Advertisement for orthosearch.org.uk
Results 1 - 20 of 171
Results per page:
Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_34 | Pages 365 - 365
1 Dec 2013
Kaneko H Hoshino Y Saito Y Tsuji T Tsukimura Y Abe H Chiba K
Full Access

Introduction:. Since2007, we have used CT-based fluoroscopy-matching navigation system (Vector Vision Hip Ver.3.5.2, BrainLAB, Germany) in revision total hip arthroplasty. This system completes the registration procedure semi-automatically by matching the contours of fluoroscopic images and touching 3 adequate points to the contours of 3D bone model created in the computer. Registration procedure using fluoroscopic figures has finished before making surgical incision. It needs no elongation time during the operation. The objective of this study was to evaluate the accuracy of CT-based fluoroscopy-matching navigation system in revision THA. Material and method:. We analysed the acetabular cup in consecutive 33 hips with both intra-operative and post-operative alignment data (based on navigation system and CT evaluation) We further compared these measurements with results from primary THA. Data for primary THA were therefore obtained from 40 consecutive patients who underwent primary THA between August 2007 and May 2013 using the same navigation system by postero-lateral approach. We aimed the cup angle for Revision THA as following, the inclination: 40 degrees, the anteversion: 20 degrees Anteversion on the navigation system must be adjusted by the pelvic tilt. Results:. There was one dislocation in 33 Revision THAs. There was no other obvious complication (nerve palsy, VTE and Infection). The all cup alignments were within 7 degrees from the preoperative orientation. In the Revision THA group the differences between the intra- and post-operative measurement of cup inclination were 2.3 ± 1.9 degrees. The differences of cup anteversion were 2.7 ± 2.5 degrees. In the primary THA group, the differences between the intra- and post-operative measurement of cup inclination were 1.9 ± 2.1 degrees. The differences of cup anteversion were 2.1 ± 2.5 degrees. There was no significant difference with two groups. Discussion:. CT-based navigation THA is very useful for severe deformity of hip osteoarthritis. We had used CT-based navigation system (landmark matching) since 2003. It needs some technical skills to improve the accuracy of landmark matching. The registration with CT-based fluoroscopy-matching navigation system is much easier and more simple than with landmark matching navigation system. CT images of revision patients included metal artifacts caused by implants. However this system is not so affected by metal artifacts. And we found this system provided high accuracy even in revision THA


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_34 | Pages 50 - 50
1 Dec 2013
Dong N Heffernan C Nevelos J Ries M
Full Access

Introduction:. Acetabular revision Jumbo cups are used in revision hip surgeries to allow for large bone to implant contact and stability. However, jumbo cups may also result in hip center elevation and instability. They may also protrude through anterior wall leading to ilopsoas tendinitis. Methods:. The study was conducted using two methods:. Computer simulation study. 265 pelvic CT scans consisting of 158 males and 107 females were converted to virtual 3-dimensional bones. The average native acetabular diameter was 52.0 mm, SD = 4.0 mm (males in 52.4 mm, SD = 2.8 mm and 46.4 mm, SD = 2.6 mm in females). Images were analyzed by custom CT analytical software (SOMA™ V.3.2). 1. and over-sized reaming was simulated. Four distinct points, located in and around the acetabular margins, were used to determine the reamer sphere. Points 1, 2, 3 were located at the inferior and inferior-medial acetabular margins, and Point 4 was located superiorly and posteriorly in the acetabulum to simulate a bony defect in this location, Point 4 was placed at 10%, 20%, 30%, 40%, 50% and 60% of the distance from the superior – posterior margin of the acetabular rim to the sciatic notch to simulate bony defects of increasing size. (Figure 1). Radiographical study. Retrospective chart review of patient records for all cementless acetabular revisions utilizing jumbo cups between January 1, 1998 and March 30, 2012 at UCFS (98 patients with 57 men, 41 women). Jumbo cups: ≥66 mm in males; <62 mm in females. Reaming was directed inferiorly to the level of the obturator foramen to place the inferior edge of the jumbo cup at the inferior acetabulum. To determine the vertical position of the hip center, a circle was first made around both the jumbo and the contralateral acetabular surfaces using Phillips iSite PACS software. The center of this circle was assumed to correspond to the “hip center”. The height of the hip center was estimated by measuring the height of a perpendicular line arising from the interteardrop line (TL) and ending at the hip center. Results:. The computer simulation and radiographic analysis deomonstrated similar results. The computer simulation predicted that the hip center shifted superiorly and anteriorly as the reamer size increased. The hip center shifted 0.27 mm superiorly and 0.02 mm anteriorly for every millimeter in diameter increased for the reaming. (Figure 2) Anterior column bone removal was increased 0.86 mm for every 1 mm of reamer size increase. (Figure 3). Results of radiographical study is shown in Table bellow:. Discussion:. Use of a jumbo cup in revision THA results in elevation of the hip center. Therefore a longer femoral head may be needed to compensate for hip center elevation when a jumbo cup is used. Reaming for a jumbo cup can also result in loss of anterior bone stock and protrusion of the cup anteriorly which may cause iliopsoas tendonitis


Orthopaedic Proceedings
Vol. 97-B, Issue SUPP_13 | Pages 83 - 83
1 Nov 2015
Della Valle C
Full Access

Constrained liners are a tantalizing solution to both prevent and treat instability, as they markedly increase the force needed for a dislocation to occur. They have, however, several important negatives that the surgeon must consider before entertaining their use including: Increased stresses at the implant bone interface which can increase the risk of loosening or cause catastrophic failure in the early post-operative period; Decreased range of motion with a greater risk of impingement; and Usually require an open reduction if they dislocate or otherwise fail. Given the limitations of constrained liners, we have looked to dual mobility articulations as an alternative to constrained liners in the past five years in our practice, including patients with abductor deficiency. We retrospectively compared a consecutive series of revision THA that were at high risk for instability and treated with either a constrained liner or a dual mobility articulation. Indications for both groups included abductor insufficiency, revision for instability, or inadequate intra-operative stability when trialing. Forty-three hips were reviewed in the constrained group (mean follow-up 3.4 years) and thirty-six in the dual-mobility group (mean follow-up 2.4 years). The rate of failure was compared using a Fisher's exact test with a p-value of < 0.05 considered significant. At a minimum of two years, there were 10 dislocations in the constrained group (10/43 or 23.3%) compared to 3 in the dual-mobility group (3/36 or 8.3%; p = 0.06). There were 15 repeat revisions in the constrained group (10 for instability, 4 for infection, and 1 broken locking mechanism) compared to 4 in the dual mobility group (2 mechanical failures of cemented dual mobility liners with dislocation and 2 for infection); 34.9% vs. 11.1% (p = 0.01). With repeat revision for instability as an endpoint, the failure rate was 23% for the constrained group and 5.5% for the dual mobility group (p = 0.03). Mean Harris Hip Score (HHS) improved from 45 to 76 points in the constrained liner group, and from 46 to 89 points in the dual-mobility group. Dual mobility articulations offer anatomic sized femoral heads that greatly increase jump distance, without many of the negatives of a constrained liner. While dual mobility is associated with its own concerns and problems (including intra-prosthetic dislocation and wear) our initial results suggest that they are a viable alternative to a constrained liner, even in the most challenging situations


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_22 | Pages 56 - 56
1 Dec 2016
Parvizi J
Full Access

Total hip arthroplasty continues to be one of the most effective procedures. Aseptic loosening compromises the long term outcome of this otherwise successful procedure. Large hemispherical cups may be used during revision surgery for patients with severe bone loss. Acetabular revision with cementless components has been remarkably successful with some series reporting no revisions for aseptic loosening at an average follow-up of 13.9 years. Another study on 186 patients (196 hips) receiving jumbo acetabular components, noted a survivorship of 98% at 4 years and 96% at 16 years. Cementless acetabular revision is now feasible for a wide range of revision situations, including some cases of pelvic discontinuity. The Paprosky classification is useful in predicting the reconstructive technique that will be required. Type I and many Type II defects may be reconstructed with standard cementless components. Many Type II and Type III defects, which involve the loss of additional structural bone, can be reconstructed with a jumbo cup. A jumbo cup is defined by Whaley et al. as a component that is >61 mm in women and >65 mm in men, a definition that is based on a shell that is >10 mm greater than the average diameter cup implanted in women and men. The jumbo cup has the advantage of an increased contact area between host bone and cup which maximises the surface area for ingrowth or ongrowth. The increased area of contact also prevents cup migration by allowing for force dissipation over a large area. Use of a jumbo cup may also decrease the need to use bone graft. In contrast to positioning the cup in the so-called high hip center, a jumbo cup can help to restore the hip center of rotation.

