Advertisement for orthosearch.org.uk
Results 1 - 20 of 36
Results per page:

Objectives. Posterior condylar offset (PCO) and posterior tibial slope (PTS) are critical factors in total knee arthroplasty (TKA). A computational simulation was performed to evaluate the biomechanical effect of PCO and PTS on cruciate retaining TKA. Methods. We generated a subject-specific computational model followed by the development of ± 1 mm, ± 2 mm and ± 3 mm PCO models in the posterior direction, and -3°, 0°, 3° and 6° PTS models with each of the PCO models. Using a validated finite element (FE) model, we investigated the influence of the changes in PCO and PTS on the contact stress in the patellar button and the forces on the posterior cruciate ligament (PCL), patellar tendon and quadriceps muscles under the deep knee-bend loading conditions. Results. Contact stress on the patellar button increased and decreased as PCO translated to the anterior and posterior directions, respectively. In addition, contact stress on the patellar button decreased as PTS increased. These trends were consistent in the FE models with altered PCO. Higher quadriceps muscle and patellar tendon force are required as PCO translated in the anterior direction with an equivalent flexion angle. However, as PTS increased, quadriceps muscle and patellar tendon force reduced in each PCO condition. The forces exerted on the PCL increased as PCO translated to the posterior direction and decreased as PTS increased. Conclusion. The change in PCO alternatively provided positive and negative biomechanical effects, but it led to a reduction in a negative biomechanical effect as PTS increased. Cite this article: K-T. Kang, Y-G. Koh, J. Son, O-R. Kwon, J-S. Lee, S. K. Kwon. A computational simulation study to determine the biomechanical influence of posterior condylar offset and tibial slope in cruciate retaining total knee arthroplasty. Bone Joint Res 2018;7:69–78. DOI: 10.1302/2046-3758.71.BJR-2017-0143.R1


The Journal of Bone & Joint Surgery British Volume
Vol. 89-B, Issue 7 | Pages 915 - 918
1 Jul 2007
Hanratty BM Thompson NW Wilson RK Beverland DE

We have studied the concept of posterior condylar offset and the importance of its restoration on the maximum range of knee flexion after posterior-cruciate-ligament-retaining total knee replacement (TKR). We measured the difference in the posterior condylar offset before and one year after operation in 69 patients who had undergone a primary cruciate-sacrificing mobile bearing TKR by one surgeon using the same implant and a standardised operating technique. In all the patients true pre- and post-operative lateral radiographs had been taken. The mean pre- and post-operative posterior condylar offset was 25.9 mm (21 to 35) and 26.9 mm (21 to 34), respectively. The mean difference in posterior condylar offset was + 1 mm (−6 to +5). The mean pre-operative knee flexion was 111° (62° to 146°) and at one year postoperatively, it was 107° (51° to 137°). There was no statistical correlation between the change in knee flexion and the difference in the posterior condylar offset after TKR (Pearson correlation coefficient r = −0.06, p = 0.69)


Bone & Joint Research
Vol. 6, Issue 3 | Pages 172 - 178
1 Mar 2017
Clement ND MacDonald DJ Hamilton DF Burnett R

Objectives. Preservation of posterior condylar offset (PCO) has been shown to correlate with improved functional results after primary total knee arthroplasty (TKA). Whether this is also the case for revision TKA, remains unknown. The aim of this study was to assess the independent effect of PCO on early functional outcome after revision TKA. Methods. A total of 107 consecutive aseptic revision TKAs were performed by a single surgeon during an eight-year period. The mean age was 69.4 years (39 to 85) and there were 59 female patients and 48 male patients. The Oxford Knee Score (OKS) and Short-form (SF)-12 score were assessed pre-operatively and one year post-operatively. Patient satisfaction was also assessed at one year. Joint line and PCO were assessed radiographically at one year. Results. There was a significant improvement in the OKS (10.6 points, 95% confidence interval (CI) 8.8 to 12.3) and the SF-12 physical component score (5.9, 95% CI 4.1 to 7.8). PCO directly correlated with change in OKS (p < 0.001). Linear regression analysis confirmed the independent effect of PCO on the OKS (p < 0.001) and the SF-12 physical score (p = 0.02). The overall rate of satisfaction was 85% and on logistic regression analysis improvement in the OKS (p = 0.002) was a significant predictor of patient satisfaction, which is related to PCO; although this was not independently associated with satisfaction. Conclusion. Preservation of PCO should be a major consideration when undertaking revision TKA. The option of increasing PCO to balance the flexion gap while maintaining the joint line should be assessed intra-operatively. Cite this article: N. D. Clement, D. J. MacDonald, D. F. Hamilton, R. Burnett. Posterior condylar offset is an independent predictor of functional outcome after revision total knee arthroplasty. Bone Joint Res 2017;6:172–178. DOI: 10.1302/2046-3758.63.BJR-2015-0021.R1


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_13 | Pages 29 - 29
7 Aug 2023
Mayne A Rajgor H Munasinghe C Agrawal Y Pagkalos I Davis E Sharma A
Full Access

Abstract. Introduction. There is growing interest in the use of robotic Total Knee Arthroplasty (TKA) to improve accuracy of component positioning. This is the first study to investigate the radiological accuracy of implant component position using the ROSA® knee system with specific reference to Joint Line Height, Tibial Slope, Patella Height and Posterior Condylar Offset. As secondary aims we compared accuracy between image-based and imageless navigation, and between implant designs (Persona versus Vanguard TKA). Methodology. This was a retrospective review of a prospectively-maintained database of the initial 100 consecutive TKAs performed by a high volume surgeon using the ROSA® knee system. To determine the accuracy of component positioning, the immediate post-operative radiograph was reviewed and compared with the immediate pre-operative radiograph with regards to Joint Line Height, Tibial Slope, Patella Height (using the Insall-Salvati ratio) and Posterior Condylar Offset. Results. Mean age of patients undergoing ROSA TKA was 70 years (range, 55 to 95 years). Mean difference in joint line height between pre and post-operative radiographs was 0.2mm (range −1.5 to +1.8mm, p<0.05), posterior condylar offset mean change 0.16mm (range −1.4 to +1.3mm, p<0.05), tibial slope mean change 0.1 degrees (p<0.05) and patella height mean change 0.02 (range −0.1 to +0.1 p<0.05). No significant differences were found between imageless and image-based groups, or between implant designs (Persona versus Vanguard). Conclusion. This study validates the use of the ROSA® knee system in accurately restoring Joint Line Height, Patella Height and Posterior Condylar Offset


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_13 | Pages 30 - 30
7 Aug 2023
Mayne A Rajgor H Munasinghe C Agrawal Y Pagkalos I Davis E Sharma A
Full Access

Abstract. Introduction. There is increasing adoption of robotic surgical technology in Total Knee Arthroplasty - The ROSA® knee system can be used in either image-based mode (using pre-operative calibrated radiographs) or imageless modes (using intra-operative bony registration). The Mako knee system is an image-based system (using a pre-operative CT scan). This study aimed to compare surgical accuracy between the ROSA and Mako systems with specific reference to Joint Line Height, Patella Height and Posterior Condylar Offset. Methodology. This was a retrospective review of a prospectively-maintained database of the initial 100 consecutive ROSA TKAs and the initial 50 consecutive Mako TKAs performed by two high volume surgeons. To determine the accuracy of component positioning, the immediate post-operative radiograph was reviewed and compared with the immediate pre-operative radiograph. Patella height was assessed using the Insall-Salvati ratio. Results. There was no significant difference between ROSA TKA and Mako TKA with regards to restoration of joint line height, ROSA mean 0.2mm versus Mako mean 0.3mm (p<0.05), posterior condylar offset, ROSA mean 0.16mm versus Mako mean 0.3mm (p<0.05), and patella height, ROSA mean 0.02 versus Mako mean 0.03 (p<0.05). Conclusion. This study is the first study to compare the accuracy of the ROSA and MAKO knee systems in total knee arthroplasty. Both systems are highly accurate in restoring native posterior condylar offset, joint line height, and patella height in TKA with no significant difference demonstrated between the two robotic systems


The Bone & Joint Journal
Vol. 103-B, Issue 9 | Pages 1514 - 1525
1 Sep 2021
Scott CEH Holland G Gillespie M Keenan OJ Gherman A MacDonald DJ Simpson AHRW Clement ND

Aims. The aims of this study were to investigate the ability to kneel after total knee arthroplasty (TKA) without patellar resurfacing, and its effect on patient-reported outcome measures (PROMs). Secondary aims included identifying which kneeling positions were most important to patients, and the influence of radiological parameters on the ability to kneel before and after TKA. Methods. This prospective longitudinal study involved 209 patients who underwent single radius cruciate-retaining TKA without patellar resurfacing. Preoperative EuroQol five-dimension questionnaire (EQ-5D), Oxford Knee Score (OKS), and the ability to achieve four kneeling positions were assessed including a single leg kneel, a double leg kneel, a high-flexion kneel, and a praying position. The severity of radiological osteoarthritis (OA) was graded and the pattern of OA was recorded intraoperatively. The flexion of the femoral component, posterior condylar offset, and anterior femoral offset were measured radiologically. At two to four years postoperatively, 151 patients with a mean age of 70.0 years (SD 9.44) were included. Their mean BMI was 30.4 kg/m. 2. (SD 5.36) and 60 were male (40%). They completed EQ-5D, OKS, and Kujala scores, assessments of the ability to kneel, and a visual analogue scale for anterior knee pain and satisfaction. Results. The ability to kneel in the four positions improved in between 29 (19%) and 53 patients (35%) after TKA, but declined in between 35 (23%) and 46 patients (30%). Single-leg kneeling was most important to patients. After TKA, 62 patients (41%) were unable to achieve a single-leg kneel, 76 (50%) were unable to achieve a double-leg kneel, 102 (68%) were unable to achieve a high-flexion kneel and 61 (40%) were unable to achieve a praying position. Posterolateral cartilage loss significantly affected preoperative deep flexion kneeling (p = 0.019). A postoperative inability to kneel was significantly associated with worse OKS, Kujala scores, and satisfaction (p < 0.05). Multivariable regression analysis identified significant independent associations with the ability to kneel after TKA (p < 0.05): better preoperative EQ-5D and flexion of the femoral component for single-leg kneeling; the ability to achieve it preoperatively and flexion of the femoral component for double-leg kneeling; male sex for high-flexion kneeling; and the ability to achieve it preoperatively, anterior femoral offset, and patellar cartilage loss for the praying position. Conclusion. The ability to kneel was important to patients and significantly influenced knee-specific PROMs, but was poorly restored by TKA with equal chances of improvement or decline. Cite this article: Bone Joint J 2021;103-B(9):1514–1525


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_12 | Pages 20 - 20
1 Oct 2018
Galea V Connelly J Matuszak S Botros MA Rojanasopondist P Nielsen C Huddleston J Bragdon C Malchau H Troelsen A
Full Access

