Advertisement for orthosearch.org.uk
Results 1 - 20 of 486
Results per page:
Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_16 | Pages 30 - 30
17 Nov 2023
Swain L Holt C Williams D
Full Access

Abstract. Objectives. Investigate Magnetic Resonance Imaging (MRI) as an alternative to Computerised Tomography (CT) when calculating kinematics using Biplane Video X-ray (BVX) by quantifying the accuracy of a combined MRI-BVX methodology by comparing with results from a gold-standard bead-based method. Methods. Written informed consent was given by one participant who had four tantalum beads implanted into their distal femur and proximal tibia from a previous study. Three-dimensional (3D) models of the femur and tibia were segmented (Simpleware Scan IP, Synopsis) from an MRI scan (Magnetom 3T Prisma, Siemens). Anatomical Coordinate Systems (ACS) were applied to the bone models using automated algorithms. 1. The beads were segmented from a previous CT and co-registered with the MRI bone models to calculate their positions. BVX (60 FPS, 1.25 ms pulse width) was recorded whilst the participant performed a lunge. The beads were tracked, and the ACS position of the femur and tibia were calculated at each frame (DSX Suite, C-Motion Inc.). The beads were digitally removed from the X-rays (MATLAB, MathWorks) allowing for blinded image-registration of the MRI models to the radiographs. The mean difference and standard deviation (STD) between bead-generated and image-registered bone poses were calculated for all degrees of freedom (DOF) for both bones. Using the principles defined by Grood and Suntay. 2. , 6 DOF kinematics of the tibiofemoral joint were calculated (MATLAB, MathWorks). The mean difference and STD between these two sets of kinematics were calculated. Results. The absolute mean femur and tibia ACS position differences (Table 1) between the bead and image-registered poses were found to be within 0.75mm for XYZ, with all STD within ±0.5mm. Mean rotation differences for both bones were found to be within 0.2º for XYZ (Table 1). The absolute mean tibiofemoral joint translations (Table 1) were found to be within ±0.7mm for all DOF, with the smallest absolute mean in compression-distraction. The absolute mean tibiofemoral rotations were found to be within 0.25º for all DOF (Table 1), with the smallest mean was found in abduction-adduction. The largest mean and STD were found in internal-external rotation due to the angle of the X-rays relative to the joint movement, increasing the difficulty of manual image registration in that plane. Conclusion. The combined MRI-BVX method produced bone pose and tibiofemoral kinematics accuracy similar to previous CT results. 3. This allows for confidence in future results, especially in clinical applications where high accuracy is needed to understand the effects of disease and the efficacy of surgical interventions. Acknowledgements: This research was supported by the Engineering and Physical Sciences Research Council (EPSRC) doctoral training grant (EP/T517951/1). Declaration of Interest. (b) declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research reported:I declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research project


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_14 | Pages 103 - 103
1 Nov 2018
Mulliez M Grupp T
Full Access

Crosslinking has been already used for about 80 years to enhance the longevity of polyethylene cables. The polymer alteration has been achieved with peroxide, silane or irradiation. The medical devices industry discovered the benefit of this technology for its tribological applications like hip or knee bearings in the 2000s as crosslinking improves considerably the abrasion resistance of the material. The more current methods used are Gamma and Beta irradiation. On the basis of economical (rising prices of Cobalt), environmental (the radioactive source can not be turned off), technological (low dose rate) drawbacks for Gamma respectively low penetration for Beta irradiation we decided to investigate an alternative technology: the X-Ray irradiation, which provides a homogeneous crosslinking in a relatively short time. We analyzed the wear, mechanical, thermal, oxidative and network properties of two vitamin E doped UHMWPE: first crosslinked with E-Beam, second with X-Ray. There wasn't any significant difference between the X-Ray and the E-Beam crosslinked material


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_2 | Pages 6 - 6
2 Jan 2024
Orellana F Grassi A Wahl P Nuss K Neels A Zaffagnini S Parrilli A
Full Access

A comprehensive understanding of the self-repair abilities of menisci and their overall function in the knee joint requires three-dimensional information. However, previous investigations of the meniscal blood supply have been limited to two-dimensional imaging methods, which fail to accurately capture tissue complexity. In this study, micro-CT was used to analyse the 3D microvascular structure of the meniscus, providing a detailed visualization and precise quantification of the vascular network.

A contrast agent (μAngiofil®) was injected directly into the femoral artery of cadaver legs to provide the proper contrast enhancement. First, the entire knee joint was analysed with micro-CT, then to increase the applicable resolution the lateral and medial menisci were excised and investigated with a maximum resolution of up to 4 μm. The resulting micro-CT datasets were analysed both qualitatively and quantitatively. Key parameters of the vascular network, such as vascular volume fraction, vessel radius, vessel length density, and tortuosity, were separately determined for the lateral and medial meniscus, and their four circumferential zones defined by Cooper.

