Advertisement for orthosearch.org.uk
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

General Orthopaedics

Effect of Angular Mismatch Tolerance on Trunnion Micro-Motion in Metal-on-Metal THA Designs

International Society for Technology in Arthroplasty (ISTA)



Abstract

Introduction:

Angular mismatch of the modular junction between the head and the trunion has been recognized as a contributing factor to fretting and corrosion of hip prostheses. Excessive angular-mismatch can lead to relative motion at the taper interface, and tribo-corrosion of the head-neck junction secondary to disruption of the passive oxide layer. Although manufacturing standards have been adopted to define acceptable tolerances for taper angles of mating components, recent investigations of failed components have suggested that stricter tolerances or changes in taper design may be necessary to avoid clinical failures secondary to excessive taper wear and corrosion. In this study we examine the effect of angular-mismatch on relative motion between the taper and bore subjected to normal gait load using finite element methods.

Methods:

Computer simulations were executed using a verified finite element model (FEM), the results from which were determined to be consistent with literature. A stable, converging hexahedral mesh was defined for the trunnion (33648 elements) and a tetrahedral mesh for the femoral head (51182 elements). A friction-based sliding contact was defined at the taper-bore interface. A gait load of 1638N (2.34 × BW, BW = 700N) was applied at an angle of 30° to the trunnion axis (Figure 1) on an assembled FEM. A linear static solution was set up using Siemens NX-Nastran solver. Angular-mismatch was simulated by incrementing the conical half-angle of the bore to examine these cases: 0°, 0.005°, 0.010°, 0.015°, 0.030°, 0.050°, 0.075°, 0.100°, 0.200°and 0.300°.

Results:

Relative interface micro-motion at the proximal-medial point of the taper demonstrated a lack of dependence upon angular-mismatch for tolerances up to 0.075° and a monotonic increase in micro-motion for higher tolerances (0.075–0.3 °; Figure 2). A similar trend was observed with respect to the average values of contact pressure, max von Mises stress and shear stress acting at the proximal-medial aspect of the taper (Figure 3). Non-linear correlation tests indicate a significant correlation (p < 0.0001) of mismatch angle with peak von Mises stress (r = 0.965) and relative micro-motion (r = 0.964).

Discussion:

The FEA results corroborate the notion that high angular-mismatch tolerances have a deleterious effect of fretting at the trunnion-head interface. Although, stability of the implant did not appear to be compromised at relatively lower tolerances, the propensity for it is higher at higher mismatches. The simulation was, however, executed as a single-step static analysis ignoring the effect of cyclical loading often observed during gait. This abstract serves as a proof of concept to justify the further development of this FEA to study the effect of angular-mismatch tolerances on micro-motion at the trunnion-head interface. However, current results strongly indicate that tolerance for angular-mismatch can be more liberal without increasing the micro-motion and stresses at the trunnion-head interface.

Significance: The effect of angular-mismatch suggests a threshold tolerance different from the industry accepted tolerance of 0.0167°. Mismatches smaller than 0.075° demonstrated only modest variation in the interface micro-motion. Additionally, the results corroborate recent clinical evidence that even with perfectly fit implants, the potential for interface micro-motion can lead to fretting-induced corrosion.


*Email: