Advertisement for orthosearch.org.uk
Results 1 - 20 of 77
Results per page:
Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_8 | Pages 129 - 129
1 May 2016
Kurtz S Arnholt C MacDonald D Higgs G Underwood R Chen A Klein G Hamlin B Lee G Mont M Cates H Malkani A Kraay M Rimnac C
Full Access

Introduction. Previous studies of retrieved CoCr alloy femoral heads have identified imprinting of the stem taper surface features onto the interior head bore, leading researchers to hypothesize that stem taper microgrooves may influence taper corrosion. However, little is known about the role of stem taper surface morphology on the magnitude of in vivo corrosion damage. We designed a matched cohort retrieval study to examine this issue. Methods. From a multi-institutional retrieval collection of over 3,000 THAs, 120 femoral head-stem pairs were analyzed for evidence of fretting and corrosion using a visual scoring technique based on the severity and extent of fretting and corrosion damage observed at the taper. A matched cohort design was used in which 60 CoCr head-stem pairs with a smooth stem taper were matched with 60 CoCr head-stem pairs having a micro-grooved surface, based on implantation time, flexural rigidity, apparent length of taper engagement, and head size. This study was adequately powered to detect a difference of 0.5 in corrosion scores between the two cohorts, with a power of 82% and 95% confidence. Both cohorts included CoCr and Ti-6-4 alloy femoral stems. A high precision roundness machine (Talyrond 585, Taylor Hobson, UK) was used to measure surface morphology and categorize the stem tapers into smooth vs. micro-grooved categories. Fretting and corrosion damage at the head/neck junction was characterized using a modified semi-quantitative adapted from the Goldberg method by three independent observers. This method separated corrosion damage into four visually determined categories: minimal, mild, moderate and severe damage. Results. Mild to severe damage (Fretting Corrosion Score ≥ 2) was observed in 75% of the 120 CoCr femoral heads (78% of the heads mated with micro-grooved stems (47/60), Fig. 1A) and 72% of the heads mated with smooth stems (43/60, Fig 1B). Fretting and corrosion damage was not significantly different between the two cohorts when evaluated at the CoCr femoral head bore (p =0.105, Mann Whitney test, Fig. 2A) or the male stem tapers (p =0.428, Fig. 2B). No implant or patient factors were associated with fretting corrosion; corrosion scores were not significantly associated with stem alloy in the two cohorts (p=0.669, Mann-Whitney test). Discussion. The results of this matched cohort retrieval study do not support the hypothesis that taper surfaces with micro-grooved stems exhibit increased in vivo fretting corrosion. We accounted for implant, patient, and clinical factors that may influence in vivo taper corrosion with the matched cohort design and by post hoc statistical analyses. However, this study is limited by the semi-quantitative method used for evaluating damage in these components. Therefore, additional research will be necessary to quantify the volume of metal release from these two cohorts. To view tables/figures, please contact authors directly


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_34 | Pages 380 - 380
1 Dec 2013
Kretzer JP Pohl V Zeifang F Buelhoff M Sonntag R Reinders J
Full Access

Hemi shoulder arthroplasty is an attractive treatment for shoulder arthritis in particular if the natural glenoid is still intact. However, comparing the clinical results of hemi and total shoulder arthroplasty clearly shows lower survival for the hemi arthroplasty. One of the most common reasons for revision surgery is gleniod erosion, where the cartilage or bone is worn of. Aim of the current study was to analyse if the metallic articular surface of retrieved hemi shoulder arthroplasty is different from new implants. We hypothesized that the surface roughness will increased due the articulation and that metallic wear is detectable on the implants. Twelve retrieved and three brand new hemi shoulder arthroplasty were included. The surface roughness (Ra, Rz, Rmax, Rsk) was measured on different sites of the surface (center of the head and at the edge). The implants were further measured using a coordinate measuring machine to gain information on volumetric wear and geometrical alterations.

Compared to new implants the surface roughness on the retrievals was significantly increased (Tab. 1), except for skewness.

Although the roughness parameters within the retrieval group were generally higher at the center of the head compared to the edge, this difference was not significant. Apart from form deviations no volumetric wear was detectable on the heads (Fig. 1).

The current results indicate that the metallic articular implant surface changes in vivo and that the material is hurt due to the articulation against the softer cartilage or bone. Although it can't be finally clarified by that study, to what extend the higher roughness is taking part in the process of the clinically observed erosion of the gleniod, it can be assumed that an increased roughness is disadvantageous. Possibly, the observed surface alterations won't occur clinically with harder materiel (e.g. ceramic), but this even needs to be validated.


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_5 | Pages 34 - 34
1 Mar 2017
Mueller U Lee C Thomsen M Heisel C Kretzer J
Full Access

Introduction

This study was performed to investigate the failure mechanism of one specific hip arthroplasty cup design that has shown a high clinical failure rate. The aim of this study was to identify general design problems of this polyethylene inlay.