In accordance with previous literature, the quantitative micro-CT data confirm a decrease in vascular volume fraction along the meniscal zones. The highest concentration of blood vessels was measured in the meniscocapsular region 0, which is characterized by vascular segments with a significantly larger average radius. Furthermore, the highest vessel length density observed in zone 0 suggests a more rapid delivery of oxygen and nutrients compared to other regions. Vascular tortuosity was detected in all circumferential regions, indicating the occurrence of vascular remodelling in all tissue areas.

In conclusion, micro-CT is a non-invasive imaging technique that allows for the visualization of the internal structure of an object in three dimensions. These advanced 3D vascular analyses have the potential to establish new surgical approaches that rely on the healing potential of specific areas of the meniscus.

Acknowledgements: The authors acknowledge R. Hlushchuk, S. Halm, and O. Khoma from the University of Bern for their help with contrast agent perfusions.


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_2 | Pages 17 - 17
1 Jan 2019
Jalal M Simpson H Wallace R
Full Access

Appropriate in vivo models can be used to understand atrophic non-union pathophysiology. In these models, X-ray assessment is essential and a reliable good quality images are vital in order to detect any hidden callus formation or deficiency. However, the radiographic results are often variable and highly dependent on rotation and positioning from the detector/film. Therefore, standardised A-P and lateral x-ray views are essential for providing a full radiological picture and for reliably assessing the degree of fracture union. We established and evaluated a method for standardised imaging of the lower limb and for reliably obtaining two perpendicular views (e.g. true A-P and true lateral views). The normal position of fibula in murine models is posterolateral to the tibia, therefore, a proper technique must show fibula in both views. In order to obtain the correct position, the knee joint and ankle joints were flexed to 90 degrees and the foot was placed in a perpendicular direction with the x-ray film. To achieve this, a leg holder was made and used to hold the foot and the knee while the body was in the supine position. Lateral views were obtained by putting the foot parallel to the x-ray film. Adult Wister rat cadavers were used and serial x-rays were taken. A-P view in supine position showed the upper part of the fibula clearly, however, there was an unavoidable degree of external rotation in the whole lower limb, and the lower part of the fibula appeared behind the tibia. Therefore, a true A-P view whilst the body was in the supine position was difficult. To overcome this, a P-A view of the leg was performed with the body prone position, this allowed both upper and lower parts of the fibula to appear clearly in both views. This method provides two true perpendicular views (P-A and lateral) and helped to optimise radiological assessment


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_1 | Pages 50 - 50
1 Jan 2017
Rutherford M Hill J Beverland D Lennon A Dunne N
Full Access

Anterior-posterior (AP) x-rays are routinely taken following total hip replacement to assess placement and orientation of implanted components. Pelvic orientation at the time of an AP x-ray can influence projected implant orientation. 1. However, the extent of pelvic orientation varies between patients. 2. Without compensation for patient specific pelvic orientation, misleading measurements for implant orientation may be obtained. These measurements are used as indicators for post-operative dislocation stability and range of motion. Errors in which could result in differences between expectations and the true outcome achieved. The aim of this research was to develop a tool that could be utilised to determine pelvic orientation from an AP x-ray. An algorithm based on comparing projections of a statistical shape model of the pelvis (n=20) with the target X-ray was developed in MATLAB. For each iteration, the average shape was adjusted, rotated (to account for patient-specific pelvic orientation), projected onto a 2D plane, and the simulated outline determined. With respect to rotation, the pelvis was allowed to rotate about its transverse axis (pelvic flexion/extension) and anterior-posterior axis (pelvic adduction/abduction). Minimum root mean square error between the outline of the pelvis from the X-ray and the projected shape model outline was used to select final values for flexion and adduction. To test the algorithm, virtual X-rays (n=6) of different pelvis in known orientations were created using the algorithm described by Freud et al. 3. The true pelvic orientation for each case was randomly generated. Angular error was defined as the difference between the true pelvic orientation and that selected by the algorithm. Initial testing has exhibited similar accuracy in determining true pelvic flexion (x̄error = 2.74°, σerror=±2.21°) and true pelvic adduction (x̄error = 2.38°, σerror=±1.76°). For both pelvic flexion and adduction the maximum angular error observed was 5.62°. The minimum angular error for pelvic flexion was 0.37°, whilst for pelvic adduction it was 1.08°. Although the algorithm is still under development, the low mean, maximum, and standard deviations of error from initial testing indicate the approach is promising. Ongoing work will involve the use of additional landmarks for registration and training shapes to improve the shape model. This tool will allow surgeons to more accurately determine true acetabular orientation relative to the pelvis without the use of additional x-ray views or CT scans. In turn, this will help improve diagnoses of post-operative range of motion and dislocation stability


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_1 | Pages 64 - 64
1 Jan 2017
Somodi S Andersen K Ebskov L Rasmusen P Muharemovic O Penny J
Full Access

