Advertisement for orthosearch.org.uk
Results 1 - 14 of 14
Results per page:
Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_4 | Pages 29 - 29
1 Apr 2019
Haeussler K Haefner L Butenschoen L Pandorf T
Full Access

Introduction. Hip stem taper wear and corrosion is a multifactorial process involving mechanical, chemical and biological damage modes. For the most cases it seems likely that the mechanically driven fretting wear is accompanied by other damage modes like pitting corrosion, galvanic corrosion or metal transfer. Recent retrieval studies have reported that the taper surface topography may affect taper damage resulting from fretting and corrosion [1]. Therefore, the current study aimed to examine effects of different taper topography parameters and material combinations on taper mechanics and results regarding wear and corrosion have been investigated. Materials and Methods. Combined experimental and numerical studies were conducted using titanium, cobalt-chromium and stainless steel generic tapers (Figure1). Uniaxial tensile tests were performed to determine the mechanical properties of the materials examined. For the taper studies macro-geometry of ceramic ball heads (BIOLOX. ®. delta) and tapers were characterized using a coordinate measuring machine, and assembly experiments according to ISO7206-10 were conducted up to 4kN. Before and after loading, taper subsidence was quantified by assembly height measurements. Taper micro-geometry, taper surface deformation, and contact area were determined by profilometry. Initial numerical studies determined coefficients of friction for the three material combinations. Macro- and micro-geometries of the tapers were modelled, and taper subsidence and assembly load served as boundary conditions. Further studies used simplified models to examine effects of varying profile depths and angular gaps on surface deformation, taper subsidence, contact area, engagement length and pull-off force. Results. Largest coefficient of friction and pull-off forces were calculated for steel (µ=0.32), cobalt-chromium revealed the lowest with µ=0.18. Titanium showed largest deformations and taper subsidence throughout all calculations (Figure2, Figure3). Taper subsidence, engagement length and deformations increased with increasing profile depth while contact area decreased. Pull-off forces were almost constant for different profile depths while they increased for increasing angular gaps. Taper subsidence and deformations also increased with increasing angular gap while engagement length decreased and contact area almost remained constant. Discussion. In order to decrease wear and corrosion micromotions should be minimized. Therefore, smaller angular gaps and smaller profile depths seems to be beneficial since deformation and taper subsidence are reduced. Literature data confirmed the results for different angular gaps showing that a larger angular gap is associated with larger amounts of micromotion and wear [2, 3]. Additionally, larger angular gaps and larger profile depths result in larger plastic deformation facilitating subsurface crack initiation and propagation. A large angular gap may also facilitate particle release [4]. Larger pull-off forces can indicate larger resistance against micromotion. Therefore, steel may tend to later develop fretting-corrosion in situ. However, among the metals examined steel also showed the largest equivalent plastic strain. This study is limited to pairings involving ceramic heads. These can help mitigating fretting corrosion resulting from micromotion between ball head and cobalt-chromium or titanium alloy tapers [5]. However, future studies will include other ball head materials. In conclusion, this study showed that taper surface topography affects taper mechanics and is important in terms of wear and corrosion


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXIX | Pages 3 - 3
1 Sep 2012
Langton D Ghandi J Sidaginamale R Mereddy P Joyce T Lord J Natu S Nargol A
Full Access

Introduction

We conducted independent wear analysis of retrieved metal on metal (MoM) hip components from around the world. All patients with resurfaced hips who developed adverse reactions to metal debris (ARMD) were found to have increased wear of the bearing surfaces. This was untrue in patients with large diameter (?36mm) MoM total hip replacements. This led us to search for other factors leading to ARMD.

Methods

MoM THR explants retrieved from 78 patients suffering ARMD underwent full volumetric wear analysis of bearing surface and taper-junctions using coordinate measuring machine. Scanning electron microscopy (SEM) used to characterise material composition of specific areas.


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_34 | Pages 17 - 17
1 Dec 2013
Bolland B Gardner E Roques A Maul C Culliford D Zeineh N O'Hara L
Full Access

This study reports the mid-term results of a large bearing uncemented metal on metal total hip replacement (MOMHTHR) matched series using the Synergy stem and Birmingham modular head in 36 hips (mean follow up 61 months). All patients underwent clinical, metal ion and MRI assessment. Wear analysis was performed on retrieved heads using Redlux non-contact optical profilometry.