Material and Methods

55 consecutive retrievals of a cementless screw ring (Mecron) were collected. In any case a 32 mm ceramic head was used. All implants failed due to aseptic loosening. The follow-up of the implants was 3 to 16 years. We recorded backside wear, fatigue of the polyethylene at the flanges on the outer rim and at the cup opening (32 mm inner diameter). To assess the deformation of the inlay, the smallest and the median diameter of the cup opening were measured using a 3 dimensional coordinate measuring machine (Multisensor, Mahr, Germany).


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_4 | Pages 132 - 132
1 Feb 2017
MacDonald D Chen A Lee G Klein G Cates H Mont M Rimnac C Kurtz S
Full Access

Introduction

During revision surgery with a well-fixed stem, a titanium sleeve can be used in conjunction with a ceramic head to achieve better stress distribution across the taper surface. Previous studies have observed that the use of a ceramic head can mitigate the extent of corrosion damage at the taper. Moreover, in vitro testing suggests that corrosion is not a concern in sleeved ceramic heads [1]; however, little is known about the in vivo fretting corrosion of the sleeves. The purpose of this study was to investigate fretting corrosion in sleeved ceramic heads.

Materials and Methods

Thirty sleeved ceramic heads (Biolox Option: CeramTec) were collected during revision surgery as part of a multi-center retrieval program. The sleeves were used in conjunction with a zirconia-toughened alumina femoral head. The femoral heads and sleeves were implanted between 0.0 and 3.25 years (0.8±0.9, Figure 1). The implants were revised predominantly for instability (n=14), infection (n=7), and loosening (n=5). Fifty percent of the retrievals were implanted during a primary surgery, while 50% had a history of a prior revision surgery. Fretting corrosion was scored using a previously described 4-point, semi-quantitative scoring system proposed by Higgs [2].


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_5 | Pages 54 - 54
1 Mar 2017
Nguyen T Amundsen S Choi D Koch C Wright T Padgett D
Full Access

Introduction

Contemporary total knee systems accommodate for differential sizing between femoral and tibial components to allow surgeons to control soft tissue balancing and optimize rotation. One method some manufacturers use to allow differential sizing involves maintaining coronal articular congruency with a single radius of curvature throughout sizes while clipping the medial-lateral width, called a single coronal geometry system. Registry data show a 20% higher revision rate when the tibial component is smaller than the femur (downsizing) in the DePuy PFC system, a single coronal system, possibly from increased stresses from edge loading or varying articular congruency. We examined a different single coronal geometry knee system, Smith & Nephew Genesis II, to determine if edge loading is present in downsized tibial components by measuring area and location of deviation of the polyethylene articular surface damage.

Methods

45 Genesis II posterior-stabilized polyethylene inserts (12 matched and 33 downsized tibial components) were CT scanned. 3D reconstructions were registered to corresponding pristine component reconstructions, and 3D deviation maps of the retrieved articular surfaces relative to the pristine surfaces were created.

Each map was exported as a point cloud to a custom MATLAB code to calculate the area and weighted center of deviation of the articular surfaces. An iterative k-means clustering algorithm was used to isolate regions of deviation, and a shrink-wrap algorithm was applied to calculate their areas. The area of deviation was calculated as the sum of all regions of deviation and was normalized to the area of the articular surface. The location of deviation was described using the weighted center of deviation and the location of maximum deviation on the articular surfaces relative to the center of the post (Fig. 1).

Pearson product moment correlations were conducted to examine the correlation between length of implantation (LOI) and the medial and lateral areas of deviation for all specimens, matched components, and downsized components.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_4 | Pages 93 - 93
1 Jan 2016
Vandekerckhove P Teeter M Naudie D Howard J MacDonald S Lanting B
Full Access

Introduction

Coronal plane alignment is one of the contributing factors to polyethylene wear in total knee arthroplasty (TKA). The goal of this study was to evaluate the wear and damage patterns of retrieved tibial polyethylene inserts in relationship to the overall mechanical alignment and to the position of the tibial component.

Materials and methods

Based on full-length radiographs, ninety-five polyethylene inserts retrieved from primary TKA's with a minimum time in-vivo of five years were analysed for wear and damage. Four alignment groups were compared: valgus, neutral, mild varus and moderate varus. Varus and valgus positioning of the tibial component was analysed for damage score for the neutral and varus aligned groups.


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_34 | Pages 110 - 110
1 Dec 2013
MacDonald D Kurtz S Kocagoz S Hanzlik J Underwood R Gilbert J Lee G Mont M Kraay M Klein GR Parvizi J Rimnac C
Full Access

Background:

Previous studies regarding modular head-neck taper corrosion were largely based on cobalt chrome (CoCr) alloy femoral heads. Less is known about head-neck taper corrosion with ceramic femoral heads.

Questions/purposes:

We asked (1) whether ceramic heads resulted in less taper corrosion than CoCr heads; (2) what device and patient factors influence taper fretting corrosion; and (3) whether the mechanism of taper fretting corrosion in ceramic heads differs from that in CoCr heads.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_4 | Pages 35 - 35
1 Jan 2016
Shon WY Yun HH Suh DH
Full Access

The PowerPoint (2007 Version; Microsoft, Redmond, Wash) method is reported to have improved repeatability and reproducibility and is better able to detect differences in radiographs than previously established manual wear measurement methods. In this study, the PowerPoint method and the Dorr and Wan method were used to calculate the polyethylene liner wear volume. The wear volumes of retrieved polyethylene liners calculated from the 3D laser scanning method were compared with each method. This study hypothesized that the wear volume calculated by the PowerPoint method would correlate well with the wear volume measured by 3D laser scanning method.

Between March 2004 and June 2009, 22 polyethylene liners from 20 patients were collected during revision Total hip arthroplasty(THA). Exclusion criteria included (1) missing an early primary postoperative radiograph or prerevision radiograph, (2) evidence of acetabular loosening or migration, (3) existence of significant mismatch between early primary postoperative radiograph and prerevision radiographs on vertical axis, and (4) liner wear-through. After applying these exclusion criteria, 17 retrieved polyethylene liners from 16 patients were included in this study. Wear volumes were calculated using the PowerPoint, the Dorr and Wan methods by 3 independent experienced observers who were unaware of the study design, and 3-dimensional (3D) laser scanning methods.

Spearman correlation coefficients for wear volume results indicated strong correlations between the PowerPoint and 3D laser scanning methods (range, 0.89–0.93). On the other hand, Spearman correlation analysis revealed only moderate correlations between the Dorr and Wan and 3D laser scanning methods (range, 0.67–0.77).

The PowerPoint method is an efficient tool for the sequential radiologic follow-up of patients after THA. The PowerPoint method can be used to monitor linear wear after THA and could serve as an alternative method when computerized methods are not available.


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_34 | Pages 409 - 409
1 Dec 2013
Mann K Miller M
Full Access

INTRODUCTION:

Clinical densitometry studies indicate that following TKR implantation there is loss of bone mineral density in regions around the implant. Bone density below the tibial tray has been reported to decrease 36% at eight years after TKR. This bone loss (∼5%/year) is substantially greater than osteoporosis patients in the same age group (∼1–2%/year) and could contribute the loss of mechanical support provided by the peri-implant leading to loosening of components in the long term. High patient mass and body mass index have also been implicated in increased loosening rates, and was thought to be due to high stress or strain on the tibial constructs. These findings suggest that peri-implant bone strain may be affected by time in service and patient factors such as body mass.

The goal of this project was to assess the proximal tibial bone strain with biomechanical loading using en bloc retrieved TKR tibial components. Note that the implants were not obtained from revision surgery for a loose implant, but rather after death; thus the implants can be considered to be successful for the lifetime of the patient. We asked two research questions, guided by the clinical and laboratory observations: (1) are the peri-implant bone strain magnitudes for cemented tibial components greater for implants with more time in service and from older donors?, (2) is tibial bone strain greater for constructs from donors with high body weight and lower peri-implant BMD?

METHODS:

Twenty-one human knees with cemented total knee replacements were obtained from the SUNY Upstate Medical University Anatomical Gift Program. Clinical bone density scans were obtained of the proximal tibia in the anterior-posterior direction. Axial loads (1 body weight, 60/40% medial to lateral) were applied to the tibia through the contact patches identified on the polyethylene inserts. Strain measures were made using a non-contacting 3-D digital image correlation (DIC) system. Strain was measured over six regions of the bone surface (anterior (A), posterior (P), medial (M), lateral (L), postero-medial (PM), postero-lateral (PL)) (Figure 1).


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_6 | Pages 68 - 68
1 Jul 2020
Hall D Pourzal R Jacobs J Urban R
Full Access

Little is known about the relationship between head-neck corrosion and its effect on the periprosthetic tissues and distant organs of patients hosting well-functioning devices. The purpose of this study was to investigate in postmortem retrieved specimens the degree and type of taper damage, and the corresponding histologic responses in periprosthetic tissues and distant organs. Fifty postmortem THRs (34 primaries, 16 revisions) retrieved after 0.5 to 26 years were analyzed. Forty-three implants had a CoCrMo stem and seven had a Ti6Al4V stem. All heads were CoCrMo and articulated against polyethylene cups (19 XLPE, 31 UHMWPE). H&E sections of joint pseudocapsules, liver, spleen, kidneys and lymph nodes were graded 1–4 for the intensity of various inflammatory cell infiltrates and tissue characteristics. Corrosion damage of the taper surfaces was assessed using visual scoring and quantitated with an optical coordinate measuring machine. SEM analysis was used to determine the acting corrosion mode. Polyethylene wear was assessed optically. The majority of tapers had minimal to mild damage characterized by local plastic deformation of machining line peaks. Imprinting of the stem topography onto the head taper surface was observed in 18 cases. Column damage on the head taper surface occurred in three cases. All taper surfaces scored moderate or severe exhibited local damage features of fretting and/or pitting corrosion. Moderate or severe corrosion of the head and/or trunnion was present in nine hips. In one asymptomatic patient with bilateral hips, lymphocyte-dominated tissue reactions involving perivascular infiltrates of lymphocytes and plasmacytes were observed. In this patient, mild, focal lymphocytic infiltrates were also present in the liver and kidneys, and there was focal histiocytosis and necrosis of the para-aortic lymph nodes. These two implants, which had been in place for 58.6 and 60.1 months, had severe intergranular corrosion of the CoCrMo trunnion, and column damage and imprinting on the head taper. In the other 41 hips, macrophage responses in the joint pseudocapsule to metallic and/or polyethylene wear particles ranged widely from minimal to marked. Focal necrosis in the pseudocapsules of 12 arthroplasties was related to high concentrations of CoCrMo, TiAl4V, TiO, BaSO4 and polyethylene wear particles. High concentrations of these particles were also detected in para-aortic lymph nodes. Rare to mild macrophages were observed in liver and spleen. This is a comprehensive study of wear and corrosion within well-functioning postmortem retrieved THRs, and the resulting local and distant tissue reactions. One of eight patients with moderate or severe corrosion did have a subclinical inflammatory response dominated by lymphocytes after five years. To what extent such an inflammatory process might progress to become symptomatic is not known. Ionic and particulate products generated by corrosion disseminated systemically. The minor lymphocytic infiltrate in the liver and kidneys of one subject with bilateral severely corroded head-neck junctions might suggest possible metal toxicity. The diagnosis of adverse tissue reactions to corrosion of modular junctions can be challenging. Postmortem retrieval studies add to our understanding of the nature and progression of lymphocyte-dominated adverse local and potentially systemic tissue reactions to corrosion of modular junctions


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_9 | Pages 61 - 61
1 May 2016
Mueller U Kretzer J
Full Access

Introduction. Taper corrosion has been identified to be major problem in total hip replacement during the past years. Patients may suffer from adverse local tissue reactions (ALTR) due to corrosion products that are released from modular taper connection. So far, the mechanism that leads to taper corrosion in taper connections is not fully understood. Some retrieval studies tried to correlate implant related design parameters to the incidence and the severeness of taper corrosion. For example Kocagöz et al.[1] have not seen an influence of the taper clearance to taper corrosion. Hothi et al.[2] showed that shorter and rougher tapers increase taper corrosion. One limitation of retrieval studies may be that the analysed tapers are used and may have been altered during in vivo service. Beside the effect of taper corrosion many surgeons are not aware that the tapers may vary among different manufactors. With our study we want to provide taper related data that may be used for comparison and correlation (e.g. retrieval studies). Therefore we aimed to assess and compare geometric and topographic design parameters of currently available hip stem tapers from different manufacturers. Material. For comparison well established cementless hip stems made of titanium alloy were choosen. All of them have a 12/14-taper. The analysed implants are shown in Fig. 1. As geometrical parameters the taper angle, the opening taper diameter and the taper length were measured using a coordinate measuring machine (CMM) (MarVision MS 222, Mahr, Göttingen, Germany; accuracy: ±2.3 µm). Several topographical parameters (e.g. Ra, Rz, etc.) were determined using a tactil roughness measurement instrument (Perthometer M2, Mahr, Göttingen, Germany; accuracy: 12 nm). Three independent samples of each taper were measured five times. Results. In Fig. 2 the geometrical parameters like taper angle and opening diameter are given. As roughness parameters the average roughness (Ra) and the average maximum height of the profile (Rz) are presented in Fig. 3. Discussion and conclusion. As expected, this study shows that the tapers differ among the manufactures. Regarding the geometry, high variations in taper length were seen whereas the taper angle and opening taper diameter vary only to a small extent. However, if the combination of taper angle and opening diameter are considered these small differences may become relevant regarding the contact situation in the taper junction. Clearly, the tapers differed in topography. The surface roughness parameters vary to a large extent from smooth to very rough values. In combination all these parameters will influence the crevice of the taper junction. Considering that taper corrosion is mostly initiated within the crevice, further studies may help to understand the influence of taper variations to the corrosion mechanism


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_8 | Pages 32 - 32
1 May 2019
Gross A
Full Access

An osteochondral defect greater than 3cm in diameter and 1cm in depth is best managed by an osteochondral allograft. If there is an associated knee deformity, then an osteotomy is performed. In our series of osteochondral allografts for large post-traumatic knee defects realignment osteotomy is performed about 60% of the time in order to off-load the transplant. To correct varus we realign the proximal tibia with an opening wedge osteotomy. To correct valgus, we realign the distal femur with a closing wedge osteotomy. Our results with osteochondral allografts for the large osteochondral defects of the knee both femur and tibia, have been excellent in 85% of patients at an average follow-up of 10 years. The Kaplan-Meier survivorship at 15 years is 72%. At an average follow-up of 22 years in 58 patients with distal femoral osteochondral allograft, 13 have been revised (22%). The 15-year survivorship was 84%. Retrieval studies of 24 fresh osteochondral grafts obtained at graft revision or conversion total knee replacement at an average of 12 years (5 – 25) revealed the following. In the areas where the graft was still intact, the cartilage was of normal thickness and architecture. Matrix staining was normal except in the superficial and upper mid zones. Chondrocytes were mostly viable but there was chondrocyte clusters and loss of chondrocyte polarity. Host bone had extended to the calcified cartilage but variable remnants of dead bone surrounded by live bone persisted. With a stable osseous base the hyaline cartilage portion of the graft can survive for up to 25 years


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_1 | Pages 69 - 69
1 Feb 2020
Hippensteel E Whitaker D Langhorn J
Full Access

Introduction. Retrieval investigations have shown that cracking or rim failure of polyethylene hip liners may occur at the superior aspect of the liner, in the area that engages the locking ring of the shell. 1. Failure could occur due to acetabular liner/stem impingement and/or improper cup position. Other contributing factors may include high body mass index, patient activity and design characteristics such as polyethylene material properties, thin liner rim geometry and cup rim design. Currently no standard multi-axis simulator methodology exists for high angle rim fatigue testing, although tests have been developed using static uniaxial load frames. 2. The purpose of this study was to develop a technique to create a clinically relevant rim crack/fracture event on a 4-axis hip simulator, and to understand the contribution of component design and loading and motion parameters. Method. A method for creating rim fracture in vitro was developed to evaluate implant design features and polyethylene liner materials. Liners were secured into acetabular shells, fixtured in resin mounted at a 55° (in vitro; 65° in vivo) inclination to ensure high load/stress was at the area of interest. Ranges of kinematic and maximum applied load profiles were investigated (parameters summarized in Table 1). Testing was conducted on an AMTI 12-station hip simulator for 0.25–1.0 million cycles or until fracture (lubrication maintained with lithium grease). At completion, liners were cleaned and examined for crack propagation/fracture. Inspection of the impingement site on the opposite rim was also analyzed. Additional assessments included liner disassociation/rock out, deformation of characteristics such as anti-rotation devices and microscopic inspection of high-stress regions. Results/Discussion. This study summarizes testing on hip wear simulators to create rim cracking/fracture in vitro. Results indicate that cup/stem angles must be controlled to ensure contact areas are reproducible, and therefore on a multi-station machine (i.e. AMTI), only one test station can/should be run at a time to ensure repeatability. Component design characteristics, such as head size and liner material had a marked effect on the results. It is noted that the kinematics, load and cycle count must be adjusted per the component design to create rim fracture in the high-risk region. Finite element analysis modeling may help identify the high-stress region(s) prior to simulator testing. Deformation of the rim opposite the fracture region (rim/taper impingement) was observed due to the high angle of inclination combined with the abduction/adduction angles. Conclusion. Rim fractures similar in location and morphology to those seen in retrieval studies can be created using a multi-axis hip simulator in vitro. It is noted, however, that the factors presented in this study must be considered and controlled to assure a repeatable method, as the differences in component design investigated and simulator inputs were seen significantly affect the outcome. This study was limited and did not attempt to reproduce rim damage seen in all implant retrievals (e.g. lateralized liners, high offset implants, etc.). These design inputs are being investigated and will be reported upon in the future. For any figures or tables, please contact the authors directly


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_22 | Pages 98 - 98
1 May 2013
Engh G
Full Access

Implant wear and osteolysis have been a major cause of failure of total knee implants. In the mid-1990s, manufacturers recognised the impact of oxidation on wear with implants sterilised by gamma irradiation in air and changed their methods of sterilisation. This has resulted in a dramatic reduction in wear. In retrieval studies, non-irradiated polyethylene has not shown the fatigue type of failure associated with oxidation. The percentage of revisions done at the Anderson Clinic for polyethylene wear for osteolysis has dropped from 44% in the late 1990s to 4% in the past decade. With the continued use of polyethylene free of oxidation, we anticipate a further reduction in the need for revision surgery secondary to wear and osteolysis. Highly cross-linked polyethylene was introduced to further reduce wear with total knee implants. Higher levels of irradiation used increases crosslinking in the polyethylene but the material strength is reduced. Although volumetric wear is reduced, the wear particles are smaller in size and potentially more bio-reactive. The Manufacturer And User Device Experience Database (MAUDE) reports describe early implant breakage and osteolysis of highly cross-linked polyethylene inserts. Implants that were highly crosslinked with quenched free radicals demonstrate increased levels of oxidation after retrieval unlike, never implanted components “off-the-shelf”. Backside wear remains a concern as non-modular implants have better long-term survivorship compared to their modular counterparts. These reports should temper enthusiasm for using highly cross-linked material in knees or modular tibial components until longer term clinical and retrieval studies have been completed


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_2 | Pages 64 - 64
1 Feb 2020
Darwish O Grover H McHugh D Carlson E Dacus E Van Citters D
Full Access

