header advert
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:



Full Access



British Orthopaedic Research Society (BORS)


The Adora RSA (NRT, Denmark) is a new stereo X-ray system custom built for Radeostereometry. Images are acquired using CXDI50C digital detectors (Canon, Netherlands). Analysis software was written locally to detect both Tantalum markers and the spherical head of the hip implant, and for RSA reconstruction and kinematic analysis.

To assess geometric reproducibility, a planar grid phantom was constructed with 1400 2mm markers in a grid pattern over a 350 by 430 mm glass plate. Additionally 25 tantalum markers of each diameter 1.0, 0.8 and 0.5 mm were added within a 120mm square of the grid. The phantom was imaged repeatedly with translation and rotation over the detector. For small phantom movements of up to 10mm over the detector, very small measurement errors were observed of median 2 microns, maximum 6 microns. For larger movements, the errors increased to median 5 microns and maximum 50 microns. Errors also increased with decreasing exposure.

For RSA validation, an acetabular PE cup was cemented to a Sawbone pelvis. Tantalum markers were inserted into the pelvis (10), cement (4), and cup (10). A 28mm metal head was fixed to the cup. The phantom was imaged repeatedly without movement, then moved in translation (up to 100 mm) and rotation (all axes, up to 45 degrees), and with full X-ray repositioning. Precision errors were calculated on the assumption of no relative movement between components.

Results are given for repositioning movement categorised as none, small (less than 25mm or 15 degrees), medium (less than 50mm or 30 degrees), and large. For the head, the mean total point motion error was 4, 10, 14 and 24 micrometers. Mean error of segment fitting was less than 60 microns with no markers rejected from the composite segment of 24 markers. Cup migration total translation error was 10, 16, 24, and 35 micrometers with rotation errors less than 0.05 degrees.

Observed RSA errors were small, increasing with phantom movement. This is consistent with the geometric uniformity tests. X-ray exposure and tissue thickness were also identified as factors in precision. We conclude this system has excellent precision for Radiostereometry.