizes. Conclusions. The wear rates of both implant sizes are comparable to the wear rate (13.30 ± 2.50 mm3/Mc) of a previous wear study, which was conducted on ‘medium-sized’ Corin Zenith TAAs, under the same simulator conditions for 2 Mc [1]. The wear rates for both implant sizes are substantially lower than the wear of four ‘small-sized’ BOX® ankles (18.60 ± 12.80 mm3/Mc) for 2Mc [2]. The considerable difference in wear rates may be due to the lower forces, higher AP and deionised water as the test lubricant [2], which does not replicate the features of the natural synovial fluid and produce tribological artefact. The results from this study suggest that under the same kinematic and kinetic conditions, the wear rates are unaffected by a change in TAA implant size


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_8 | Pages 43 - 43
1 Aug 2020
Laende E Dunbar MJ Richardson G
Full Access

The dual mobility design concept for acetabular components is intended to reduce the risk of dislocation and increase range of motion, but the wear pattern of this design is unclear and may have implications in implant fixation. Additionally, the solid back cups do not have the option for supplementary screw fixation, providing an additional smooth articulating surface for the liner to move against. The objective of this study was to assess cup fixation by measuring implant migration as well as proximal femoral head penetration to evaluate wear performance. Thirty subjects were recruited in a consecutive series prospective study and received dual mobility uncemented acetabular components with mobile bearing polyethylene liners through a direct lateral approach. Femoral stems were cemented or uncemented. All subjects had 28 mm femoral heads. The femur, acetabulum, and non-articulating surface of the mobile polyethylene liner were marked with tantalum beads. Radiostereometric analysis (RSA) exams were performed post-operatively and at 6 weeks, 3 months, 6 months, 1 year, 2 years, and 3 years. Oxford 12 Hip and Satisfaction questionnaire responses were recorded. Mobile bearing motion was assessed under fluoroscopy for a single case under loaded and unloaded conditions. Twenty-nine subjects (17 female) proceeded to surgery. Subjects were 63±11 years of age with BMIs of 28±4.7 kg/m2. Cup migration reached 0.16 ± 0.31 mm of proximal translation and 0.29±1.03 degrees of sagittal rotation at three years. A single individual had more than 3 degrees of cup rotation, occurring by 6 months and not substantially increasing after this time. Proximal translation was low for this subject. Wear of the highly cross-linked mobile bearings was 0.18 ± 0.30 mm of proximal femoral head penetration from 0 to 3 years. The mean wear rate from 1 to 3 years was 0.02 mm/year. One subject was an outlier for wear, with more than 1 mm of femoral head penetration at 1 year. However, wear did not increase after 1 year for this subject and cup migrations were below average for this individual. Similarly, the outlier for cup rotation had below average wear. Satisfaction (out of 100%) improved from 25±27% to 96±7% pre-operatively to 3 years post-operatively. Oxford 12 scores (best possible score of 48) improved from 21±7 to 43±7 over the same period. The fluoroscopic case study demonstrated visible motion of the mobile bearing during hip rotation tasks. The overall migration of the cup was low and demonstrated favorable patterns suggesting low risk of aseptic loosening. Wear rates are also within the expected range of 0 to 0.06 mm/year for highly cross-linked polyethylene. The combination of low subsidence and low sagittal rotations of the cup, and low wear of the polyethylene are favorable predictors of good long-term performance


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_34 | Pages 591 - 591
1 Dec 2013
Woods S Hippensteel E Maag C
Full Access

Statement of Purpose:. The wear rate of Ultra High Molecular Weight Polyethylene (UHMWPE) in joint replacements has been correlated to both contact area and contact stress in the literature, [1], [2]. In both publications and our experiment, UHMWPE articulated with a polished surface of cobalt-chromium alloy was evaluated using a Pin-On-Disk (POD) apparatus (AMTI) implementing bi-directional movement. In publication [1], volumetric wear was independent of normal load and dependent upon increasing contact area. The results demonstrated that increasing contact stress decreased wear rates twofold. In publication [2], at maximum cross-shear, wear was proportional to nominal contact area and wear factors normalized to area are more appropriate than load based wear factors. In both studies, the contact surface areas of the POD pins were reduced by decreasing the diameters of the POD Pins. In our experiment, the contact area was dependent on textured POD Pin 390 (T390) which had low wear [3]. T390 reduced the normal POD contact area from 71 mm. 2. to 8.26 mm. 2. Hydroxylapatite (HA) particles were introduced to the serum to simulate third body wear debris. We hypothesized that the normal POD Pins would have greater wear rates than the textured POD Pins. A measurement of 0.14 mg HA particles per 250 mL of serum was used for each test 0.33 million cycles. Methods:. The GUR 1020 resin XLK POD Pins were gamma irradiated to 50 kGy in a vacuum package and then remelted. Three (3) T390 POD pins and nine (9) untextured XLK POD Pins were used. Three untextured XLK POD Pins were tested against three T390 POD pins. The other six (6) untextured XLK POD Pins were used as soak controls. Each pin articulated against a polished, high carbon wrought CoCr metal alloy counterface (ASTM F1537; diameter = 38.1 mm; thickness = 12.7 mm). Wear rate tests were for 1.98 million cycles. In order to perform the t-test analysis, the wear rates for each pin were given by the slope of the linear regression line through the individual data points (cycle count, cumulative wear), excluding the (0, 0) point. Results:. The probability for the means between the T390 POD pins and the untextured XLK POD Pins was *p = 0.009. T390 wear rates were statistically significant as compared to the untextured XLK POD Pin wear rates. The T390 POD Pin is illustrated in Figure 1. Figures 2 and 3 summarize the wear rates between T390 POD Pins and the untextured POD Pins with and without HA particles. Conclusions:. The wear rates between T390 and untextured POD pins did not take into account that the POD pins were not cleaned using a solution to remove potentially embedded HA particles. The follow-on experiment will use a special cleaning method to remove all HA particles after each test cycle


