The restoration of physiological kinematics is one of the goals of a total knee arthroplasty (TKA). Navigation systems have been developed to allow an accurate and precise placement of the implants. But its application to the intraoperative measurement of knee kinematics has not been validated. The hypothesis of this study was that the measurement of the knee axis, femoral rotation, femoral translation with respect to the tibia, and medial and lateral femorotibial gaps during continuous passive knee flexion by the navigation system would be different from that by fluoroscopy taken as reference. Five pairs of knees of preserved specimens were used. The e.Motion FP ® TKA (B-Braun Aesculap, Tuttlingen, Germany) was implanted using the OrthoPilot TKA 4.3 version and Kobe version navigation system (B-Braun Aesculap, Tuttlingen, Germany). Kinematic recording by the navigation system was performed simultaneously with fluoroscopic recording during a continuous passive flexion-extension movement of the prosthetic knee. Kinematic parameters were extracted from the fluoroscopic recordings by image processing using JointTrack Auto ® software (University of Florida, Gainesville, USA). The main criteria were the axis of the knee measured by the angle between the center of the femoral head, the center of the knee and the center of the ankle (HKA), femoral rotation, femoral translation with respect to the tibia, and medial and lateral femorotibial gaps. The data analysis was performed by a Kappa correlation test. The agreement of the measurements was assessed using the intraclass correlation coefficient (ICC) and its 95% confidence interval.INTRODUCTION
MATERIAL – METHODS
Sensor technology is seeing increased utility in joint arthroplasty, guiding surgeons in assessing the soft tissue envelope intra-operatively (OrthoSensor, FL, USA). Meanwhile, surgical navigation systems are also transforming, with the recent introduction of inertial measurement unit (IMU) based systems no longer requiring optical trackers and infrared camera systems in the operating room (i.e. OrthAlign, CA, USA). Both approaches have now been combined by embedding an IMU into an intercompartmental load sensor. As a result, the alignment of the tibial varus/valgus cut is now measured concurrently with the mediolateral tibiofemoral contact load magnitudes and locations. The wireless sensor is geometrically identical to the tibial insert trial and is placed on the tibial cutting plane after completing the proximal tibial cut. Subsequently, the knee is moved through a simple calibration maneuver, rotating the tibia around the heel. As a result, the sensor provides a direct assessment of the obtained tibial varus/valgus alignment. This study presents the validation of this measurement. In an in-vitro setting, sensor-based alignment measurements were repeated for several simulated conditions. First, the tibia was cut in near-neutral alignment as guided by a traditional, marker-based surgical navigation system (Stryker, MI, USA). Subsequently, the sensor was inserted and a minimum of five repeated sensor measurements were performed. Following these measurements, a 3D printed shim was inserted between the sensor and the tibial cutting plane, introducing an additional 2 or 4 degrees of varus or valgus, with the measurements then being repeated. Again, for each condition, a minimum of five sensor measurements were performed. Following completion of the tests, a computed tomography (CT) scan of the tibia was obtained and reconstructed using open source software (3DSlicer).Introduction and Aims
Method