The CCI mobile bearing ankle implant used at our orthopedic department 2010–2013, was abandoned due to failures and findings of bone loss at revision. The aim of this study was to a) Determine our true revision rate, b) Investigate accuracy of measuring prevalence, size and location of periprosthetic bone cysts through X-ray and CT and c) Relate these findings to implant alignment and patient reported outcome measurements (PROMs). 51 primary surgeries were performed, prior to this study 8 had been revised. Out of 43 un-revised patients, 36 were enrolled and underwent evaluation with metal artefact reduction CT-scans and conventional X-ray. They filled out 3 PROMs; SEFAS, SF-12, EQ-5D. Cyst volume larger than 0.1 ml was measured using VITREA volume tools for CT-scans and calculation of spherical volume for X-rays; using AP- and lateral projections. Location of lesions was recorded, according to their position relative to the implant. Medial-/lateral- and anterior-/posterior tilt of the implant parts was measured using IMPAX built in measuring tools, applied to AP- and lateral X-ray projection. The relation between lesions location and alignment of components was analyzed by logistic regression. Bias and ICC estimation between CT and X-ray was analyzed by mixed effect model. Log transformation was used to fit the normal distribution assumption. PROMs association to osteolytic volume was analyzed by linear- and logistic regression. P-values of 0.05 were considered statistically significant. Finding large osteolytic lesions caused 4 additional patients to undergo revision and 7 are being monitored due to high risk of failure. Of the original 51 implants 14 have been revised. 8 cases because of osteolytic lesions and aseptic loosening (true revisions w. exchange of components or bone transplants), 3 periprosthetic fractures (2 non-traumatic fractures) and 3 cases of exostosis. The 3- and 5 year revision rate was 14% and 16% for true revisions and 17% and 27% overall. Cystic lesions were found in 81% of participants. Total cyst-volume was on average 13% larger on X-ray, however this difference was not significant (p = 0.55), with intraclass correlation being 0.66. Total cystic volume was not significantly related to PROM-scores (P 0.16–0.5). Location of cysts showed association with alignment of components (P 0.02–0.08). Mean tibia component anterior tilt was 89 degrees (SD 4). Mean medial tilt was 91 degrees (SD 3) for the tibial and 90 degrees (SD 4) for the talar component. The implant investigated performs below standard, compared to public registries. 1, 2. that report overall 5 year revision rates at 5 – 6.5%. We obtained larger measurements from X-rays than CT, unlike previous studies comparing these modalities. Cysts were common and large. Correlation between lesion location and alignment of implant, with valgus and anterior tilt of components causing more lesions in adjacent zones, may suggest a link between implant failure and alignment of components


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XI | Pages 30 - 30
1 Apr 2012
Gillespie J
Full Access

The Ionising Radiation (Medical Exposure) Regulations 2000 is concerned with: “the making of safety measures in regard to radioactive substances and the emission of ionising radiation”. Responsibility is placed upon the Practitioner, Operator, Referrer and employer. A clinical evaluation of the outcome of each medical exposure must be recorded.” In Ayr Hospital Radiologist report A&E radiographs but not those in fracture clinic unless a specific request was made. Therefore the Surgeon/Trainee must record their interpretation. An audit was completed to review the rate of documentation of the interpretation of radiographs in the clinical records of consecutive patients attending fracture clinics Notes and radiographs were reviewed from 6 separate fracture clinics. 106 patients attended during the time period and were seen by 9 different surgeons; 5 consultants and 4 training grade surgeons. 46 out of 106 patients were x-rayed and interpretation recorded in 38 cases. No interpretation was found in 8 cases, giving an overall compliance of 82.6% with no difference between different grades of surgeon: Consultants 79.2% (19/24); Trainees 86.4% (19/22). These finding were presented at a departmental audit meeting and the audit loop was then closed by a second period of audit with an improvement in the consultants compliance to 100% (22/22) p=0.05 and no significant change in the trainees performance 75% (18/24)


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_11 | Pages 46 - 46
1 Jul 2014
Moretti V Thormeyer J Chmell S
Full Access

