header advert
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

General Orthopaedics

CONSTRAINED LINERS IN REVISION THA: MORE PROBLEMS THAN THEY SOLVE – OPPOSES

Current Concepts in Joint Replacement (CCJR) – Winter 2012



Abstract

In the revision situation, there are times where larger heads are just not enough to obtain and maintain stability. The two most relevant times that this is the case is in patients with very lax tissues, or in patients with insufficient or absent soft tissues, especially abductor mechanisms. In addition, in cases where a revision is being performed for dislocation and components looked well-positioned, constrained liners have been extremely beneficial in our hands.

Constrained acetabular liners have been available for close to two decades. Two basic types of liners are available. The type first developed by Joint Medical Products was the SROM constrained liner which captured the femoral head with a locking ring in the polyethylene. These liners may have better results with larger head sizes because the hip can be taken through a larger range of motion (with larger head sizes) before the locking ring is stressed. The second type of constraining liner was developed by Osteonics (Stryker). It consisted of a tripolar replacement which is constrained by a locking ring in the outer polyethylene of the device. Indications for constrained liners include patients undergoing primary arthroplasty who are low demand and have dementia or hip muscle weakness or spasticity. Indications for constrained liners in the revision situation include cases with previously failed operations for instability, elderly low demand patients with instability, cases with poor or absent hip musculature, and cases with well positioned acetabular and femoral components and with hip instability. In this last scenario we cement the liners into fixed shells.

Our results at average 10-year follow-up in 101 hips, demonstrate a 6% failure of the device. Four hips were revised for acetabular loosening and four hips for femoral loosening. One additional hip was revised for acetabular osteolysis. Considering the difficulty of the cases we consider these results to be quite encouraging. At average 3.9 year follow-up of 31 cases where the liner was cemented into the secure shell only one case failed by dislodgement of the liner and one case by fracture of the locking mechanism.

Our experience has led to the following technical recommendation: (1) if cementing the component score the liner and make sure it is contained within the shell (2) avoid inserting the liner into a grossly malpositioned shell (3) avoid positioning the elevated rim of the liner into a position where impingement might occur and (4) avoid placing the shell and constrained liner in cases with massive acetabular allografts unless additional fixation, i.e. cages, are utilized. Especially in the elderly, these liners are our components of choice for many pre-operative and intra-operative cases of instability.