There have been many attempts to define the criteria by which prosthetic joint infection (PJI) is diagnosed. Our aim is to validate the 2021 European Bone and Joint Infection Society (EBJIS) definition of PJI. This is a multicenter retrospective study of patients who have undergone total hip or knee revision surgery in four different European institutions between 2013–2018. Cases with less than four intraoperative microbiology samples; no preoperative/intraoperative synovial fluid differential leukocyte count or intraoperative histology were excluded. Minimum follow-up of at least two years after revision surgery if no subsequent infection and/or the need for implant removal was also required. All cases were classified using the 2021 EBJIS, the 2018 International Consensus Meeting (ICM) and the 2013 Musculoskeletal Infection Society (MSIS) PJI definitions.Aim
Method
Falls and fall-related injuries can have devastating health consequences and form a growing economic burden for the healthcare system. To identify individuals at risk for preventive measures and therapies, fall risk assessment scores have been developed. However, they are costly in terms of time and effort and rely on the subjective interpretation of a skilled professional making them less suitable for frequent assessment or in a screening situation. Small wearable sensors as activity monitor can objectively provide movement information during daily-life tasks. It is the aim of this study is to evaluate whether the activity parameters from wearable monitors correlate with fall risk scores and may predict conventional assessment scores. Physical activity data were collected from nineteen home-dwelling frail elderly (n=19, female=10; age=81±5.6 years, GFI=5.4±1.9, MMSE=27.4±1.5) during waking hours of 4 consecutive days, wearing a wearable 9-axis activity monitor (56×40×15mm, 25g) on the lateral side of the right thigh. The signal was analysed using self-developed, previously validated algorithms (Matlab) producing the following parameters: time spent walking, step count, sit-stand-transfer counts, mean cadence (steps/min), count of stair uses and intensity counts >1.5G. Conventional fall risk assessment was performed using the Tinetti sore (range: 0–28=best), a widely used tool directly determining the likelihood of falls and the Short Physical Performance Battery (SPPB, range: 0–12=best) which measures lower extremity performance as a validated proxy of fall risk. The anxiety to fall during activities of daily living was assessed using the self-reported Short Falls Efficacy Scale-International (FES-I, range: 7–28=worst). Correlations between activity parameters and conventional scores were tested using Pearson's r. The activity parameters (daily means) for the 19 participants were 70.8min (SD=28.7; min-max= 22.8–126.6) of walking, 4427 steps (SD=2344; min-max= 1391–8269) with a cadence 79.3 steps per minute (SD=17.1; min-max=52.8–103.9) and 33.3 sit-stand transfers (SD=9.7; min-max=8.8–48.0). The average Tinetti score was 21.2 (SD=5.1; min-max=10.0–27.0), with SPPB scoring 7.8 (SD=2.4; min-max=3.0–12.0), and FES-I 4.6 (SD=5.1; min-max=7.0–23.0). Strong (r≥0.6) and significant correlations existed between the walking cadence and the Tinetti (r=.60, p=<.01) and SPPB (r=.71, p=<.01) scores. No other correlations were found between the activity parameters and the Tinetti, SPPB and none with the psychological FES-I questionnaire. Conventional fall risk scores and activity data are comparable to literature values and thus representative of home-dwelling frail elderly including a wide range covered for both dimensions. No quantitative activity measure had a predictive value for fall risk assessment. Strongly correlated with Tinetti and SPPB, objectively measured cadence as a qualitative parameter seems a useful parameter for remotely identifying fall risk in frail elderly. The perceived anxiety to falls was not correlated to quantitative and qualitative activity parameters suggesting that this psychological aspect hardly affects activity. Wearable activity monitors seem a valid tool to assess fall risk remotely and thus allow low cost, frequent and large group screening of frail elderly towards a health economically viable tool for a growing societal need. The predictive quality of activity monitored data may be increased by deriving additional qualitative measures from the activity data.