The disadvantages of this technique are that host bone may have to be removed to implant the cup, that bone stock is not restored by the reconstruction, and that hemispherical cups have limited applicability in situations of oblong bone stock deficiency.

Jumbo acetabular components can be used in combination with both structural and cancellous bone graft. In these cases, the cementless cup must achieve adequate contact with host bone in order to allow bone ingrowth to occur.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_17 | Pages 98 - 98
1 Nov 2016
Engh C
Full Access

Porous-coated acetabular hemispherical components have proven successful in all but the most severe revision acetabular defects. A revision jumbo porous coated component has been defined as a cup with minimum diameter of 66 mm in men and 62 mm in women. In published studies this size cup is used in 14% – 39% of acetabular revisions. The advantages of this technique are ease of use, most deficiencies can be treated without structural graft, host bone contact with the porous surface is maximised, and the hip center is generally normal. Jumbo cups are typically used in Paprosky type 2, 3A, and many 3B defects. Requirements for success include circumferential acetabular exposure, an intact posterior column, and much of the posterior wall. The cup should be stable with a press-fit between the ischium and anterior superior acetabulum with the addition of some superior lateral support. Additional support is provided with multiple dome or rim screws. Survivorship of the metal shell with revision for any reason has been reported to be 80% – 96% at time frames from 15 – 20 years. The most common post-operative complication is dislocation.


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_22 | Pages 59 - 59
1 May 2013
Brooks P
Full Access

Acetabular revision surgery can be complex and challenging. The technique selected depends upon the amount of bone deficiency. One of the most useful ways to assess remaining bone stock has been described by Paprosky, based on the location and severity of bone loss, and the likelihood of obtaining a stable construct with a hemispherical cup.

In almost all cases of acetabular revision, the remaining bone is in fact capable of supporting a hemispherical socket, as long as details of technique are followed. The implant is larger than the native acetabulum and the removed socket by several sizes, and may approach quite large proportions, hence the term “Jumbo Cup”. The principle is to gradually enlarge the acetabulum with hemispherical reamers, taking care to protect the posterior and superior bone, at the expense of the less crucial anterior and inferior bone.

As reaming proceeds, there comes a point where the reamer is stable within the acetabulum. High areas have been reamed down, and remaining cavitary defects are then back-filled with autogenous reamings or allograft cancellous chips. This is then re-reamed in reverse to distribute the graft into the defects. A large or “Jumbo” cup, 2–3 mm larger than the last reamer, is then impacted into place, and supplemented with screws.

In many cases, the anterior lip, and to a lesser extent the medial wall, may be sacrificed to obtain stability, without compromising long-term results.


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_22 | Pages 50 - 50
1 May 2013
Gross A
Full Access

A trochanteric osteotomy offers extensile exposure of the hip on both the acetabular and femoral sides. The classical trochanteric osteotomy which is transverse and involved a release of the vastus lateralis muscles is complicated by a significant incidence of trochanteric nonunion and more importantly, trochanteric migration. The trochanteric slide was designed to avoid trochanteric migration by keeping the trochanteric fragment in continuity with the abductors and the vastus lateralis. Even if there was a trochanteric nonunion, a trochanteric migration was prevented by continuity of muscles enclosing the greater trochanter in a sling of muscle.

When we first started doing the trochanteric slide, we used the technique originally described which involved starting with the posterior approach to take down the external rotators and the posterior capsule, and then proceeding with the trochanteric osteotomy. We found that our incidence of posterior dislocation increased to 15%. We therefore decided that we would attempt to do this operation but try to preserve the external rotators and the posterior capsule so they remained in situ attached to the main body of the femur, so that the trochanteric osteotomy was carried out just anterior to these muscles and posterior capsule. As a result of this our dislocation rate went from 15% to 3%.

This exposure provides an extensile exposure of the pelvis and femur. If femoral component removal is anticipated to be difficult, then we use exactly the same approach but we extend the trochanteric fragment down as in an extended trochanteric osteotomy.


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_34 | Pages 412 - 412
1 Dec 2013
Garofolo G Snir N Park B Wolfson T Hamula M Levin N Marwin S
Full Access

Background:

Dual mobility components in total hip arthroplasty have been successfully in use in Europe for greater than 25 years. However, these implants have only recently obtained FDA approval and acceptance among North American arthroplasty surgeons. Both decreased dislocation rate and decreased wear rates have been proposed benefits of dual mobility components. These components have been used for primary total hip arthroplasty in patients at high risk for dislocation, total hip arthroplasty in the setting of femoral neck fracture, revision for hip instability, and revision for large metal-on-metal (MoM) hip articulation. The literature for the North American experience is lacking.