Summary Statement. The circle theorem is a simple and effective measurement tool for estimating acetabular version after total hip arthroplasty. Introduction. Position of the acetabular cup is a major factor in the range of motion and risk of dislocation after total hip arthroplasty. However, there is no well established technique for accurately and easily estimating acetabular cup version intraoperatively or postoperatively. The objective of this study was to evaluate a recently proposed method for measuring acetabular cup version on a single plain radiograph of the hip, which is based on one of the circle theorems in basic geometry. Patients & Methods. Radiographic version is defined as the angle between the cup face plane and a plane perpendicular to the body coronal plane. Using this definition, a metal hemispheric cup was placed in a pelvic sawbone model at a series of known angles of radiographic version (based on direct goniometer measurement). Cup inclination, pelvic tilt, and pelvic rotation were held constant for all version angles. A single antero-posterior hip radiograph was then obtained and reviewed for each version angle. The acetabular cup version was next estimated by using a compass and protractor in accordance with the circle theorem. Statistical analysis was performed utilizing Student's t-test with an alpha=0.05. Results. 20 known angles of version were evaluated: 11 anteverted angles, 7 retroverted angles, and 2 neutral angles. Mean difference between the circle theorem estimate and the true version was 0.90 degrees (range −2 to 3). There was no statistically significant difference between the circle theorem's estimates and the true version (p=0.84). Similarly, there was no significant difference between the anteverted estimates (mean difference 0.91) and the retroverted estimates (mean difference 0.86)(p=0.95). Discussion/Conclusion. Methods of measuring component position are essential for evaluating surgical technique, monitoring cup stability, and maximizing patient outcomes. Radiographic version of an acetabular cup can be estimated by using the circle theorem. This theorem can provide a quick, easy, and accurate estimate of version with the use of simple instruments (compass and protractor) and readily available plain radiographs


The Journal of Bone & Joint Surgery British Volume
Vol. 81-B, Issue 1 | Pages 167 - 170
1 Jan 1999
Reading AD McCaskie AW Gregg PJ

Radiological assessment of the cement mantle is used routinely to determine the outcome of total hip replacement. We performed a simulated replacement arthroplasty on cadaver femora and took standard postoperative radiographs. The femora were then sectioned into 7 mm slices starting at the calcar, and high-resolution faxitron radiographs were taken of these sections. Analysis of the faxitron images showed that defects in the cement mantle were observed up to 100 times more frequently than on the standard films. We therefore encourage the search for a better technique in assessing the cement mantle


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXVI | Pages 107 - 107
1 Aug 2012
Downing M Ashcroft G
Full Access

The Adora RSA (NRT, Denmark) is a new stereo X-ray system custom built for Radeostereometry. Images are acquired using CXDI50C digital detectors (Canon, Netherlands). Analysis software was written locally to detect both Tantalum markers and the spherical head of the hip implant, and for RSA reconstruction and kinematic analysis. To assess geometric reproducibility, a planar grid phantom was constructed with 1400 2mm markers in a grid pattern over a 350 by 430 mm glass plate. Additionally 25 tantalum markers of each diameter 1.0, 0.8 and 0.5 mm were added within a 120mm square of the grid. The phantom was imaged repeatedly with translation and rotation over the detector. For small phantom movements of up to 10mm over the detector, very small measurement errors were observed of median 2 microns, maximum 6 microns. For larger movements, the errors increased to median 5 microns and maximum 50 microns. Errors also increased with decreasing exposure. For RSA validation, an acetabular PE cup was cemented to a Sawbone pelvis. Tantalum markers were inserted into the pelvis (10), cement (4), and cup (10). A 28mm metal head was fixed to the cup. The phantom was imaged repeatedly without movement, then moved in translation (up to 100 mm) and rotation (all axes, up to 45 degrees), and with full X-ray repositioning. Precision errors were calculated on the assumption of no relative movement between components. Results are given for repositioning movement categorised as none, small (less than 25mm or 15 degrees), medium (less than 50mm or 30 degrees), and large. For the head, the mean total point motion error was 4, 10, 14 and 24 micrometers. Mean error of segment fitting was less than 60 microns with no markers rejected from the composite segment of 24 markers. Cup migration total translation error was 10, 16, 24, and 35 micrometers with rotation errors less than 0.05 degrees. Observed RSA errors were small, increasing with phantom movement. This is consistent with the geometric uniformity tests. X-ray exposure and tissue thickness were also identified as factors in precision. We conclude this system has excellent precision for Radiostereometry


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_16 | Pages 74 - 74
1 Dec 2021
Chen H Khong J Huang J
Full Access

Abstract

Objectives

Direct ink writing (DIW) has gained considerable attention in production of personalized medical implants. Laponite nanoclay is added in polycaprolactone (PCL) to improve printability and bioactivity for bone implants. The 3D structure of DIW printed PCL/Laponite products was qualitatively evaluated using micro-CT.

Methods

PCL/LP composite ink was formulated by dissolving 50% m/v PCL in dichloromethane with Laponite loading of up to 30%. The rheological properties of the inks were determined using Discovery HR-2 rheometer. A custom-made direct ink writer was used to fabricate both porous scaffold with 0°/90° lay-down pattern, and solid dumbbell-shaped specimens (ASTM D638 Type IV) with two printing orientations, 0° and 90° to the loading direction in tensile testing. The 3D structure of specimens was assessed using a micro-CT. Independent t-tests were performed with significance level at p<0.05.