Introduction. Large-scale retrieval studies have shown backside wear in tibial inserts is dependent on the surface roughness of the tibial tray. Manufacturers acknowledge this design factor and have responded with the marketing of mirror-finished trays, which are clinically proven to have lower wear rates in comparison to historically “rough” (e.g. grit blasted) trays. While the relationship between wear and surface roughness has been explored in other polymer applications, the quantitative dependence of backside wear rate on quantitative surface finish has not yet been established for modern devices. The present study evaluates small-excursion polyethylene wear on pucks of a variety of surface roughnesses. The objective of this study is to determine where inflection points exist in the relationship between surface roughness and wear rate. Materials and Methods. An AMTI Orthopod, 6-station pin on disk tribotest was designed to mimic worst-case in vivo backside wear conditions based on published retrieval analyses. Titanium (Ti6Al4V) pucks with six different surface roughness preparations (Sa ranges from 0.06 um to 1.06 um) were characterized with white light profilometry. Never implanted polyethylene tibial inserts (never irradiated, EtO sterilized) were machined into 6 mm diameter cylindrical pins. Fretting-type motion was conducted in a 2mm square pattern at 2Hz under 100 N constant force in 25% bovine serum lubricant for 1.35 million cycles in triplicate. Mass measurements were taken every 225 thousand cycles. Results. Over the range of surface roughness studied (Sa = 0.06 – 1.06 µm), wear rate grew logistically. The wear rate for highly polished titanium (Sa = 0.06 µm) was not statistically different from less-polished titanium with Sa of 0.14 µm (p > 0.1). Titanium pucks having the highest surface roughness (Sa > 0.5µm), removed material significantly faster than those with roughness less than 0.3µm. The results of these tests suggest that Ti trays with Sa less than 0.15µm may yield equivalent clinical backside wear results, while pucks with Sa greater than 0.15µm begin to have increased wear rates that may be clinically significant. The two pucks with Sa greater than 0.5 µm yielded wear rates failing to be statistically differentiable (p = 0.059), corresponding with the flattening of the logistic curve. Discussion. These results suggest that baseplates with Sa less than 0.15 µm may ultimately yield clinically equivalent outcomes. The wear rate curve changes slope between Sa 0.14 and 0.22 µm and continues to increase across the range of surface roughnesses studied. The wear rates on rough pucks (Sa > 0.5 µm) showed high variation, reducing the ability to distinguish the two statistically (p = 0.059). Further study will better distinguish wear properties at higher surface roughnesses. Conclusion. These findings demonstrate that there may be a range of finishes between a mirror polish and grit blast that may produce clinically equivalent wear rates. This work provides justification for further study into the relationship between backside wear, baseplate tray roughness, and material choices. For any figures or tables, please contact authors directly


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_8 | Pages 39 - 39
1 May 2019
Sharkey P
Full Access

Bone marrow lesions (BMLs), identified by MRI, are defined as a region of cancellous bone with high T2 and low T1 signal intensity. They are associated with various knee pathologies including spontaneous osteonecrosis of the knee (SPONK), AVN, trauma (fracture and bone contusion), following arthroscopy and secondary to overuse (i.e., after completing a marathon). They also are commonly recognised in patients with knee OA (referred to as OA-BMLs) and their substantial importance in knee OA pathogenesis has been recently identified. Depending upon the etiology (i.e., bone contusion, overuse, etc.) of the BML, these lesions can be “acute” in nature and spontaneously resolve over time. However, OA-BMLs generally are considered to be a “chronic” condition and overtime they have been shown to often persist and increase in size. Retrieval studies following THA and TKA, in patients with a preoperatively identified BML, have greatly expanded our understanding of OA – BMLs and these investigations consistently identify the critical role subchondral bone plays in OA disease progression. Histologic, histochemical and mechanical studies of OA-BMLs demonstrate significant alternations from healthy subchondral bone. The effected bone contains regions where fibrous tissue has replaced cancellous bone, microfractures are present and vascularity is increased. There is an increased concentration of inflammatory mediators and the bone structural integrity is compromised. Standard radiographs of the knee correlate only modestly with patient symptoms, but conversely, the presence of an OA-BML is an extremely strong predictor of pain and knee joint dysfunction. Felson et al. reported this relationship. In a large group of patients with painful knee OA, 77.5% of these patients had a BML. Both the presence and size of the BML, following multiregression analysis, were significant predictors of knee pain severity. Additionally, likely secondary to inadequate subchondral bone plate support, the presence of an OA-BML is associated with subchondral bone attrition (SBA). SBA leads to collapse of the subchondral bone plate and progressive joint deformity. Based on the association of an OA-BML with pain, joint dysfunction and deformity, it is not surprising that these lesions are prognostic for patients seeking knee arthroplasty. Several studies have demonstrated that the odds of knee arthroplasty performance are substantially higher in patents with an OA-BML. This enhanced understanding of knee OA pathogenesis and the critical role of subchondral bone in this process creates an opportunity for development of novel prevention and treatment strategies. Prevention of OA-BML formation has been considered and pharmacologic interventions proposed. Recent studies have reported positive results for treatment with bisphosphonates in patients with knee OA. One study reported significant pain and OA-BML size reduction in patients receiving a bisphosphonate for 4 months. A strategy aimed at repairing and/or enhancing subchondral bone compromised by an OA-BML has also been proposed. Early results reported with this intervention are encouraging, but preliminary