Seven patients (19%) have undergone revision surgery. All revisions had two or more of either symptoms, high metal ions or an MRI suggestive of an adverse reaction to metal debris (ARMD). There was no evidence of component malposition or impingement. Frank staining of tissues together with high volume dark brown fluid collections were found in all cases. All stems and cups were well fixed. In 4 cases pubic and ischial lysis (adjacent to the inferior fins) was observed. All 7 cases had radiological, intraoperative and histological evidence of ARMD (Figure 1). The failure cohort had significantly higher whole blood cobalt ion levels and OHS (p = 0.001), but no significant difference in cup size (p = 0.77), gender predominance, stem offset or cup position (p = 0.12). Sleeves had been used in all revision cases

Wear analysis (n = 4) demonstrated increased wear at the trunnion/sleeve interface in a distribution compatible with micromotion (Figure 2). There was normal wear at the articulating surface.

This series further demonstrates unacceptable failure rates in LHMOMTHR in a series where a compatible stem for the BHR modular head was used. Use of a CoCr sleeve within a CoCr head taper appears to contribute to abnormal wear and therefore potential ARMD and subsequent failure.


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_2 | Pages 89 - 89
1 Feb 2020
Haeussler K Pandorf T
Full Access

Introduction. The process of wear and corrosion at the head-neck junction of a total hip replacement is initiated when the femoral head and stem are joined together during surgery. To date, the effects of the surface topography of the femoral head and metal stem on the contact mechanics during assembly and thus on tribology and fretting corrosion during service life of the implant are not well understood. Therefore, the objective of this study was to investigate the influence of the surface topography of the metal stem taper on contact mechanics and wear during assembly of the head-neck junction using Finite Element models. Materials and Methods. 2D axisymmetric Finite Element models were developed consisting of a simplified head-neck junction incorporating the surface topography of a threaded stem taper to investigate axial assembly with 1 kN. Subsequently, a base model and three modifications of the base model in terms of profile peak height and plateau width of the stem taper topography and femoral head taper angle were calculated. To account for the wear process during assembly a law based on the Archard equation was implemented. Femoral head was modeled as ceramic (linear-elastic), taper material was either modeled as titanium, stainless steel or cobalt-chromium (all elastic-plastic). Wear volume, contact area, taper subsidence, equivalent plastic strain, von Mises stress, engagement length and crevice width was analyzed. Results. Titanium tapers showed largest wear volume throughout all simulations, followed by stainless steel and cobalt-chromium. A larger head taper angle resulted in an increase of the wear volume for all taper materials while the increase of the plateau width resulted in a decrease of the wear volume. Taper subsidence, von Mises stress and equivalent plastic strain followed the same trends. Contact area was largest for the models with a large plateau width for all taper materials. Other taper parameters had little effect on contact area. A pure increase of the angular mismatch (AM) resulted in the strongest decrease of the engagement length, while a combined increase of the AM and plateau width showed only a moderate decrease. The smallest effect concerning the engagement length was found when a combined increase of the profile peak height and AM was simulated. Crevice width was largest for a pure increase of the AM and for a combined increase of the AM and profile peak height for all taper materials. Discussion. This study showed that depending on the surface topography and material of the stem taper, wear and taper mechanics during assembly could be affected. For the examined surface topographies wear is distinctively elevated by increasing the AM and the profile peak height due to the resulting higher mechanical loading. More parameter studies under in vivo loading and the study of other taper surface parameters like the peak-to-peak distance have to be conducted to get a deeper insight into taper mechanics and wear effects. However, this study demonstrates the importance of good manufacturing practice of components for hip replacement systems to guarantee reproducible taper mechanics. For any figures or tables, please contact authors directly


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_4 | Pages 81 - 81
1 Apr 2019
Bitter T Marra M Khan I Marriott T Lovelady E Verdonschot N Janssen D
Full Access