Bone & Joint Research
Vol. 5, Issue 11 | Pages 538 - 543
1 Nov 2016
Weeks BK Hirsch R Nogueira RC Beck BR

Objectives. The aim of the current study was to assess whether calcaneal broadband ultrasound attenuation (BUA) can predict whole body and regional dual-energy x-ray absorptiometry (DXA)-derived bone mass in healthy, Australian children and adolescents at different stages of maturity. Methods. A total of 389 boys and girls across a wide age range (four to 18 years) volunteered to participate. The estimated age of peak height velocity (APHV) was used to classify children into pre-, peri-, and post-APHV groups. BUA was measured at the non-dominant heel with quantitative ultrasonometry (QUS) (Lunar Achilles Insight, GE), while bone mineral density (BMD) and bone mineral content (BMC) were examined at the femoral neck, lumbar spine and whole body (DXA, XR-800, Norland). Associations between BUA and DXA-derived measures were examined with Pearson correlations and linear regression. Participants were additionally ranked in quartiles for QUS and DXA measures in order to determine agreement in rankings. Results. For the whole sample, BUA predicted 29% of the study population variance in whole body BMC and BMD, 23% to 24% of the study population variance in lumbar spine BMC and BMD, and 21% to 24% of the variance in femoral neck BMC and BMD (p < 0.001). BUA predictions were strongest for the most mature participants (pre-APHV R. 2. = 0.03 to 0.19; peri-APHV R. 2. = 0.05 to 0.17; post-APHV R. 2. = 0.18 to 0.28) and marginally stronger for girls (R. 2. = 0.25-0.32, p < 0.001) than for boys (R. 2. = 0.21-0.27, p < 0.001). Agreement in quartile rankings between QUS and DXA measures of bone mass was generally poor (27.3% to 38.2%). Conclusion. Calcaneal BUA has a weak to moderate relationship with DXA measurements of bone mass in children, and has a tendency to misclassify children on the basis of quartile rankings. Cite this article: B. K. Weeks, R. Hirsch, R. C. Nogueira, B. R. Beck. Is calcaneal broadband ultrasound attenuation a valid index of dual-energy x-ray absorptiometry-derived bone mass in children? Bone Joint Res 2016;5:538–543. DOI: 10.1302/2046-3758.511.BJR-2016-0116.R1


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_11 | Pages 47 - 47
1 Jul 2014
Trisolino G Strazzari A Stagni C Tedesco G Albisinni U Martucci E Dallari D
Full Access

Summary Statement. Pincer deformities are involved in the genesis of femoro-acetabular impingement (FAI). Radiographic patterns suggestive of pincer deformities are common among general population. Prevalence of the pincer deformities among general population may be overestimated if only plain radiographs are considered. Background. Pincer deformities (coxa profunda, protrusio acetabuli, global retroversion, isolated cranial over-coverage) have been advocated as a cause of femoro-acetabular impingement (FAI) and early hip osteoarthritis (OA). Different radiographic patterns may advocate the presence of a pincer deformity. The prevalence of these radiographic patterns among general adult population, as their role in early hip OA, is poorly defined. Methods. From a database of 40.351 pelvic radiograms and CT collected at our institution between 2005 and 2010, we selected 118 caucasian individuals (56 females, 62 males), aged between 15 and 60 years, who underwent both plain radiographs and CT of the pelvis. A series of exclusion criteria were strictly applied to achieve a sample of adult general population as more representative as possible. In particular patients with presence of any disease involving hip joint, including: advanced hip OA (grade II or III of Tonnis scale), head necrosis, fractures, heterotopic ossifications, bone and soft tissue tumors, rheumatic pathologies, classic hip dysplasia with lateral center-edge angle (L-CEA) less than 20°, clinical diagnosis of FAI or hip pain, were excluded from the present study. We also excluded patients in which open growth plates, osteopenia, hardware or evidence of prior surgery were present. Radiographs were investigated for pelvic tilt, signs of retroversion, lateral center-edge angle (L-CEA), presence of coxa profunda or protrusio acetabuli. EAV was measured on CT scans at the equatorial plane of the acetabulum passing by the 3 o'clock position, while CAV was calculated at a more cranial level corresponding to the 1 o'clock position EAV and CAV were obtained in the axial plane by measuring the angle made by a line connecting the anterior and posterior rims of the acetabulum and a line perpendicular to the line connecting the ischial spines. A new parameter, Acetabular torsion (AT), has been introduced in order to discriminate between global retroversion and isolated cranial over-coverage. AT was defined as the difference between EAV and CAV. Cam deformity was assessed by calculating the alpha angle on the femoral side; an alpha angle > 55° was considered abnormal and suggestive of cam deformity. Radiological signs of chondrolabral degeneration were noticed. Results. Mean EAV and mean CAV were higher in females, mean AA was higher in males. L-CEA, EAV and CAV increased with age. Mean AT was 8.8±6.3. AT was inversely related to CAV (r=−0.799; p<0.0005) but independent from EAV (r=−0.076; p=0.244). EAV≤10.2° was defined as the marker of global retroversion, while AT≥21.2° was defined as the marker of isolated cranial over-coverage. Overall prevalence of pincer deformities was 21.6% (> females; p=0.02). Early OA changes were related to age (p<0.0005) and AA (p<0.0005), but not to pincer deformities (p=0.96). Radiological signs of retroversion showed good or excellent negative predictability but poor positive predictability. Conclusions. Radiographic patterns of pincer deformities are common among general population. Relationship with radiological signs of chondrolabral degeneration is poor. CT allows to discriminate between global retroversion and isolated cranial over-coverage. Prevalence of the pincer deformities among general population may be overestimated if only plain radiographs are considered