Tibial component malrotation is associated with pain, stiffness and altered patellofemoral kinematics in total knee arthroplasty (TKA). However, accurately measuring tibial component rotation following TKA is difficult. Proposed protocols utilizing computed tomography (CT) are not well validated and can be time consuming. This study aimed to; 1) Validate and compare the reproducibility of the Berger (2D-CT) and Mayo (3D-CT) protocols; 2) Validate a simple, and potentially rapid screening measurement using an anatomical distance on 2D axial CT- the Centre of Tibial Tray to Tibial Tubercle (CTTT) distance. Rotational alignment of 70 TKA patients were evaluated by 3 independent observers using the Berger, and Mayo protocols, which have been previously described, and a new CTTT protocol (Figure 1). The inter and intra-rater interclass correlation coefficients (ICC's), mean difference between measurements and the mean measurement times were calculated. Linear regression analysis was performed to give a coefficient of determination (R2).Introduction
Methods
In clinical routine surgeons depend largely on 2D x-ray radiographs and their experience to plan and evaluate surgical interventions around the knee joint. Numerous studies have shown that pure 2D x-ray radiography based measurements are not accurate due to the error in determining accurate radiography magnification and the projection characteristics of 2D radiographs. Using 2D x-ray radiographs to plan 3D knee joint surgery may lead to component misalignment in Total Knee Arthroplasty (TKA) or to over- or under-correction of the mechanical axis in Lower Extremity Osteotomy (LEO). Recently we developed a personalized X-ray reconstruction-based planning and post-operative treatment evaluation system called “iLeg” for TKA or LEO. Based on a patented X-ray image calibration cage and a unique 2D–3D reconstruction technique, iLeg can generate accurate patient-specific 3D models of a complete lower extremity from two standing X-rays for true 3D planning and evaluation of surgical interventions at the knee joint. The goal of this study is to validate the accuracy of this newly developed system using digitally reconstructed radiographs (DRRs) generated from CT data of cadavers. CT data of 12 cadavers (24 legs) were used in the study. For each leg, two DRRs, one from the antero-posterior (AP) direction and the other from the later-medial (LM) direction, were generated following clinical requirements and used as the input to the iLeg software. The 2D–3D reconstruction was then done by non-rigidly matching statistical shape models (SSMs) of both femur and tibia to the DRRs (seee Fig. 1). In order to evaluate the 2D–3D reconstruction accuracy, we conducted a semi-automatic segmentation of all CT data using the commercial software Amira (FEI Corporate, Oregon, USA). The reconstructed surface models of each leg were then compared with the surface models segmented from the associated CT data. Since the DRRs were generated from the associated CT data, the surface models were reconstructed in the local coordinate system of the CT data. Thus, we can directly compare the reconstructed surface models with the surface models segmented from the associated CT data, which we took as the ground truth. Again, we used the software Amira to compute distances from each vertex on the reconstructed surface models to the associated ground truth models.Introduction
Methods
Quality monitoring is increasingly important to support and assure sustainability of the Orthopaedic practice. Many surgeons in a non-academic setting lack the resources to accurately monitor quality of care. Widespread use of electronic medical records (EMR) provides easier access to medical information and facilitates its analysis. However, manual review of EMRs is inefficient and costly. Artificial Intelligence (AI) software has allowed for development of automated search algorithms for extracting relevant complications from EMRs. We questioned whether an AI supported algorithm could be used to provide accurate feedback on the quality of care following Total Hip Arthroplasty (THA) in a high-volume, non-academic setting. 532 Consecutive patients underwent 613 THA between January 1st and December 31st, 2017. Patients were prospectively followed pre-op, 6 weeks, 3 months and 1 year. They were seen by the surgeon who created clinical notes and reported every adverse event. A random derivation cohort (100 patients, 115 hips) was used to determine accuracy. The algorithm was compared to manual extraction to validate performance in raw data extraction. The full cohort (532 patients, 613 hips) was used to determine its recall, precision and F-value.INTRODUCTION
METHODS
Recently we developed a personalised X-ray reconstruction-based planning and post-operative treatment evaluation system called iLeg for total knee arthroplasty or lower extremity osteotomy. Based on a patented X-ray image calibration cage and a unique 2D-3D reconstruction technique, iLeg can generate accurate patient-specific 3D models of a complete lower extremity from two standing X-rays for true 3D planning and evaluation of surgical interventions at the knee joint. The goal of this study is to validate the accuracy of this newly developed system using digitally reconstructed radiographs (DRRs) generated from CT data of 12 cadavers (24 legs). Our experimental results demonstrated an overall reconstruction accuracy of 1.3±0.2mm.