Introduction. Fretting corrosion at the taper interface of modular connections can be studied using Finite Element (FE) analyses. However, the loading conditions in FE studies are often simplified, or based on generic activity patterns. Using musculoskeletal modeling, subject-specific muscle and joint forces can be calculated, which can then be applied to a FE model for wear predictions. The objective of the current study was to investigate the effect of incorporating more detailed activity patterns on fretting simulations of modular connections. Methods. Using a six-camera motion capture system, synchronized force plates, and 45 optical markers placed on 6 different subjects, data was recorded for three different activities: walking at a comfortable speed, chair rise, and stair climbing. Musculoskeletal models, using the Twente Lower Extremity Model 2.0 implemented in the AnyBody modeling System™ (AnyBody Technology A/S, Aalborg, Denmark; figure1), were used to determine the hip joint forces. Hip forces for the subject with the lowest and highest peak force, as well as averaged hip forces were then applied to an FE model of a modular taper connection (Biomet Type-1 taper with a Ti6Al4V Magnum +9 mm adaptor; Figure 2). During the FE simulations, the taper geometry was updated iteratively to account for material removal due to wear. The wear depth was calculated based on Archard's Law, using contact pressures, micromotions, and a wear factor, which was determined from accelerated fretting experiments. Results. The forces for the comfortable walking speed had the highest peak forces for the maximum peak subject, with a maximum peak force of 3644 N, followed by walking up stairs, with a similar maximum peak force of 3626 N. The chair rise had a lower maximum peak force of 2240 N (−38.5%). The simulated volumetric wear followed the trends seen in the peaks of the predicted hip joint forces, with the largest wear volumes predicted for a comfortable walking speed, followed by the stairs up activity and the chair rise (Figure 3). The subjects with the highest peak forces produced the most volumetric wear in all cases. However, the lowest peak subject had a higher volumetric wear for the stairs up case than the average subject. Discussion. This study explored the effect of subject-specific variations in hip joint loads on taper fretting. The results indicate that taper wear was predominantly affected by the magnitudes of the peak forces, rather than by the orientation of the force. A more comprehensive study, capturing the full spectrum of patient variability, can help identifying parameters that accelerate fretting corrosion. Such a study should also incorporate other sources of variability, including surgical factors such as implant orientation, sizing, and offset. These factors also affect hip joint forces, and can be evaluated in musculoskeletal models such as presented here


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_34 | Pages 78 - 78
1 Dec 2013
Hothi H Cro S Bills P Blunt L Racasan R Blunn GW Skinner JA Hart A
Full Access

Introduction. Metal-on-metal (MOM) total hip arthroplasty using large diameter femoral heads offer clinical advantages however the failure rates of these hips is unacceptably high. Retrieved hips have a wide range of wear rates of their bearing and taper surfaces and there is no agreement regarding the cause of failure. Detailed visual inspection is the first step in the forensic examination of failed hip components and may help explain the mechanisms of failure. The aim of this study was to determine if there was a correlation between the results of detailed inspections and the volumetric wear of the bearing and taper surfaces of retrieved hips. Method. Detailed, non-destructive macroscopic and stereomicroscopic examinations of 89 retrieved MOM hip components were performed by a single experienced examiner using quantitative assessment to document the severity of 10 established damage features:. Light scratches, Moderate scratches, Heavy scratches, Embedded particles, Discolouration, Haziness, Pitting, Visible wear zone, Corrosion, Fretting. Each surface was considered in terms of zones comprising of quadrants (cup, head, and taper) and subquadrants (cup and head), Figure 1. Each zone was scored on a scale of 0 to 3 by determining the percentage of the surface area of the zone that exhibited the feature in question: a score of 0=0%, 1<25%, 25%<2<75%, 3>75%. The sum of the scores of each zone was used for the assessment of each damage feature. The volume of wear at the surfaces of each hip was measured with a Zeiss Prismo coordinate measuring machine (cup and head) and a Talyrond 365 roundness measurement instrument (taper), using previously reported methods. 1, 2. . Simple linear regression models were used to asses the univariable associations between the inspection scores and wear volumes. Multiple linear regression models were subsequently used to asses the simultaneous contribution of the inspection scores, found significant in univariable analyses, on the wear outcome variables. All statistical analysis was performed using Stata/IC version 12.1 (StataCorp, USA) and throughout a p value < 0.05 was considered statistically significant. Results. Visible wear zone, moderate scratches, discolouration and haziness scores were all significantly positively correlated with cup (R. 2. = 70%, 23%, 72% and 33% respectively) and head (R. 2. = 73%, 34%, 67% and 47% respectively) wear volumes. Visible wear zone and discoloration scores were significant predictors in multivariable analysis (p < 0.01) for both surfaces, together explaining 77% and 79% of the variance in the cup and head wear volumes respectively. Corrosion and discoloration scores were significantly positively correlated with taper wear volume (R. 2. = 57% and 53% respectively) and there was a significant interaction between the two damage features (p = 0.01). Discussion. This study demonstrates the importance of detailed visual inspections in retrieval analysis, suggesting that they may help in predicting the severity of bearing and taper surface wear. Future studies will involve assessments of the inter-observer errors of inspections and their relationship with many other variables such as implant design and patient factors


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_3 | Pages 46 - 46
1 Feb 2017
Bitter T Janssen D Schreurs B Marriott T Lovelady E Khan I Verdonschot N
Full Access

Introduction. Fretting corrosion of the modular taper junction in total hip arthroplasty has been studied in several finite element (FE) investigations. In FE analyses, different parameters can be varied to study micromotions and contact pressures at the taper interface. However, to truly study taper wear, the simulation of micromotions and contact pressures in non-adaptive FE models is insufficient, as over time these can change due to interfacial changes caused by the wear process. In this study we developed an FE approach in which material removal during the wear process was simulated by adaptations to the taper geometry. The removal of material was validated against experiments simulating the clinical fretting wear process. Method. Experimental test: An accelerated fretting screening test was developed that consistently reproduced fretting wear features observed in retrievals. Biomet Type-1 (4°) tapers and +9 mm offset adaptors were assembled with a 4 kN force (N=3). A custom head fixture was used to create an increased offset and torque. The stems were potted in accordance with ISO 7206–6:2013. The set-up was submerged in a 37°C PBS solution with a pH adjusted to 3 using HCL and NaCl concentration of 90gl. −1. The components were cyclically loaded between 0.4 – 4 kN for 10 million cycles. After completion, the volumetric and linear wear was measured using a Talyrond-585 roundness measurement machine. FE model: This was created to match the experimental set up (Figure 1). Taper geometry and experimental material data were obtained from the manufacturer (Zimmer Biomet). The coefficient of friction of the studied combination of components was based on previous experiments (Bitter, 2016). After each change in load the geometry was updated by moving nodes inwards perpendicular to the taper surface. Archard's Law (Archard, 1953) was used to calculate the wear with the following equation: H=k*p*S. Where H is the linear wear depth in mm, k is a wear factor (mm³/Nmm), p is the contact pressure (MPa) and S is the sliding distance (mm). The 10 million experimental cycles were simulated using a range of 5 to 200 computational cycles. For this purpose, the wear factor (k) was scaled for each simulation to match the volumetric wear found in the experiments. Results. The accelerated fretting experiments resulted in an average volumetric wear of 0.79 mm³ after 10 million cycles. A thumbprint shaped wear patch was observed on the inferior-distal and superior-proximal side of the taper (Figure 2). Optimal results were found using 100 simulated cycles, and a wear factor of 1.25*10. −6. (mm. 3. /N*mm), balancing accurate results with computational time. The maximum wear depth found in the experiments was found to be 15 µm whereas the simulations predicted a maximum linear wear of 9.5 µm(Figure 3). Discussion and Conclusion. In this study we have shown that we can accurately model wear at the taper junction. The model was validated with experiments using the measured volumetric and linear wear. With this model we will look at the effect of several patient, implant, and surgical parameters on the volumetric wear


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_8 | Pages 14 - 14
1 May 2016
Haeussler K Flohr M Preuss R Streicher R
Full Access