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_11 | Pages 222 - 222
1 Jul 2014
Lu H Hu J Cao Y Wu T Li D Cao M
Full Access

Summary Statement. In this study, we employed a novel imaging modalities, the synchrotron radiation microcomputed tomography (SRμCT) to visualise the 3D morphology of the spinal cord microvasculature and successfully obtained the 3D images. Introduction. Understanding the morphology of the spinal cord microvasculature in three-dimensions (3D) is limited by the lack of an effective high-resolution imaging technique. In this study, we used two novel imaging modalities, conventional x-ray microcomputed tomography (CμCT) and synchrotron radiation microcomputed tomography (SRμCT), to visualise the 3D morphology of the spinal cord microvasculature and to compare their utility in basic science research. Methods. (1) Sample Preparation: Ten adult Sprague-Dawley male rats (250–300 g) were randomly divided into A and B groups (n = 5). Both groups were subjected to angiography with contrast agent (Microfil MV-122, Flow Tech, CA, USA). The samples in group A were examined by CμCT, and the group B samples were analyzed through SRμCT scanning. After scanning, the samples was photographed with a stereomicroscope. (2) Images Analysis: The morphometric parameters in 2D were calculated using the Image-Pro Plus program (Ver. 6.0, Media Cybernetics. Bethesda, MD, USA), In the 3D dataset, the algorithms for the analysis of vessel structures in the VG Studio Max software package (Volume Graphics GmbH, Germany) were applied to calculate the morphological parameters of the spinal cord microvasculature. Results. The reconstructed tomographic slices of the rat spinal cord microvasculature obtained by these two techniques are illustrated. In the 2D tomographic view, the area with a high gray value, which indicates the location of the vessels, could be easily differentiated from the neural parenchymal background. The CμCT slices dataset only provided indistinctive images with weak apparent artefacts. In contrast, extensive distributions of the microvessels were found in the intrinsic neural parenchyma in the SRμCT slices. (2) The 3D reconstructed image obtained through SRμCT, provided a clear and precise configuration of the complex spatial structure and connectivity of the intensive microvasculature of the spinal cord when compared with CμCT. (3) The extracted 3D spatial distribution image of the spinal cord microvasculature was able to match the specimen's morphology photographed with a stereomicroscope. Discussion & Conclusion. In this study, we have combined two emerging techniques to capture the 3D morphological features of the rat spinal cord microvasculature in vitro for the first time. With the help of contrast agents and the advanced computed tomography algorithm, both CμCT and SRμCT were able to provide a valuable 3D volumetric dataset of the spinal cord vascular structure. These datasets could be extracted and analyzed from different angles and at multiple levels, which are analysis that were not previously possible with the conventional histological methods. However, when compared with CμCT, SRμCT was able to achieve higher-resolution vascular imaging and to obtain detailed 3D morphological features of the spinal cord microvasculature. These data imply that SRμCT may be regarded as a unique imaging technique that is more suitable than CμCT for 3D angioarchitectural investigation in preclinical neurovascular research


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_11 | Pages 20 - 20
1 Jul 2014
Lu H Hu J Zhou J Zeng Z Cao Y Chen C
Full Access