To determine the Inter &
Intra-observer Agreement in Assessment &
Classification of Non-unions of fractures based on Radiological appearance. Medical records and X-rays of patients who attended the Limb Reconstruction Clinic (1987 to 2000) in a University Hospital for fracture non-union were studied. X-rays of one hundred adult patients with established non-union were selected by random sampling. Common denominators of various classification / assessment systems were selected for study. Observers were selected in 3 categories (2 in each): Senior Limb Reconstruction specialist, Consultant Musculoskeletal Radiologists, Senior trainees (Post-FRCS Orth). Data was analysed by calculating kappa coefficients (95% confidence intervals). Kappa measures between observer agreements having been corrected for chance. Radiologists were unable to comment on vascularity. (S= substantial, M= moderate, F= fair &
P= poor) It would appear that the agreement for classification of atrophic/hypertrophic non-union is good all round (both inter &
intra). Within this classification, radiologists showed better agreement than trainees whose results were better than Orthopaedic specialists. Agreement of healing potential &
infection was fair to poor only. Radiographic analysis of non-union remains poor indicating the need for further study to see whether identifiable features exist.
Patient related outcome measures (PROMS) are now routinely undertaken in patients undergoing hip arthroplasty. These are in the form of the Oxford Hip Score (OHS) and EQ5D questionnaires pre-operation and at 6 months' post operation. MYMOPS is a patient specific outcome measure that allows patients to list their individualised symptoms and activities that are limited and is used is other medical specialities but not currently within orthopaedic surgery. The aim of this study was to validate the MYMOPS questionnaire for use in hip arthroplasty by comparing it to the OHS. At a single centre, 50 patients were recruited to our prospective trial after ethical approval. A MYMOPS questionnaire and an OHS was filled in pre-operation and then at 6 months post-operatively. 6 patients filled in either form incorrectly and were excluded. The remaining 44 included 30 females and 14 males with an average age of 68.5 (range 35–90).Introduction
Patients/Materials & Methods
Radiological inclination (RI) is determined in part by operative inclination (OI), which is defined as the angle between the cup axis or handle and the sagittal plane. In lateral decubitus the theatre floor becomes a surrogate for the pelvic sagittal plane. Critically at the time of cup insertion if the pelvic sagittal plane is not parallel to the floor either because the upper hemi pelvis is internally rotated or adducted, RI can be much greater than expected. We have developed a simple Pelvic Orientation Device (POD) to help achieve a horizontal pelvic sagittal plane. The POD is a 3-sided square with flat footplates that are placed against the patient's posterior superior iliac spines following initial positioning (figure 1). A digital inclinometer is then placed parallel and perpendicular to the patient to give readings of internal rotation and adduction, which can then be corrected. A model representing the posterior aspect of the pelvis was created. This permitted known movement in two planes to simulate internal rotation and adduction of the upper hemi pelvis, with 15 known pre-set positions. 20 participants tested the POD in 5 random, blinded position combinations, providing 200 readings. The accuracy was measured by subtracting each reading from the known value.Introduction
Methods
The study aimed to develop and assess a new classification system for Segmentation Defects of the Vertebrae (SDV), a frequent cause of congenital scoliosis. Existing nomenclature for the wide range of SDV phenotypes is inadequate and confusing eg ‘Jarcho-Levin syndrome’. A multidisciplinary group of the International Consortium for Vertebral Anomalies and Scoliosis (ICVAS) met to formulate a new classification system, based primarily on radiology. SDV are identified by number affected, contiguity, and spinal region(s). The size, shape and symmetry of the thoracic cage, and rib number, symmetry and fusion are included, and familiar vertebral morphology terms retained, together with accepted syndrome names. The terms spondylocostal and spondylothoracic dysostosis apply only to phenotypes typified by the monogenic disorders due to mutated DLL3, MESP2, LNFG and HES7 genes. Five ICVAS members (Group 1) then independently assessed 10 new cases, inter-observer reliability assessed using kappa. Seven independent radiologists (Group 2) then assessed the same cases before and after introduction to the new system. Inter-observer reliability for Group 1 yielded a kappa value of 0.21 (95% confidence intervals (CI) 0.052, 0.366, p=0.0046). For Group 2, before introduction to the new system, 1/70 responses (1.4%) agreed with the Group 1 consensus,12 different diagnoses were offered, and 38/70 (54.3%) responses were ‘Unknown’. After introduction to the new system 47/70 responses (67.1%; 95% CI 55.5, 77.0) agreed with Group 1 consensus, a 65.7% improvement (95% CI 52.5, 75.6, p<
0.00005). The system was well received by 6/7 radiologists. The new system was found to be reliable and acceptable.