Introduction. Modular hip replacement systems use Morse tapers as an interlocking mechanism to connect ball heads to femoral stems. Even though this interlocking mechanism generally performs successfully for decades, failures due to disassociation of the ball head from the stem are reported in the literature. Therefore, this failure mechanism of a possible loosening is usually evaluated in the course of the development of femoral stems. The disassembly force is a possible parameter to characterize the strength of the interlocking mechanism. Thus, the aim of the current study was to examine the impact of different taper parameters on the disassembly force of ceramic ball heads from titanium stem tapers by finite element studies. Materials and Methods. A 2D axisymmetric finite element model was developed to simulate the disassembly procedure. First ball head and taper were assembled with a force of 4 kN. Afterwards the system was unloaded to simulate the settlement. Disassembly was simulated displacement controlled until no more adhesion between ball head and taper occurred. Isotropic elastic material behavior was modelled for the ceramic ball head while elastic-plastic material behavior was modelled for the titanium taper. Different angular gaps (0.2°, 0.15°, 0.1°, 0.05°, 0°, −0.05°, −0.1°) and different taper topography parameters regarding groove depth (12, 15 µm), groove distance (210, 310 µm) and plateau width (1, 5, 10, 20 µm) were examined. Frictional contact between ball head and taper was modelled. Results. The topography of the taper (groove depth, distance and plateau width) within the investigated range had only a small impact on the disassembly force (Fig. 1) while the varying angular gaps had a large effect (Fig. 2). Decreasing disassembly forces were found for decreasing angular gaps. For the negative angular gaps (i.e. male taper angle > female taper angle) the forces increased. The same trends were found for the sliding distance (sliding along the tangential direction in the taper region), deformation of the grooves and contact stresses. Reciprocal behavior was found for the contacting area. Discussion. Surface topography seems to have only minor influence, while macro-geometry seems to have major impact on the disassembly force. Higher disassembly forces are associated with smaller contacting areas, higher contact stresses, larger deformations of the grooves and larger sliding distances. For a negative angular gap the maximum stresses of the ceramic component were found at the taper mouth. This could be disadvantageous since the wall thickness in this region of the ball heads decreases and critical hoop stresses could increase the risk of a fracture. The decrease in contacting areas due to the extreme angular gaps could promote corrosive effects since a larger taper area is exposed to fluid. Furthermore, the higher contact stresses and groove deformations could increase taper wear. Therefore, a general examination of possible influencing factors and cross effects on the in vivo performance have to be conducted during the development of femoral stems. Future studies will include a wear model and include 3D calculations to examine more realistic loading scenarios. To view tables/figures, please contact authors directly


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_1 | Pages 28 - 28
1 Jan 2013
Langton D Sidaginamale R Lord J Joyce T Natu S Nargol A
Full Access

Background. Previous studies have suggested that the modular junction of metal on metal (MoM) total hip replacements (THR) is an important source of metallic debris. Methods. We carried out a prospective study using custom techniques to analyse one of the largest collections of failed contemporary MoM devices in the world. All explants from patients who had suffered adverse reactions to metal debris (ARMD) were included in this study. These explants included: 82 36mm THRs, and 147 resurfacing head THRs and 140 resurfacing arthroplasties from several manufactures. Volumetric wear analysis of the bearing surfaces and taper junctions was carried out using a coordinate measuring machine. The relationships between total metallic loss and metal ion concentrations and the macroscopic and histological tissue appearance of THR patients were compared to those in resurfacing patients. Mann Whitney test for non-parametric data was used to assess significant differences between groups. Results. Resurfacing explants retrieved from patients who had suffered ARMD were found to have significantly higher median rates of volumetric wear than the THRs (10.16 versus 2.25mm. 3. /yr (p < 0.001)). Total volumetric material loss from taper junctions ranged from 0.01 to 21.55mm. 3. When volumetric taper wear was combined with bearing surface wear in the THR patients this total rate of material loss was still significantly less than in the resurfacing patients 2.52 versus 10.16mm. 3. /yr (p < 0.001)). Despite this, macroscopic tissue destruction and extent of ALVAL infiltration was found to be significantly greater in the THR patients. Conclusion. Taper debris appears to more readily stimulate a destructive immune cascade than debris from primary bearing surfaces. This cascade can culminate in catastrophic tissue necrosis when blood metal ion concentrations appear normal. MHRA guidance should distinguish clearly between MOM THRs and resurfacings


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_34 | Pages 140 - 140
1 Dec 2013
Moga I Harrington MA Ismaily S Noble P
Full Access