Purpose:

We report indications, short term outcomes, and complications of a series of subjects who received dual mobility outcomes at one institution.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_17 | Pages 81 - 81
1 Nov 2016
Lachiewicz P
Full Access

Dual mobility components for total hip arthroplasty provide for an additional articular surface, with the goals of improving range of motion, jump distance, and overall stability of the prosthetic hip joint. A large polyethylene head articulates with a polished metal acetabular component, and an additional smaller metal or ceramic head is snap-fit into the large polyethylene. New components have been released for use in North America over the past eight years and additional modular designs will be forthcoming. In some European centers, these components are routinely used for primary total hip arthroplasty. However, their greatest utility may be to prevent and manage recurrent dislocation in the setting of revision total hip arthroplasty. Several retrospective series have shown satisfactory results for this indication at medium-term follow-up times. The author has used dual mobility components on two occasions to salvage a failed constrained liner. However, at least one center reported failure of dual mobility if the abductor mechanism is absent. There are important concerns with dual mobility, including late polyethylene wear causing intra-prosthetic dislocation, and the lack of long-term follow-up data with most designs. Modular dual mobility components, with screw fixation, are the author's first choice for the treatment of recurrent dislocation in younger patients, revision of failed metal-metal resurfacing, total hips, large head unipolar arthroplasties, and salvage of failed constrained liners. There are more recent concerns of iliopsoas tendonitis, elevated metal levels with one design, and acute early intra-prosthetic dissociation following attempted closed reduction. However, in 2016, a dual mobility component, rather than a constrained liner, may be the preferred solution in revision surgery to prevent and manage recurrent dislocation.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_17 | Pages 82 - 82
1 Nov 2016
Callaghan J
Full Access

In primary total hip replacements there are numerous options available for providing hip stability in difficult situations (i.e. Down's syndrome, Parkinson's disease).

However, in the revision situation in general and in revision for recurrent dislocation specifically, it is important to have all options available including dual mobility constrained liners in order to optimise the potential for hip stability as well as function of the arthroplasty. Even with the newer options, available dislocation rates of higher than 5% have been reported in the first two years following revision surgery at institutions where high volumes of revision surgery are performed. Because of the deficient abductors, other soft tissue laxity and the requirement for large diameter cups, revision cases will always have more potential for dislocation. In these situations in the lower demand patient and where, a complex acetabular reconstruction that requires time for ingrowth before optimal implant bone stability to occur isn't present, dual mobility with constraint has provided excellent success in terms of preventing dislocation and maintaining implant construct fixation to bone at intermediate term follow-up. Hence in these situations dual mobility with constraint remains the option we utilise. We are also confident in using this device in cases with instability or laxity where there is a secure well-positioned acetabular shell. We cement a dual mobility constrained liner in these situations using the technique described below.

Present indication for dual mobility constrained liners: low demand patient, large outer diameter cups, instability with well-fixed shells that are adequately positioned, abductor muscle deficiency or soft tissue laxity, multiple operations for instability

Technique of cementing liner into shell: score acetabular shell if no holes, score liner in spider web configuration, all one or two millimeters of cement mantle

Results: Constrained Dual Mobility Liner – For Dislocation: 56 Hips, 10 year average follow-up, 7% failure of device, 5% femoral loosening, 4% acetabular loosening. For Difficult Revisions: 101 hips, 10 year average follow-up, 6% failure of device, 4% femoral loosening, 4% acetabular loosening. Cementing Liner into Shell: 31 hips, 3.6 year average follow-up (2–10 years), 2 of 31 failures.


Orthopaedic Proceedings
Vol. 97-B, Issue SUPP_13 | Pages 84 - 84
1 Nov 2015
Callaghan J
Full Access

In primary total hip replacements there are numerous options available for providing hip stability in difficult situations i.e. Down's syndrome, Parkinson's disease. However, in the revision situation, in general, and in revision for recurrent dislocation situations specifically, it is important to have all options available including dual mobility constrained liners in order to optimise the potential for hip stability as well as function of the arthroplasty. Even with the newer options available dislocation rates of higher than 5% have been reported in the first two years following revision surgery at institutions where high volumes of revision surgery are performed [Della Valle, Sporer, Paprosky unpublished data]. Because of the deficient abductors, other soft tissue laxity and the requirement for large diameter cups, revision cases will always have more potential for dislocation. In these situations in the lower demand patient and where, a complex acetabular reconstruction that requires time for ingrowth before optimal implant bone stability to occur isn't present, dual mobility with constraint has provided excellent success in terms of preventing dislocation and maintaining implant construct fixation to bone at intermediate term follow-up. Hence in these situations dual mobility with constraint remains the option we utilise. We are also confident in using this device in cases with instability or laxity where there is a secure well-positioned acetabular shell. We cement a dual mobility constrained liner in these situations using the technique described below.