Summary Statement. We successfully delineated the 3D micro morphology of chondrocytes in patella-patellar tendon using IL-XPCT for the first time. Compared with conventional histology, IL-XPCT can not only provide a higher resolution imgaing but also keep the 3D integrity of the specimen. Introduction. The morphology of the bone-tendon junction was complex and quite different from other organs, which result the injured bone-tendon junction repair process too slowly. To study the micro morphology of the bone-tendon junction in 3D may have a great significant value to revealing the repair mechanisms of this pathological process and accelerating injured bone-tendon junction repair. However, it was hindered by the convention methods such as histologic section. In our study, a novel imaging tool, synchrotron radiation based in-line x-ray phase contrast imaging (IL-XPCT) was used to research the 3D micro morphology of the bone-tendon junction. Methods. 1) Sample Preparation: 3 patella-patellar tendons was harvested from the knee joint of New Zealand adult rabbits and was immediately fixed, rinsed in water for 2 hours. Dehydration was done using a series of graded ethanol. The sample was cut out for the CCD pixel resolution in sagittal section. 2) Image Acquisition: The IL-XPCT was performed at the BL13W1 of the Shanghai Synchrotron Radiation Facility (SSRF) in China. The CCD pixel resolution was 0.74 μm. Image Acquisition include three steps, such as the the acquisition of tomo projections, CT slices and and 3D reconstruction of patella-patellar tendon on full scale by using VG Studio Max version 2.1. 3) Histological characterization observation: After scanning, the specimen was cut to histologic sectioning and used for morphology staining by safranin O staining and H&E staining. The histological morphology then compared with the IL-XPCT imaging dateset. Results. (1) The tissue gradations of patella-patellar tendon are clearly detected by IL-XPCT. (2) The 3D reconstruction image of patella-patellar tendon sample were largely match with the histological morphology stained by safranin O and H&E in sagittal view. (3) After the image segmentation, the 3D micro morphology of the bone-tendon junction could be vividly visualised in multi-angles. Through manipulate threshold of the 3D image, we can successfully obtained the 3D morphology of the chondrocyte, and the smallest diameter is approximately 5μm. Discussion & Conclusion. In the present study, we successfully delineated the 3D micro morphological features of chondrocytes in normal patella-patellar tendon using SR-based IL-XPCT for the first time. Compared with conventional histology, IL-XPCT can not only provide a higher resolution ratio without distortion but also keep the three-dimensional integrity of the specimen. Above all, IL-XPCT opens access to a new dimension in the morphological investigation of bone-tendon junction tissues, giving important complementary information to the conventional morphological analyses in view of the three-dimensional composition of bone-tendon junction tissues, On the other hand, it could be helpful to understanding the repair processes of bone-tendon junction injury and promoting the injured bone-tendon junction repair fast and high quality


Post-operative check radiographs following Total Hip Replacements (THR) are routine practice in most orthopaedic units. In our unit an Anteroposterior and Turned Lateral View (TLV) radiograph was used routinely in this assessment, but the TLV method has anecdotally been reported as painful by patients. We undertook a study to evaluate patients' experiences of pain using this technique and to consider if a change to a Horizontal Beam Lateral View (HBLV) radiograph method would result in a reduction in pain. The study was conducted in two phases. Patients who underwent a primary THR and subsequent post-operative TLV over 3months (n=46) were contacted by telephone and asked to grade their experience using a numerical and descriptive pain scale. After a change in practice to HBLV, the study was repeated (n=53) to identify any difference in pain. Ten radiographs were randomly selected from each group and assessed for radiation exposure and quality by two independent assessors. 87.0% of patients who underwent the TLV radiograph described the post-operative radiograph as painful, with a mean pain score of 7.44+1.5. After a change in practice to the HBLV radiograph, only 28.4% of patients experienced any pain, with a significantly lower mean pain score of 1.00+1.89 (p< 0.001). There was a significant increase in radiation dose in the HBLV vs. TLV method (62.4mAs vs. 25.8mAs, p< 0.001). HBLV X-ray quality was only slightly inferior to TLV when evaluating stem alignment and cement mantle quality. There was a dramatic reduction in both number of patients experiencing pain and level of pain experienced when switching from TLV to HBLV radiographs; this is most likely due to reduced direct pressure on the wound post-operatively. X-ray quality was not compromised, and whilst there was increased radiation exposure, the benefits in patient experience were felt to outweigh this. We recommend the HBLV radiograph method when performing a lateral post-operative check x-ray following THR


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_30 | Pages 51 - 51
1 Aug 2013
Betts H Wells J Brooksbank A
Full Access

There is continued concern over complication rates (20–30% of cases) in locked proximal humeral plating. The most common sequelae of this is screw penetration of the humeral head. This is associated with natural settling of the fracture, malreducition in varus, insufficent medial support of the fracture. The proximity of the screws to the articular surface can also be influential on outcome if collapse occurs. Our operative technique is to establish the rotation of the humeral head where the drill appears closest to the articular margin (by sequential xray screening) and subtract from this to avoid intra-articular penetration of the humeral head.

55 Consecutive patients of average age 56.4 years (14.7–86.1), 17 male and 38 females, who underwent PHILOS plating were identified using Bluespier database. Xrays were analysed for fracture pattern, restoration of neck-shaft angle, plate positioning, number and configuration of screws and presence of screw penetration both intra-operatively and at postoperative follow-up.

There were 6.07 screws used per head (total 330). There was one intraoperative screw penetration and 3 patients had evidence of screw penetration at follow-up, which required implant removal (total screw penetration rate of 7%). There was one case of AVN. The mean neck shaft angle was 137 degrees (anatomical 135 degrees).