Introduction. The failure rate of Total Hip Replacement (THR) has been shown to be strongly influenced by the nature of the articulating interfaces, with Metal-on-Metal (MoM) articulations having three times the failure rate of Metal-on-Polyethylene (MoP) components. It has been postulated that this observation is related to edge wear and increased bearing torque of large MoM heads, which would lead to increased loading and wear at the head taper junction and, subsequently, to the release of metal ions and corrosion products. This suggests that taper wear and corrosion should not be as prevalent in large head MoP implants as in large head MoM implants. This study was undertaken to test the hypotheses that: (i) MoM implants exhibit higher rates of corrosion and fretting at the head taper junction than MoP implants, and that (ii) the severity of corrosion and fretting is greater in components of larger head diameter. Materials and Methods. Our study included 90 modular implants (41 MoM; 49 MoP) retrieved during revision hip arthroplasties performed between 1992 and 2012. Only retrievals with head diameters greater than 32 mm were included, and trunnion sizes ranged from 10/12 mm to 14/16 mm with 12/14 mm being the most common size. The stem trunnion and head taper surfaces were examined under stereomicroscope by a single observer. Each surface was scored for both corrosion (using a modified Goldberg scoring system) and fretting (using the standard Goldberg scoring system). For both the trunnion and head tapers, the student's t-test was used to determine if differences exist in the severity of corrosion or fretting between the MoM and MoP groups and between different head sizes of the same articulation type. Results. Overall, there was no significant difference in the severity of corrosion or fretting damage of femoral head taper surfaces or in the fretting of stem trunions between articulation types (p values: 0.245 to 0.733) or head sizes (p values: 0.333 to 0.680). However, corrosion damage of the trunions did vary with the type of articulation (p = 0.0069) and with head size (p = 0.0145). MoP trunnions were found to have significantly more corrosion damage than MoM trunnions at head diameters greater than 40 mm (p = 0.005). Discussion. The surprising conclusion of this study is that the severity of trunnion corrosion in MOP articulations, which surpassed the tribo-corrosion of MOM joints, especially when the prosthetic head size exceeded 40 mm. This conclusion is consistent with the presence of moderate to severe third-body damage in many large diameter polyethylene liners which would lead to a large increase in the frictional torques generated during hip motion. In addition, only part of the loading of the trunnion arises from increased frictional torque. The increase in head size, especially in designs with an offset head center, will lead to increased toggling, and accelerated wear and corrosion of the taper junction, independent of the bearing surface material


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XL | Pages 82 - 82
1 Sep 2012
Joyce T Lord J Nargol A Langton D
Full Access

Introduction. Total hip prostheses which use a ceramic head within a metal liner are a relatively recent innovation. As such, survivorship rates from independent centres alongside explant analysis are rare. The early clinical experience with this novel ceramic-on-metal (CoM) bearing couple is reported alongside explant analysis of failed devices. Methods and materials. All CoM hips implanted between 2008 and 2009 at a single hospital by a single surgeon were reviewed. Radiographs were analysed using EBRA software to determine acetabular cup inclination and anteversion angles. Blood metal ion concentrations were measured using inductively coupled plasma mass spectroscopy (ICPMS). Explants were measured for bearing surface and taper wear using a high precision co-ordinate measuring machine (Mitutoyo Legex 322, manufacturer's claimed accuracy 0.8µm). The roughness of the articulating surfaces of heads and liners was measured with a non-contact profilometer (ZYGO NewView 5000, 1nm resolution). Results. In 56 patients 56 CoM hips were implanted. Mean (range) age was 64 years (34–87). There were 41 females and 15 males. Patients were followed-up for a mean of 1.5 years. Three hips were revised at mean of 1.2 years (2 female, 1 male) with a further 3 listed for revision under 1.5 years giving an overall failure rate of 10.7%. All these patients reported with pain. X-rays of failed devices showed a characteristic pattern of femoral stem loosening. Serum cobalt and chromium were less than 2 micrograms/L. Explant analysis of the three revised hips showed wear at the liner rim in each case. In two of these cases the wear extended completely around the circumference. The wear volumes were 4.1, 2.0 and 2.3mm. 3. respectively. The ceramic heads were unworn but some transfer of metal could be seen visually. There was no significant wear or deformation at the taper junctions. Typical ceramic head roughness values were 3nm Ra and so most of the surface area of the heads remained in a pristine condition. Discussion. The high early failure rate using a COM articulation is concerning. Explant analysis suggests equatorial contacts with propagation of high frictional forces distally. These forces may have caused early loosening of the femoral stems. Orthopaedic surgeons and bioengineers need to be aware of this new mechanism of failure in this novel biomaterial coupling which is associated with low metal ions


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_15 | Pages 19 - 19
1 Mar 2013
Bolland B Tilley S Tilley C Cook R Latham J
Full Access