Present indication for dual mobility constrained liners: low demand patient, abductor muscle deficiency or soft tissue laxity, large outer diameter cups, multiple operations for instability, and instability with well-fixed shells that are adequately positioned.

Technique of cementing liner into shell: score acetabular shell if no holes; score liner in spider web configuration; all one or two millimeters of cement mantle.

Results

Constrained Dual Mobility Liner

For Dislocation: 56 Hips 10 yr average f/u, 7% failure of device, 5% femoral loosening, 4% acetabular loosening.

For Difficult Revisions: 101 hips 10 yr average f/u, 6% failure of device, 4% femoral loosening, 4% acetabular loosening

Cementing Liner into Shell: 31 hips 3.6 yr average f/u (2–10 years), 2 of 31 failures


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_22 | Pages 23 - 23
1 May 2013
Padgett D
Full Access

Instability after total hip arthroplasty is the primary cause for revision surgery and is a frequent complication following revision surgery for any reason (Bozic et al, JBJS 2009). Surgical management of the unstable hip has not been uniformly successful with the best results occurring in those hips in which an identifiable cause of instability can be determined (Daly & Morrey, JBJS 1992). It was these sobering findings that lead to the development of and increased use of constrained acetabular components.

While the results of revision surgery for instability using constrained components have been encouraging (Shapiro, Padgett, Sculco, J Arthroplasty 2003) with a re-dislocation rate of less than 3%, reoperation for other reasons have noted to increase with time. The commonly used tripolar configuration has been susceptible to bearing damage at both the inner and outer bearing surface by the nature of the constrained mechanism (Shah, Padgett, Wright, J Arthroplasty 2009). In addition, we have noted instances of fixation failure directly related to the constrained acetabular device either from loss of implant fixation to the pelvis with or without cement (Yun, Padgett, Dorr, J Arthroplasty 2005).

The observation of these failure modes ranging from either fixation failures to overt biomaterial failure have lead us to be extremely cautious in the “routine” use of constrained liners in revision THR. Implant instability due to poor position should be revised as appropriate to correct alignment. The use of either larger diameter heads or the emerging use of dual mobility articulations seems more appropriate at this time.


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_22 | Pages 24 - 24
1 May 2013
Callaghan J
Full Access

In the revision situation, there are times where larger heads are just not enough to obtain and maintain stability. The two most relevant times that this is the case is in patients with very lax tissues, or in patients with insufficient or absent soft tissues, especially abductor mechanisms. In addition, in cases where a revision is being performed for dislocation and components looked well-positioned, constrained liners have been extremely beneficial in our hands.

Constrained acetabular liners have been available for close to two decades. Two basic types of liners are available. The type first developed by Joint Medical Products was the SROM constrained liner which captured the femoral head with a locking ring in the polyethylene. These liners may have better results with larger head sizes because the hip can be taken through a larger range of motion (with larger head sizes) before the locking ring is stressed. The second type of constraining liner was developed by Osteonics (Stryker). It consisted of a tripolar replacement which is constrained by a locking ring in the outer polyethylene of the device. Indications for constrained liners include patients undergoing primary arthroplasty who are low demand and have dementia or hip muscle weakness or spasticity. Indications for constrained liners in the revision situation include cases with previously failed operations for instability, elderly low demand patients with instability, cases with poor or absent hip musculature, and cases with well positioned acetabular and femoral components and with hip instability. In this last scenario we cement the liners into fixed shells.

Our results at average 10-year follow-up in 101 hips, demonstrate a 6% failure of the device. Four hips were revised for acetabular loosening and four hips for femoral loosening. One additional hip was revised for acetabular osteolysis. Considering the difficulty of the cases we consider these results to be quite encouraging. At average 3.9 year follow-up of 31 cases where the liner was cemented into the secure shell only one case failed by dislodgement of the liner and one case by fracture of the locking mechanism.

