Abstract
INTRODUCTION
Quality monitoring is increasingly important to support and assure sustainability of the Orthopaedic practice. Many surgeons in a non-academic setting lack the resources to accurately monitor quality of care. Widespread use of electronic medical records (EMR) provides easier access to medical information and facilitates its analysis. However, manual review of EMRs is inefficient and costly. Artificial Intelligence (AI) software has allowed for development of automated search algorithms for extracting relevant complications from EMRs. We questioned whether an AI supported algorithm could be used to provide accurate feedback on the quality of care following Total Hip Arthroplasty (THA) in a high-volume, non-academic setting.
METHODS
532 Consecutive patients underwent 613 THA between January 1st and December 31st, 2017. Patients were prospectively followed pre-op, 6 weeks, 3 months and 1 year. They were seen by the surgeon who created clinical notes and reported every adverse event. A random derivation cohort (100 patients, 115 hips) was used to determine accuracy. The algorithm was compared to manual extraction to validate performance in raw data extraction. The full cohort (532 patients, 613 hips) was used to determine its recall, precision and F-value.
RESULTS
The algorithm had an accuracy value of 95.0%, compared to 94.5% for manual review (p=0.69). Recall of 96.0% was achieved with precision of 88.0% and F-measure of 0.85 for all adverse events. Recovery of 80.6% of patients was completely uneventful. Re-intervention was required in 1.3% of cases and 18.1% had a ‘transient’ event such as low back pain. The infection and dislocation rate was 0,3%.
CONCLUSION
An AI supported search algorithm can analyze and interpret large quantities of EMRs at greater speed but with performance comparable to manual review. Using the program, new clinical information surfaced. 18.1% of patients can be expected to have a ‘transient’ problem following a THA procedure.