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_5 | Pages 141 - 141
1 Apr 2019
Pryce G Sabu B Al-Hajjar M Wilcox R Thompson J Board T Williams S
Full Access

Introduction. Impingement of total hip arthroplasties (THAs) has been reported to cause rim damage of polyethylene liners, and in some instances has led to dislocation and/or mechanical failure of liner locking mechanisms in modular designs. Elevated rim liners are used to improve stability and reduce the risk of dislocation, however they restrict the possible range of motion of the joint, and retrieval studies have found impingement related damage on lipped liners. The aim of this study was to develop a tool for assessing the occurrence of impingement under different activities, and use it to evaluate the effects a lipped liner and position of the lip has on the impingement-free range of motion. MATERIALS & METHOD. A geometrical model incorporated a hemi-pelvis and femur geometries of one individual with a THA (DePuy Pinnacle® acetabular cup with neutral and lipped liners; size 12 Corail® stem with 32mm diameter head) was created in SOLIDWORKS (Dassault Systèmes). Joint motions were taken from kinematic data of activities of daily living that were associated with dislocation of THA, such as stooping to pick an object off the floor and rolling over. The femoral component was positioned to conform within the geometry of the femur, and the acetabular component was orientated in a clinically acceptable position (45° inclination and 20° anteversion). Variation in orientation of the apex of the lip was investigated by rotating about the acetabular axes from the superior (0°) in increments of 45° (0°−315°), and compared to a neutral liner. Results. When a lipped liner was used, implant (neck on acetabular rim) impingement was found to occur when performing sit-to-stand from a normal seat, leg cross and pivot, whereas no impingement occurred with a neutral liner. The presence and position of the lip reduced the impingement-free range of motion, compared to the neutral liner. Impingement occurred when the lip was positioned superiorly and anteriorly, when performing most of the activities that were prone to posterior dislocation, and posteriorly, posterior-superiorly and posterior-inferiorly when performing activities prone to anterior dislocation. During sit-to-stand from a normal seat no impingement occurred when a lipped or neutral liner was used. Bone impingement was observed when the performing the roll activity with both lipped and neutral liners. DISCUSSION. Impingement was observed more with lipped liners compared to neutral liners, this agrees with the findings of some clinical studies. The results indicate that the positioning of the lip influences the possible range of impingement-free motion. Considering this and the improved joint stability of using a lipped liner, a balance is required to achieve an optimal range of motion without increasing the risk of dislocation. This tool could potentially to be used to optimise lipped liner design and position, and could assist with the liner selection for patients based on their activities


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_5 | Pages 85 - 85
1 Apr 2019
Dall'Ava L Hothi H Henckel J Cerquiglini A Laura AD Shearing P Hart A
Full Access

Introduction. The use of Additive Manufacturing (AM) to 3D print titanium implants is becoming widespread in orthopaedics, particularly in producing cementless porous acetabular components that are either custom-made or off-the-shelf; the primary design rationale for this is enhanced bony fixation by matching the porosity of bone. Analysis of these retrieved components can help us understand their performance; in this study we introduce a non-destructive method of the retrieval analysis of 3D printed implants. Material and methods. We examined 11 retrieved 3D printed acetabular cups divided into two groups: “custom-made” (n = 4) and “off-the-shelf” (n = 7). A macroscopic visual analysis was initially performed to measure the area of tissue ongrowth. High resolution imaging of each component was captured using a micro-CT scanner and 3D reconstructed models were used to assess clinically relevant morphometric features of the porous structure: porosity, porous structure thickness, pore size and strut thickness. Optical microscopy was also used as a comparison with microCT results. Surface morphology and elemental composition of the implants were investigated with a Scanning Electron Microscope (SEM) coupled with an Energy Dispersive X-ray Spectroscope (EDS). Statistical analysis was performed to evaluate possible differences between the two groups. Results. We found a spread of tissue coverage, median of 81% (23 – 95), with a trend with time in situ. Custom implants showed a higher spread of porosity, with median value of 74.11% (67.94 – 81.01), due to the presence of differently designed porous areas. Off-the-shelf cups had median porosity of 72.49% (66.67 – 73.07), but there was no significant difference between the two groups (p = 0.164). There was a significant difference in the thickness of the porous structure of the two groups, which were 3.918 mm (3.688 – 4.102) and 1.289 mm (1.235 – 1.364), respectively (p = 0.006). SEM output showed specific morphological features of 3D printed object; EDS analysis suggested that no chemical modifications occurred in vivo, with elemental ratios (Ti/Al = 14; Ti/V = 21; Al/V = 1.51) comparable to previously published results. Conclusion. This is one of the first retrieval studies of 3D printed orthopaedic implants. We introduced a method for the investigation of these components and micro-CT scanning enabled the non-destructive assessment of the porous structure. This work represents the first step in understanding the performance of 3D printed implants