Our experience has led to the following technical recommendation: (1) if cementing the component score the liner and make sure it is contained within the shell (2) avoid inserting the liner into a grossly malpositioned shell (3) avoid positioning the elevated rim of the liner into a position where impingement might occur and (4) avoid placing the shell and constrained liner in cases with massive acetabular allografts unless additional fixation, i.e. cages, are utilized. Especially in the elderly, these liners are our components of choice for many pre-operative and intra-operative cases of instability.


Orthopaedic Proceedings
Vol. 97-B, Issue SUPP_1 | Pages 68 - 68
1 Feb 2015
Dorr L
Full Access

A well designed constrained liner does not have a “hood” nor a wide poly brim that extends beyond the metal shell because these cause impingement. The failure of a good design is almost always technique.

Size the liner so the poly is press fit against the metal rim of the cup. Cement thickness does not matter. Remove any derotation tabs on metal rim with a carbide burr so there is a firm press fit with no toggle. Do NOT angle the poly to change the anteversion.

Use the carbide burr to scratch the inner surface of the cup and a soft tissue burr to scratch the backside of the poly.

Cement must be liquid enough to fully seat the poly against the metal rim. If cement too doughy it resists full seating.

Put metal ring in groove during implantation and cementing to prevent cement into the groove.

If this is a primary cup use screws with the cup or cement the poly into the acetabular bone.

Dry the head and inner surface of the poly to facilitated reduction. Align the head concentrically into the mouth of the poly and push simultaneously on the knee and over the greater trochanter.


Orthopaedic Proceedings
Vol. 97-B, Issue SUPP_1 | Pages 67 - 67
1 Feb 2015
Padgett D
Full Access

Instability after total hip arthroplasty is the primary cause for revision surgery and is a frequent complication following revision surgery for any reason (Bozic et al, JBJS 2009). Surgical management of the unstable hip has not been uniformly successful with the best results occurring in those hips in which an identifiable cause of instability can be determined (Daly & Morrey, JBJS 1992). It was these sobering findings that led to the development of and increased use of constrained acetabular components.

While the results of revision surgery for instability using constrained components have been encouraging (Shapiro, Padgett, Sculco J Arthroplasty 2003) with a re-dislocation rate of less than 3%, reoperation for other reasons have noted to increase with time. The commonly used tripolar configuration has been susceptible to bearing damage at both the inner and outer bearing surface by the nature of the constrained mechanism (Shah, Padgett, Wright, J Arthroplasty 2009). In addition, we have noted instances of fixation failure directly related to the constrained acetabular device either from loss of implant fixation to the pelvis with or without cement (Yun, Padgett, Dorr, J Arthroplasty 2005).

The observation of these failure modes ranging from either fixation failures to overt biomaterial failure have led us to be extremely cautious in the “routine” use of constrained liners in revision THR.

Stratification of the recurrent dislocator has been nicely described by Wera et al (J Arthroplasty, 2012). The etiology of dislocation includes: acetabular malposition, femoral malposition, abductor deficiency, impingement, late bearing wear and unknown causes.

Implant instability due to malposition, impingement, and poly wear should be revised as appropriate to correct the underlying problem in addition to the use of either larger diameter heads. The emerging use of dual mobility articulations remains to be determined. However, the indiscriminate use of constrained liners should be avoided as the risk of problems outweighs their benefits.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXVIII | Pages 106 - 106
1 Sep 2012
Masri BA Garbuz DS Duncan CP VGreidanus N Bohm E Valle CJD Gross AE
Full Access

Purpose

Dislocation after revision total hip is a common complication. The purpose of this study was to assess whether a large femoral head (36/40mm) would result in a decreased dislocation rate compared to a standard head (32mm).

Method

A randomized clinical trial was undertaken to assess the effect of large femoral heads on dislocation after revision total hip. Patients undergoing revision hip arthroplasty at seven centers were randomized to 32mm head or 36/40mm head. Patients were stratified according to surgeon. Primary endpoint was dislocation. Rates were compared with Fishers exact test. Secondary outcome measures were quality of life: WOMAC, SF-36 and satisfaction. One hundred eighty four patients were randomized: 92 in the 32mm head group and 92 in the large head group. Baseline demographics were similar in the two groups. Patients were followed from two to five years postoperatively


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_9 | Pages 5 - 5
1 Jun 2021
Muir J Dundon J Paprosky W Schwarzkopf R Barlow B Vigdorchik J
Full Access