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_5 | Pages 90 - 90
1 Apr 2019
Cowie RM Pallem N Briscoe A Fisher J Jennings LM
Full Access

Introduction. PEEK-OPTIMA™ has been considered as an alternative to cobalt chrome in the femoral component of total knee replacements. Whole joint wear simulation studies of both the tibiofemoral and patellofemoral joints carried out to date have shown an equivalent wear rate of UHMWPE tibial and patella components against PEEK and cobalt chrome (CoCr) femoral components. In this study, the influence of third body wear on UHMWPE-on-PEEK was investigated, tests on UHMWPE-on-CoCr were carried out in parallel to compare PEEK to a conventional femoral component material. Methods. Wear simulation was carried out in simple geometry using a 6-station multi-directional pin-on-plate simulator. 5 scratches were created on each PEEK and CoCr plate perpendicular to the direction of the wear test using a diamond stylus to produce scratches with a geometry similar to that observed in retrieved CoCr femoral components. To investigate the influence of scratch lip height on wear, scratches of approximately 1, 2 and 4µm lip height were created. Wear simulation of GUR 1020 UHMWPE pins (conventional, non-sterile) against the plates was carried out for 1 million cycles (MC) using 17g/l bovine serum as a lubricant using kinematic conditions to replicate the average contact pressure and cross-shear in a total knee replacement. Wear of UHMWPE pins was measured gravimetrically and the surface topography of the plates assessed using a contacting Form Talysurf. Wear factors of the pins against the scratched plates were compared to unscratched controls (0µm lip height). Minimum n=3 for each condition and statistical analysis carried out using ANOVA with significance taken at p<0.05. Results. For the control tests (0µm lip height), the wear factor of UHMWPE pins was similar (p=0.64) against PEEK and CoCr plates. Against CoCr, with an increasing lip height, an exponential increase in wear factor of UHMWPE pins was observed; for PEEK, with increasing lip height, the wear factor did not show an exponential increase. When articulated against the largest scratches, 4µm, the wear factor of UHMWPE was significantly higher against CoCr than PEEK (p=0.01). At the conclusion of the study, on the PEEK plates, a polishing effect of the pin against the plates was observed and in the area of the wear test, the lip height of the scratches was lower than pre-test values; for the CoCr plates, no change in lip height was measured after 1MC wear simulation. Conclusion. The exponential relationship between scratch lip height in CoCr and wear of UHMWPE has previously been described. However, the trend in the wear of UHMWPE was different when articulating against scratched PEEK compared to CoCr, with a significantly higher wear factor of UHMWPE against CoCr than PEEK at a scratch lip height of 4µm. This study suggests that the third body wear behaviour of this all-polymer knee replacement will be different to that of conventional implant materials


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_1 | Pages 41 - 41
1 Feb 2021
Holyoak D Roberston B Siskey R
Full Access