Pseudotumour formation is being reported with increasing frequency in failing metal-on-metal hip resurfacings and replacements. This mode of failure complication has also been reported with metal-on-polyethylene bearing bearings when it is usually associated with evidence of surface corrosion and no apparent wear at the head–neck taper. We present a case with evidence of taper wear and damage secondary to corrosion in an uncemented total hip replacement with a metal on polyethylene articulation (TMZF (Titanium, Molybdenum, Zirconium and Ferrous) Accolade® stem, Trident® HA coated acetabular shell, Low Friction Ion Treatment (LFIT™) Cobalt-Chrome anatomic head (40 mm), X3® polyethylene liner). Case. A 69 year old woman had a THR in 2008. A year later she started to complain of lateral based hip pain. Clinical examination and initial imaging indicated trochanteric bursitis and heterotopic bone formation. The symptoms became worse over the next 3 years and the patient was listed for exploration and excision of heterotopic bone. Surgical findings. Extensive pseudotumour was encountered deep to bursa and adherent to capsule. Abductors, external rotators and vastus lateralis were spared. There was minimal calcar osteolysis and marginal erosion in superior acetabulum. There was no obvious wear on the articulating surfaces of the femoral head and polyethylene inlay of the socket nor was there any evidence of neck-to-rim impingement or edge loading. There was visible blackening of both the taper and trunnion after femoral head removal. Results. Peripheral blood samples taken at the time of surgery recorded Cobalt 107 nmol/L, Chromium 9 nmol/L. Wear Measurements. These were performed on the articulating surfaces and the head taper using the RedLux Artificial Hip Profiler. No discernable wear was noted at the articulating surfaces. Qualitative 3-D surface mapping demonstrated a trunnion imprint on head taper of 10.1 mm in length. At the distal end of the taper this was incomplete indicating possible taper/trunnion incongruity. The majority of the material loss was demonstrated at the proximal end on the polar opposite side to incomplete imprint (Figure 1). Corrosion analysis. The head was sectioned for more detailed surface analysis of areas of interest. This demonstrated a polished region just inside the taper (G), followed by a deep pit (F), a region of extensive pitting (E) and running along the taper length were longitudinal needle like pits (D) indicative of a path of fluid ingress (D-G ref Fig 2.). These findings were more suggestive of crevice corrosion than mechanical wear. Histology. There was evidence of aseptic lymphocytic vasculitis-associated lesion (ALVAL) scoring 8 out of 10 (as per Campbell et al). With the continuing increase in the use of larger head sizes the findings of pseudotumour formation and taper damage in a commonly used hip replacement raises considerable concern. Wear analysis has highlighted that although there is evidence of motion occurring at the taper / trunnion interface, corrosion appears to be the dominant mechanism of damage to the taper. In addition to the use of larger head sizes this case also raise concerns about the compatibility of certain metal alloy combinations


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_34 | Pages 387 - 387
1 Dec 2013
Kurtz S MacDonald D Higgs G Gilbert J Klein GR Mont M Parvizi J Kraay M Rimnac C
Full Access

Introduction:. Degradation of modular head-neck tapers was raised as a concern in the 1990s (Gilbert 1993). The incidence of fretting and corrosion among modern, metal-on-polyethylene and ceramic-on-polyethylene THA systems with 36+ mm femoral heads remains poorly understood. Additionally, it is unknown whether metal debris from modular tapers could increase wear rates of highly crosslinked PE (HXLPE) liners. The purpose of this study was to characterize the severity of fretting and corrosion at head-neck modular interfaces in retrieved conventional and HXLPE THA systems and its effect on penetration rates. Patients & Methods:. 386 CoCr alloy heads from 5 manufacturers were analyzed along with 166 stems (38 with ceramic femoral heads). Metal and ceramic components were cleaned and examined at the head taper and stem taper by two investigators. Scores ranging from 1 (mild) to 4 (severe) were assigned in accordance with the semi-quantitative method adapted from a previously published technique. Linear penetration of liners was measured using a calibrated digital micrometer (accuracy: 0.001 mm). Devices implanted less than 1 year were excluded from this analysis because in the short-term, creep dominates penetration of the head into the liner. Results:. The majority of the components were revised for instability, infection, and loosening. Mild to severe taper damage (score ≥2) was found in 77% of head tapers and 52% of stem tapers. The extent of damage was correlated to implantation time at the head taper (p = 0.0004) and at the stem taper (p = 0.0004). Damage scores were statistically elevated on CoCr heads than the matched stems (mean score difference = 0.5; p < 0.0001; Figure 2) and the two metrics were positively correlated with each other (ρ = 0.41). No difference was observed between stem taper damage and head material (CoCr, ceramic) (p = 0.56), nor was a correlation found between taper damage and head size (p = 0.85; Figure 3). The penetration rate across different formulations of HXLPE was not found to be significantly different (p = 0.07), and therefore grouped together for further analysis. Within this cohort, penetration rate was not found to be associated with head size (p = 0.08) though a negative correlation with implantation time was noted (ρ = −0.35). When analyzed with taper damage scores, a correlation was not observed between head damage scores and HXLPE penetration rates (p = 0.51). Discussion:. The results of this study do not support the hypothesis that 36+ mm ceramic or CoCr femoral heads articulating on HXLPE liners are associated with increased risk of corrosion among HXLPE liners when compared with smaller diameter heads. A limitation of this study is the semi-quantitative scoring technique, heterogeneity of the retrieval collection and short implantation time of the larger diameter heads. Because corrosion may increase over time in vivo, longer-term follow-up, coupled with quantitative taper wear measurement, will better assess the natural progression of taper degradation in modern THA bearings