Introduction. Re-revision due to instability and dislocation can occur in up to 1 in 4 cases following revision total hip arthroplasty (THA). Optimal placement of components during revision surgery is thus critical in avoiding re-revision. Computer-assisted navigation has been shown to improve the accuracy and precision of component placement in primary THA; however, its role in revision surgery is less well documented. The purpose of our study was to evaluate the effect of computer-assisted navigation on component placement in revision total hip arthroplasty, as compared with conventional surgery. Methods. To examine the effect of navigation on acetabular component placement in revision THA, we retrospectively reviewed data from a multi-centre cohort of 128 patients having undergone revision THA between March 2017 and January 2019. An imageless computer navigation device (Intellijoint HIP®, Intellijoint Surgical, Kitchener, ON, Canada) was utilized in 69 surgeries and conventional methods were used in 59 surgeries. Acetabular component placement (anteversion, inclination) and the proportion of acetabular components placed in a functional safe zone (40° inclination/20° anteversion) were compared between navigation assisted and conventional THA groups. Results. Mean inclination decreased post-operatively versus baseline in both the navigation (44.9°±12.1° vs. 43.0°±6.8°, p=0.65) and control (45.8°±19.4° vs. 42.8°±7.1°, p=0.08) groups. Mean anteversion increased in both study groups, with a significant increase noted in the navigation group (18.6°±8.5° vs. 21.6°±7.8°, p=0.04) but not in the control group (19.4°±9.6° vs. 21.2°±9.8°, p=0.33). Post-operatively, a greater proportion of acetabular components were within ±10° of a functional target (40° inclination, 20° anteversion) in the navigation group (inclination: 59/67 (88%), anteversion: 56/67 (84%)) than in the control group (49/59 (83%) and 41/59, (69%), respectively). Acetabular component precision in both study groups improved post-operatively versus baseline. Variance in inclination improved significantly in both control (50.6° vs. 112.4°, p=0.002) and navigation (46.2° vs. 141.1°, p<0.001) groups. Anteversion variance worsened in the control group (96.3° vs. 87.6°, p=0.36) but the navigation group showed improvement (61.2° vs. 72.7°, p=0.25). Post-operative variance amongst cup orientations in the navigation group (IN: 46.2°; AV: 61.2°) indicated significantly better precision than that observed in the control group (IN: 50.6°, p=0.36; AV: 96.3°, p=0.04). Discussion. Re-revision is required in up to 25% of revision THA cases, of which 36% are caused by instability. This places a significant burden on the health care system and highlights the importance of accurate component placement. Our data indicate that the use of imageless navigation in revision THA – by minimizing the likelihood of outliers – may contribute to lower rates of re-revision by improving component orientation in revision THA. Conclusion. Utilizing imageless navigation in revision THAs results in more consistent placement of the acetabular component as compared to non-navigated revision surgeries


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_10 | Pages 56 - 56
1 Oct 2022
Stevoska S Himmelbauer F Stiftinger J Stadler C Pisecky L Gotterbarm T Klasan A
Full Access

Aim. Antimicrobial resistance (AMR) aggravates an already difficult treatment of periprosthetic joint infections (PJI). The prevalence of drug-resistant pathogens varies across countries and increases over time. Regular monitoring of bacteriological analyses should be performed. Due to many factors influencing the AMR, the correct choice of antimicrobial management remains arguable. The primary purpose of this retrospective study was to identify and compare causative bacteria and to compare the incidence of antibiotic resistance between the septic revision total knee arthroplasty (TKA) and septic revision total hip arthroplasty (THA). Method. A review of all revision TKAs and revision THAs, undertaken between 2007 and 2020 in a tertiary referral centre, was performed. Included were cases meeting the consensus criteria for PJI, in which an organism has been identified. There were no major differences in tissue sampling between revision TKAs and revision THAs over time. Results. A total of 228 bacterial strains, isolated after revision TKA and THA, were analysed for their resistance to 20 different antibiotics. There was a statistically significant higher occurrence of Gram-negative bacteria (p=0.002) and Enterococcus species (p=0.026) identified after revision THAs compared to TKA. The comparison of antibiotic resistance between revision TKAs and revision THAs was statistically significant in 9 of 20 analysed antibiotics. Pathogens isolated after revision THA were much more resistant compared to pathogens isolated after revision TKA. Resistance in revision THAs was significantly higher to oxacillin (p=0.03), ciprofloxacin (p<0.001), levofloxacin (p<0.001), moxifloxacin (p=0.005), clindamycin (p<0.001), co-trimoxazole (p<0.001), imipenem (p=0.01), rifampicin (p=0.005) and tetracycline (p=0.009). There was no significantly higher resistance of pathogens isolated after revision TKAs detected. No statistically significant difference in antibiotic resistance of Gram-negative bacteria between revision TKA and revision THA was observed. Conclusions. The occurrence and the resistance of bacteria to antibiotics differs significantly between revision TKAs and revision THAs. This has implications on of the choice of empirical antibiotic in revision surgery as well as prophylactic antibiotic in primary surgery, depending on the joint that is to be replaced