Introduction. Orthopedic implants are subject to wear and release ultra-high molecular weight polyethylene (UHMWPE) debris. Analysis of UHMWPE wear particles is critical in determining the safety and effectiveness of novel orthopedic implants. Complete digestion of periprosthetic tissue and wear fluid is necessary to ensure accurate morphological and quantitative particle analysis. Acid digestion methods are more effective than enzymatic and base digestion approaches [Baxter+ 2009]. However, optimal digestion times, quantity, and type of acid are unclear for particle isolation. In addition, imaging and analysis techniques are critical to ensure accurate reporting of particle characteristics. Here, we 1) compared the efficacy of three acid-based digestion methods in isolating particles from a) bovine serum and b) animal/human tissue, and 2) analyzed the effects of imaging location on particle quantity/morphology results. Methods. 1a) UHMWPE (GUR 150) particles were generated by Mode I knee wear testing for 1 million cycles in bovine serum. Serum was digested in one of four solutions: 12.2M HCl, 15.8M HNO. 3. , a 1:1 volume ratio of HNO. 3. :HCl (aqua regia), or filtered H. 2. O (control). The serum:solution volume ratio was 1:5 [Niedzwiecki+ 2001, ISO 17853:2011]. Digestion occurred for 60min on a stir plate at 60°C. Each digest was combined with MeOH at a 1:5 digest:MeOH volume ratio and filtered using a 100 nm polycarbonate membrane. The particle-containing membranes were imaged (12 images/membrane) using scanning electron microscopy (SEM) to determine particle characteristics, including quantity, equivalent circular diameter (ECD) and aspect ratio (AR). 1b) Based on 1a, HNO. 3. was used to digest porcine and human tissue at concentrations of 1:40, 1:60, or 1:80 tissue:HNO. 3. volume ratios for either 1, 12, or 24 hours, followed by SEM analysis. 2) Particle characteristics were compared at nine locations (20 images/location) across a particle-containing membrane to determine the effects of imaging location. Results. 1a) HNO. 3. and aqua regia methods successfully digested the bovine serum, whereas the HCl and H. 2. O methods were unsuccessful (Fig.1A). Comparing HNO. 3. and aqua regia groups, particle characteristics and ECD frequency distribution were nearly identical (Fig.1B). 1b) Nitric acid did not fully digest porcine or human tissues. 2) Similar particle characteristics were observed in all nine locations analyzed across the polycarbonate membrane. The particle quantity, ECD, and AR for a representative center vs. intermediate location were 808 vs. 780 particles, 0.33±0.28 vs. 0.35±0.29 µm, and 1.57±0.56 vs. 1.51±0.4, respectively (Fig.2). Conclusions. Nitric acid and aqua regia are capable of digesting bovine serum using low quantities of acid for short duration, allowing precise analysis of UHMWPE particle debris from orthopedic implants. However, further optimization of digestion techniques for animal/human tissue is warranted. In addition, an accurate representation of particle distribution can be achieved without analyzing hundreds of images, because membrane location does not strongly influence particle results. Finally, ASTM F1877-16 – Standard Practice for Characterization of Particles – could benefit from adding software-based automated particle characterization as an optional method. An automated approach that uses k-means clustering image segmentation to identify particles and computer vision tools to extract relevant morphological features is under development and validation


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_1 | Pages 24 - 24
1 Feb 2020
De Villiers D Collins S
Full Access

INTRODUCTION. Ceramic-on-ceramic hip resurfacing offers a bone conserving treatment for more active patients without the potential metal ion risks associated with resurfacing devices. The Biolox Delta ceramic material has over 15 years of clinical history with low wear and good biocompatibility but has been limited previously in total hip replacement to 48mm diameter bearings [1]. Further increasing the diameter for resurfacing bearings and removing the metal shell to allow for direct fixation of the ceramic cup may increase the wear of this material and increase the risk of fracture. METHODS. Eighteen implants (ReCerf™, MatOrtho, UK; Figure1) were wear tested; six were ⊘40mm (small) and twelve ⊘64mm (large). All small and six large implants were tested under ISO 14242 standard conditions for 5 million cycles (mc) at 30° inclination (45° clinically). The six remaining large implants were tested under microseparation conditions in which rim contact was initiated during heel strike of the gait cycle for 5mc. Cups were orientated at 45° inclination (60° clinically) to allow for separation of the head and cup with a reduced 50N swing phase load and a spring load applied to induce a 0.5mm medial-superior translation of the cup. Wear was determined gravimetrically at 0.5mc, 1mc and every mc after. RESULTS. Wear was low in both standard and microseparation tests, less than 1mm. 3. cumulatively over 5mc (Figure 2). Standard conditions showed a run-in wear phase over the first mc followed by negligible wear in both diameters. The run-in wear significantly increased from 0.2mm. 3. /mc in the 40mm diameter bearings to 0.5mm. 3. /mc with the larger diameter implants. Under microseparation conditions, there was low wear over the first mc, increasing to 0.28mm. 3. /mc between 1–3mc. The wear rate reduced to 0.11mm. 3. /mc from 3=5mc. Stripe wear was evidenced on the microseparated components. There were no incidences of fracture or squeaking. DISCUSSION. Biolox Delta is known for its low wear rates but published results have only reported testing up to ⊘36mm [2]. Increasing the diameter to 64mm showed increased wear compared to smaller diameters but this was only significant over the first mc suggesting similar performance long term. Microseparation testing of these large sized bearings doubled the cumulative wear produced over 5mc but wear measured was still much lower than other bearing combinations. Wear of metal-on-metal resurfacing implants under these high angle, microseparation conditions has been reported up to 10.5mm. 3. /mc [3], significantly higher than any wear rate reported in the current study. Despite the 3mm wall thickness, no fracture of the cup occurred but stripe wear was observed in the ceramic components. SIGNIFICANCE. Biolox Delta ceramic is appropriate for use in larger diameters without excessive wear or damage to the bearings. The improved biocompatibility of the material may allow for hip resurfacing to be offered to more patients than currently available. For any figures or tables, please contact the authors directly