Accurate reduction of fractures and placement of screws in the humeral head using image intensifier can act to minimise risk of screw penetration and make some of the complications of locked proximal humeral plating avoidable.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_16 | Pages 66 - 66
17 Nov 2023
Rajab A Ponsworno K Keehan R Ahmad R
Full Access

Abstract. Background. Post operative radiographs following total joint arthroplasty are requested as part of routine follow up in many institutions. These studies have a significant cost to the local departments, in terms of financial and clinic resources, however, previous research has suggested they may not alter the course of the patients treatment. The purpose of this study was to assess the significance of elective post operative radiographs on changes in management of patients who underwent total joint arthroplasty. Method. All patients who underwent total knee arthroplasty and total hip arthroplasty at a District General Hospital from 2019 to 2020 were included. Data was collected retrospectively from medical records and radiograph requests. Alterations to clinical management based on radiographic findings were reviewed in clinic letters. Results. A total of 227 Total joint arthroplasty were retrieved. With 111(49%) total hip arthroplasty and 116 (51%) total knee arthroplasty. 54 were excluded due to having no clinical follow up and 173 met inclusion criteria. 56 (32%) had their post operative elective radiograph, while 93 (53.8%) patients had none. There were no abnormalities detected from the elective radiographs and none of the patients returned to the theatre. 24 patients (13%) presented with symptoms and had non-elective radiographs, 16 (67%) did not have any interventions and 8 (4.6%) required intervention and were taken to theatre. Discussion: Not performing these radiographs saves time, cost, and prevents unnecessary radiation exposure. In our institution, a 2-view joint radiograph costs £29 and takes roughly 15 minutes. This does not include indirect costs of additional clinic time and patient waiting time. In the larger context, the cost associated with elective radiographs is significant and our data suggests that routine post-operative radiographs are not beneficial as part of standard post-operative protocol for asymptomatic patients. However, performing imaging remains beneficial for patients who re-present with symptoms. Conclusion. Routine elective post-operative joint radiographs did not detect any true abnormalities. Information from elective radiographs has no clinical significance and did not change management. Therefore, this study recommends that there is no rationale requesting elective post-operative joint radiographs. Declaration of Interest. (b) declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research reported:I declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research project


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_2 | Pages 2 - 2
2 Jan 2024
Ditmer S Dwenger N Jensen L Ghaffari A Rahbek O
Full Access

The most important outcome predictor of Legg-Calvé-Perthes disease (LCPD) is the shape of the healed femoral head. However, the deformity of the femoral head is currently evaluated by non-reproducible, categorical, and qualitative classifications. In this regard, recent advances in computer vision might provide the opportunity to automatically detect and delineate the outlines of bone in radiographic images for calculating a continuous measure of femoral head deformity. This study aimed to construct a pipeline for accurately detecting and delineating the proximal femur in radiographs of LCPD patients employing existing algorithms. To detect the proximal femur, the pretrained stateof-the-art object detection model, YOLOv5, was trained on 1580 manually annotated radiographs, validated on 338 radiographs, and tested on 338 radiographs. Additionally, 200 radiographs of shoulders and chests were added to the dataset to make the model more robust to false positives and increase generalizability. The convolutional neural network architecture, U-Net, was then employed to segment the detected proximal femur. The network was trained on 80 manually annotated radiographs using real-time data augmentation to increase the number of training images and enhance the generalizability of the segmentation model. The network was validated on 60 radiographs and tested on 60 radiographs. The object detection model achieved a mean Average Precision (mAP) of 0.998 using an Intersection over Union (IoU) threshold of 0.5, and a mAP of 0.712 over IoU thresholds of 0.5 to 0.95 on the test set. The segmentation model achieved an accuracy score of 0.912, a Dice Coefficient of 0.937, and a binary IoU score of 0.854 on the test set. The proposed fully automatic proximal femur detection and segmentation system provides a promising method for accurately detecting and delineating the proximal femoral bone contour in radiographic images, which is necessary for further image analysis


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_8 | Pages 132 - 132
11 Apr 2023
van Hoogstraten S Arts J
Full Access

Malalignment is often postulated as the main reason for the high failure rate of total ankle replacements (TARs). Only a few studies have been performed to correlate radiographic TAR malalignment to the clinical outcome, but no consistent trends between TAR alignment parameters and the clinical outcome were found. No standard TAR alignment measurement method is present, so reliable comparison between studies is difficult. Standardizing TAR alignment measurements and increasing measurable parameters on radiographs in the clinic might lead to a better insight into the correlation between malalignment and the clinical outcome. This study aims to develop and validate a tool to semi-automatic measure TAR alignment, and to improve alignment measurement on radiographs in the clinic. A tool to semi-automatically measure TAR alignment on anteroposterior and lateral radiographs was developed and used by two observers to measure TAR alignment parameters of ten patients. The Intraclass Coefficient (ICC) was calculated and accuracy was compared to the manual measurement method commonly used in the clinic. The tool showed an accuracy of 76% compared to 71% for the method used during follow-up in the clinic. ICC values were 0.94 (p<0.01) and higher for both inter-and intra-observer reliability. The tool presents an accurate, consistent, and reliable method to measure TAR alignment parameters. Three-dimensional alignment parameters are obtained from two-dimensional radiographs, and as the tool can be applied to any TAR design, it offers a valuable addition in the clinic and for research purposes