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_10 | Pages 78 - 78
1 Jun 2018
Gross A
Full Access

An osteochondral defect greater than 3cm in diameter and 1cm in depth is best managed by an osteochondral allograft. If there is an associated knee deformity, then an osteotomy was performed. In our series of osteochondral allografts for large post-traumatic knee defects, realignment osteotomy is performed about 60% of the time in order to off load the transplant. To correct varus we realign the proximal tibia with an opening wedge osteotomy. To correct valgus, we realign the distal femur with a closing wedge osteotomy. Our results with osteochondral allografts for the large osteochondral defects of the knee both femur and tibia, have been excellent in 85% of patients at an average follow-up of 10 years. The Kaplan-Meier survivorship at 15 years is 72%. At an average follow-up of 22 years in 58 patients with distal femoral osteochondral allograft, 13 have been revised (22%). The 15-year survivorship was 84%. Retrieval studies of 24 fresh osteochondral grafts obtained at graft revision or conversion to total knee replacement at an average of 12 years (5 – 25) revealed the following. In the areas where the graft was still intact, the cartilage was of normal thickness and architecture. Matrix staining was normal except in the superficial and upper mid-zones. Chondrocytes were mostly viable but there was chondrocyte clusters and loss of chondrocyte polarity. Host bone had extended to the calcified cartilage but variable remnants of dead bone surrounded by live bone persisted. With a stable osseous base the hyaline cartilage portion of the graft can survive for up to 25 years


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_5 | Pages 17 - 17
1 Apr 2019
Bhalekar R Smith S Joyce T
Full Access

Introduction. Metal-on-polyethylene (MoP) is the most commonly used bearing couple in total hip replacements (THRs). Retrieval studies (Cooper et al, 2012, JBJS, Lindgren et al, 2011, JBJS) report adverse reactions to metal debris (ARMD) due to debris produced from the taper-trunnion junction of the modular MoP THRs. A recent retrospective observational study (Matharu et al, 2016, BMC Musc Dis) showed that the risk of ARMD revision surgery is increasing in MoP THRs. To the authors' best knowledge, no hip simulator tests have investigated material loss from the taper-trunnion junction of contemporary MoP THRs. Methods. A 6-station anatomical hip joint simulator was used to investigate material loss at the articulating and taper-trunnion surfaces of 32mm diameter metal-on-cross-linked polyethylene (MoXLPE) joints for 5 million cycles (Mc) with a sixth joint serving as a dynamically loaded soak control. Commercially available cobalt-chromium-molybdenum (CoCrMo) femoral heads articulating against XLPE acetabular liners (7.5Mrad) were used with a diluted new-born-calf-serum lubricant. Each CoCrMo femoral head was mounted on a 12/14 titanium alloy trunnion. The test was stopped every 0.5Mc, components were cleaned and gravimetric measurements performed following ISO 14242-2 and the lubricant was changed. Weight loss (mg) obtained from gravimetric measurements was converted into volume loss (mm. 3. ) and wear rates were calculated from the slopes of the linear regression lines in the volumetric loss versus number of cycles plot for heads, liners and trunnions. Additionally, volumetric measurements of the head tapers were obtained using a coordinate measuring machine (CMM) post-test. The surface roughness (Sa) of all heads and liners was measured pre and post-test. At the end of the test, the femoral heads were cut and the roughness of the worn and unworn area was measured. Statistical analysis was performed using a paired-t-test (for roughness measurements) and an independent sample t-test (for wear rates). Results and Discussion. The mean volumetric wear rates for CoCrMo heads, XLPE liners and titanium trunnions were 0.019, 2.74 and 0.013 mm. 3. /Mc respectively. There was a statistically significant decrease (p<0.001) in the Sa of the liners post-test. This is in contrast to the femoral heads roughness in which no change was observed (p = 0.338). This head roughness result matches with a previous MoP in vitro test (Saikko, 2005, IMechE-H). The Sa of the head tapers on the worn area showed a statistically significant increase (p<0.001) compared with unworn, with an associated removal of the original machining marks. The mean volumetric wear rate of the head tapers obtained using the CMM (0.028 ± 0.016 mm. 3. /Mc) was not statistically different (p=0.435) to the mean volumetric wear rate obtained gravimetrically (0.019 ± 0.020 mm. 3. /Mc) for the femoral heads. Therefore, wear of the heads arose mainly from the internal taper. The mean wear rates of the CoCrMo taper and titanium trunnion are in agreement with a MoP explant study (Kocagoz et al, 2016, CORR). Conclusion. This is the first long-term hip simulator study to report wear generated from the taper-trunnion junction of MoP hips