Correct placement of the acetabular cup is a crucial step in hip replacement to achieve a satisfactory result and remains a challenge with free hand techniques. Imageless navigation may provide a viable alternative to freehand technique and improve placement significantly. The purpose of this project was to assess and validate intra-operative placement values as displayed by an imageless navigation system to postoperative measurement of cup position using high resolution CT scans. Thirty-two subjects who underwent primary hip joint arthroplasty using imageless navigation were included. The average age was 66.5 years (range 32–87). 23 non-cemented and 9 cemented acetabular cups were implanted. The desired position for the cup was 45 degrees of inversion and 15 degrees of anteversion. A pelvic CT scan using a multi-slice CT was used to assess the position of the cup radiographically.Purpose:
Methods:
Bony deformities in the hip that cause femoroacetabular impingement (FAI) can be resected in order to delay the onset of osteoarthritis and improve hip range of motion. However, achieving accurate osteoplasty arthroscopically is challenging because the narrow hip joint capsule limits field of view. Recently, image-based navigation using a preoperative plan has been shown to improve the accuracy of femoral bone surfaces following arthroscopic osteoplasty for FAI. The current standard for intraoperative monitoring, 3D x-ray fluoroscopy, is accurate at the initial registration step to within 0.8±0.5mm but involves radiation. Intraoperative 3D ultrasound (US) is a promising radiation-free alternative for providing real-time visual feedback during FAI osteoplasty. The objective was to determine if intraoperative 3D US of the femoral head/neck region can be registered to a CT-based preoperative plan with comparable accuracy to fluoroscopic navigation in order to visualise progress during arthroscopic FAI osteoplasty. The experiment used a plastic femur model that had a cam deformity on the femoral head/neck. Thirty metal fiducial markers were placed on the US-accessible anterior and lateral surfaces of the femur. A CT image was acquired and reconstructed, then used to develop a preoperative plan for resection of the cam deformity. Twenty-two sets of 3D US data were then gathered from the phantom using a clinical ultrasound machine and 3D transducer while the phantom was submerged in water. US surfaces from the anterior/lateral regions of the femur were extracted using a recently proposed image processing algorithm. Fiducials in the US volume were manually registered to corresponding CT fiducials to provide a reference standard registration. The reference standard fiducial registration error (FRE) was measured as the average distance between corresponding fiducials. After fiducial-based registration, each US surface was randomly misaligned and re-registered using a coherent point-drift algorithm. The resulting surface registration error (SRE) was measured using average distance between US and CT surfaces. Finally, a plastic model of the preoperative cam deformity resection plan was 3D-printed to represent the postoperative femur. Five US scans were acquired of the postoperative model near the femoral head/neck. Each US scan was initialised for 20 trials using three reference points, and then registered using coherent point drift. Surgical outcome accuracy was reported using final surface registration error (fSRE).Introduction
Methods
Studies show that cup malpositioning using conventional techniques occurs in 50 to 74% of cases defined. Assessment of the utility of improved methods of placing acetabular components depends upon the accuracy of the method of measuring component positioning postoperatively. The current study reports on our preliminary experience assessing the accuracy of EOS images and application specific software to assess cup orientation as compared to CT. Eighteen patients with eighteen unilateral THA had pre-operative EOS images were obtained for preoperative assessment of leg-length difference and standing pelvic tilt. All of these patients also had preoperative CT imaging for surgical navigation of cup placement. This allows us to compare cup orientation as measured by CT to cup orientation as measured using the EOS images. Application specific software modules were developed to measure cup orientation using both CT and EOS images (HipSextant Research Application 1.0.13 Surgical Planning Associates Inc., Boston, Massachusetts). Using CT, cup orientation was determined by identifying Anterior Pelvic Plane coordinate system landmarks on a 3D surface model. A multiplanar reconstruction module allows for creation of a plane parallel with the opening plane of the acetabulum and subsequent calculation of plane orientation in the AP Plane coordinate space according to Murray's definitions of operative anteversion and operative inclination. Using EOS DICOM images, spatial information from the images were used to reconstruct the fan beam projection model. Each image pair is positioned inside this projection model. Anterior Pelvic Plane coordinate points are digitized on each image and back-projected to the fan beam source. Corresponding beams are then used to compute the 3D intersection points defining the 3D position and orientation of the Anterior Pelvic Plane. Ellipses with adjustable radii were then used to define the cup border in each EOS image. By respecting the fan beam projection model, 3D planes defining the projected normal of the ellipse in each image are computed. 3D implant normal was estimated by determining 3D plane intersection lines for each image pair. Implant center points are defined by using the back-projected and intersected ellipse center beams in the image pairs (Figure 1).Introduction
Methods
To evaluate the efficacy of Kocher's criteria to differentiate between transient synovitis and septic arthritis in children. All children with a presentation of ‘atraumatic limp’ and a proven effusion on hip ultrasound between 2004 and 2009 were included. Patient demographics, details of the clinical presentation and laboratory investigations were documented to identify a response to each of the four variables (Weight bearing status, WCC >12,000 cells/m3, CRP >20mg/L and Temperature >38.5°C). SA was defined based upon culture and microscopy of the operative findings. 311 hips were included within the study. Of these 282 were considered to have transient synovitis. 29 patients met criteria to be classified as SA based upon laboratory assessment of the synovial fluid. The introduction of CRP eliminated the need for a four variable model as the prediction for two variables (CRP and weight bearing status) was of similar efficacy. Treating individuals who were non-weight-bearing and a CRP >20mg/L as SA correctly classified 94.8% individuals, with a sensitivity of 75.9%, specificity of 96.8%, positive predictive value of 71.0%, and negative predictive value of 97.5%. CRP was a significant independent predictor of septic arthritis.Purpose
Methods and results
Data was analysed by calculating kappa coefþcients (95% CI)
There is no absolute method of evaluating healing
of a fracture of the tibial shaft. In this study we sought to validate a
new clinical method based on the systematic observation of gait,
first by assessing the degree of agreement between three independent
observers regarding the gait score for a given patient, and secondly
by determining how such a score might predict healing of a fracture. We used a method of evaluating gait to assess 33 patients (29
men and four women, with a mean age of 29 years (15 to 62)) who
had sustained an isolated fracture of the tibial shaft and had been
treated with a locked intramedullary nail. There were 15 closed
and 18 open fractures (three Gustilo and Anderson grade I, seven
grade II, seven grade IIIA and one grade IIIB). Assessment was carried
out three and six months post-operatively using videos taken with
a digital camera. Gait was graded on a scale ranging from 1 (extreme
difficulty) to 4 (normal gait). Bivariate analysis included analysis
of variance to determine whether the gait score statistically correlated
with previously validated and standardised scores of clinical status
and radiological evidence of union. An association was found between the pattern of gait and all
the other variables. Improvement in gait was associated with the
absence of pain on weight-bearing, reduced tenderness over the fracture,
a higher Radiographic Union Scale in Tibial Fractures score, and
improved functional status, measured using the Brazilian version
of the Short Musculoskeletal Function Assessment questionnaire (all
p <
0.001). Although further study is needed, the analysis of
gait in this way may prove to be a useful clinical tool.