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_15 | Pages 65 - 65
1 Dec 2021
Goosen J Raessens J Veerman K Telgt D
Full Access

Aim. Success rate of debridement, antimicrobial and implant retention (DAIR) in high suspicion of early PJI after primary arthroplasty is 70–80%. No studies have been performed focusing on outcome of DAIR after revision arthroplasty of the hip (THA) or knee (TKA). The aim of this study is to investigate the outcome of DAIR in suspected early PJI after revision THA or TKA and to identify risk factors for failure. Method. In this retrospective study, we identified early DAIRs after revision THA or TKA performed between January 2012 and August 2019. All patients received empirical antibiotics directly after the DAIR procedure. Antimicrobial treatment was adjusted to the tissue culture results. Success was defined as: 1) implant retention; 2) no repeated revision arthroplasty or supervised neglect after treatment; 3) no persistent or recurrent PJI after treatment and no administration of suppressive antimicrobial therapy; 4) survival of the patient. Infection free success was defined as: 1) no persistent or recurrent PJI after treatment; 2) no administration of suppressive antimicrobial therapy. Results. The overall success rate after one year of 100 cases with early DAIR after revision THA or TKA was 79% and infection free success rate was 85%. In PJI cases, empirical antimicrobial mismatch with causative micro-organisms was associated with lower success rate (70%) than non-mismatch (95%) (p=0.02). No patients from the non-PJI group failed after one year versus 13 failures within the PJI group. A consecutive DAIR within 90 days after the first DAIR was warranted in 24 cases. Only 4 of 20 PJI cases failed despite the consecutive DAIR. Conclusions. In high suspicion of early PJI after revision arthroplasty, DAIR is a good treatment option with comparable outcome with DAIR after primary arthroplasty. A consecutive DAIR should not be avoided when infection control fails within 90 days after the first DAIR to prevent explantation of the prosthesis. Antimicrobial mismatch is associated with failure and should be avoided


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_4 | Pages 40 - 40
1 Apr 2019
Vigdorchik J Cizmic Z Elbuluk A Jerabek SA Paprosky W Sculco PK Meere P Schwarzkopf R Mayman DJ
Full Access

Introduction. Computer-assisted hip navigation offers the potential for more accurate placement of hip components, which is important in avoiding dislocation, impingement, and edge-loading. The purpose of this study was to determine if the use of computer-assisted hip navigation reduced the rate of dislocation in patients undergoing revision THA. Methods and Materials. We retrospectively reviewed 72 patients who underwent computer-navigated revision THA [Fig. 1] between January 2015 and December 2016. Demographic variables, indication for revision, type of procedure, and postoperative complications were collected for all patients. Clinical follow-up was performed at 3 months, 1 year, and 2 years. Dislocations were defined as any episode that required closed or open reduction or a revision arthroplasty. Data are presented as percentages and was analyzed using appropriate comparative statistical tests (z-tests and independent samples t- tests). Results. All 72 patients (48% female; 52% male) were included in the final analysis [Fig. 2]. Mean age of patients undergoing revision THA was 70.4 ± 11.2 years. Mean BMI was 26.4 ± 5.2 kg/m. 2. The most common indications for revision THA were instability (31%), aseptic loosening (29%), osteolysis/eccentric wear (18%), infection (11%), and miscellaneous (11%). During revision procedure, polyethylene component was most commonly changed (46%), followed by femoral head (39%), and acetabular component (15%). At 3 months, 1 year, and final follow-up, there were no dislocations among all study patients (0%). Compared to preoperative dislocation values, there was a significant reduction in the rate of dislocation with the use of computer-assisted hip navigation (31% vs. 0%; p<0.05). Discussion. Our study demonstrates a significant reduction in the rate of dislocation following revision THA with the use of computer navigation. Although the cause of postoperative dislocation is often multifactorial, the use of computer-assisted surgery may help to curtail femoral and acetabular malalignment in revision THA