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_34 | Pages 261 - 261
1 Dec 2013
Parekh J Jones H Chan N Noble P
Full Access

Introduction:. Angular mismatch of the modular junction between the head and the trunion has been recognized as a contributing factor to fretting and corrosion of hip prostheses. Excessive angular-mismatch can lead to relative motion at the taper interface, and tribo-corrosion of the head-neck junction secondary to disruption of the passive oxide layer. Although manufacturing standards have been adopted to define acceptable tolerances for taper angles of mating components, recent investigations of failed components have suggested that stricter tolerances or changes in taper design may be necessary to avoid clinical failures secondary to excessive taper wear and corrosion. In this study we examine the effect of angular-mismatch on relative motion between the taper and bore subjected to normal gait load using finite element methods. Methods:. Computer simulations were executed using a verified finite element model (FEM), the results from which were determined to be consistent with literature. A stable, converging hexahedral mesh was defined for the trunnion (33648 elements) and a tetrahedral mesh for the femoral head (51182 elements). A friction-based sliding contact was defined at the taper-bore interface. A gait load of 1638N (2.34 × BW, BW = 700N) was applied at an angle of 30° to the trunnion axis (Figure 1) on an assembled FEM. A linear static solution was set up using Siemens NX-Nastran solver. Angular-mismatch was simulated by incrementing the conical half-angle of the bore to examine these cases: 0°, 0.005°, 0.010°, 0.015°, 0.030°, 0.050°, 0.075°, 0.100°, 0.200°and 0.300°. Results:. Relative interface micro-motion at the proximal-medial point of the taper demonstrated a lack of dependence upon angular-mismatch for tolerances up to 0.075° and a monotonic increase in micro-motion for higher tolerances (0.075–0.3 °; Figure 2). A similar trend was observed with respect to the average values of contact pressure, max von Mises stress and shear stress acting at the proximal-medial aspect of the taper (Figure 3). Non-linear correlation tests indicate a significant correlation (p < 0.0001) of mismatch angle with peak von Mises stress (r = 0.965) and relative micro-motion (r = 0.964). Discussion:. The FEA results corroborate the notion that high angular-mismatch tolerances have a deleterious effect of fretting at the trunnion-head interface. Although, stability of the implant did not appear to be compromised at relatively lower tolerances, the propensity for it is higher at higher mismatches. The simulation was, however, executed as a single-step static analysis ignoring the effect of cyclical loading often observed during gait. This abstract serves as a proof of concept to justify the further development of this FEA to study the effect of angular-mismatch tolerances on micro-motion at the trunnion-head interface. However, current results strongly indicate that tolerance for angular-mismatch can be more liberal without increasing the micro-motion and stresses at the trunnion-head interface. Significance: The effect of angular-mismatch suggests a threshold tolerance different from the industry accepted tolerance of 0.0167°. Mismatches smaller than 0.075° demonstrated only modest variation in the interface micro-motion. Additionally, the results corroborate recent clinical evidence that even with perfectly fit implants, the potential for interface micro-motion can lead to fretting-induced corrosion