Introduction. The aim of this study was to evaluate the effects of posterior tibial slope (PTS) and posterior condylar offset (PCO) on patient-reported pain and function one year after TKA. Methods. A total of 500 patients from 11 clinics in 6 countries were enrolled into a prospective, multicenter study. All patients were indicated for primary TKA for OA and received components from a single manufacturer. All liners were made from vitamin-E stabilized, highly crosslinked (95 kGy) polyethylene; 54.7% were posterior stabilized (PS) and the remaining were cruciate-retaining. The Knee Injury and Osteoarthritis Outcome Score (KOOS) was administered at the one-year follow-up visit. The KOOS pain and activities in daily life (ADL) sub-scores were dichotomized and served as the primary outcomes. Dichotomization was done with the patient acceptable symptom state (PASS), defined by previous studies as the value of the PROM above which patients deem their state as acceptable (84.5 points for KOOS pain and 83.0 points for KOOS ADL). Plain lateral radiographs were taken and assessed for PTS (Figure 1) and PCO (Figure 2). PTS was categorized as above (excessive flexion), within (ideal), or below (extension) the safe zone of 0° − 7° of flexion. PCO increases or decreases of greater than 3mm were compared against no change (≤ 3mm). Each of the two sagittal positioning metrics was tested against the KOOS pain and ADL PASS at one year. Results. 396 patients (80.3% of eligible) had completed the one-year visit. A total of 297 (75%) achieved the PASS in KOOS pain and 277 (70%) achieved the PASS in KOOS ADL (Figure 3). PTS was closely associated with the likelihood of achieving the PASS in KOOS pain (p < 0.001) and ADL (p = 0.005) in univariate tests (Kruskal-Wallis). It was also independently predictive of achieving the PASS in multivariable models controlling for sex, body mass index, preoperative health state, and age. In a binary logistic regression for achieving the PASS in KOOS pain, a PTS < 0° (extension) was 6.3 times less likely to achieve the PASS compared to the ideal PTS (0°–7° of flexion) (p=0.004; OR=0.16). Overly flexed tibial components (>7°) were equally likely to achieve the PASS in KOOS pain as components with an ideal PTS (p=0.091). A separate model assessing independent predictors of achieving the PASS in KOOS ADL, patients with extension were 4.8 times less likely to achieve the PASS compared to those with an ideal PTS (p=0.012; OR=0.21), while patients with excessive flexion were equally likely to achieve the PASS in KOOS ADL as patients with an ideal PTS (p=0.077). When considering the patients with a PTS > 7° (excessive flexion), PCO decrease was associated with a lower chance of achieving the PASS in KOOS ADL (p = 0.022). When considering the patients with a PTS < 0° (extension), PCO increase was associated with a lower chance of achieving the PASS in KOOS pain (p = 0.031). Conclusions. The most influential sagittal positioning parameter affecting patient outcomes at one year after TKA was PTS. PTS had a significant, independent effect on all PROMs one year after TKA. Surgeons should be more cautious to avoid tibial component extension rather than excessive flexion. We recommend replicating the native PCO and targeting a PTS of 0°–7° of flexion. For any figures or tables, please contact authors directly


The Journal of Bone & Joint Surgery British Volume
Vol. 84-B, Issue 1 | Pages 50 - 53
1 Jan 2002
Bellemans J Banks S Victor J Vandenneucker H Moemans A

Our purpose was to determine the mechanism which allows the maximum knee flexion in vivo after a posterior-cruciate-ligament (PCL)-retaining total knee arthroplasty. Using three-dimensional computer-aided design videofluoroscopy of deep squatting in 29 patients, we determined that in 72% of knees, direct impingement of the tibial insert posteriorly against the back of the femur was the factor responsible for blocking further flexion. In view of this finding we defined a new parameter termed the ‘posterior condylar offset’. In 150 consecutive arthroplasties of the knee, the magnitude of posterior condylar offset was found to correlate with the final range of flexion


The Bone & Joint Journal
Vol. 104-B, Issue 10 | Pages 1126 - 1131
1 Oct 2022
Hannon CP Kruckeberg BM Pagnano MW Berry DJ Hanssen AD Abdel MP

Aims

We have previously reported the mid-term outcomes of revision total knee arthroplasty (TKA) for flexion instability. At a mean of four years, there were no re-revisions for instability. The aim of this study was to report the implant survivorship and clinical and radiological outcomes of the same cohort of of patients at a mean follow-up of ten years.

Methods

The original publication included 60 revision TKAs in 60 patients which were undertaken between 2000 and 2010. The mean age of the patients at the time of revision TKA was 65 years, and 33 (55%) were female. Since that time, 21 patients died, leaving 39 patients (65%) available for analysis. The cumulative incidence of any re-revision with death as a competing risk was calculated. Knee Society Scores (KSSs) were also recorded, and updated radiographs were reviewed.


The Bone & Joint Journal
Vol. 105-B, Issue 6 | Pages 622 - 634
1 Jun 2023
Simpson CJRW Wright E Ng N Yap NJ Ndou S Scott CEH Clement ND

Aims

This systematic review and meta-analysis aimed to compare the influence of patellar resurfacing following cruciate-retaining (CR) and posterior-stabilized (PS) total knee arthroplasty (TKA) on the incidence of anterior knee pain, knee-specific patient-reported outcome measures, complication rates, and reoperation rates.

Methods

A systematic review of MEDLINE, PubMed, and Google Scholar was performed to identify randomized controlled trials (RCTs) according to search criteria. Search terms used included: arthroplasty, replacement, knee (Mesh), TKA, prosthesis, patella, patellar resurfacing, and patellar retaining. RCTs that compared patellar resurfacing versus unresurfaced in primary TKA were included for further analysis. Studies were evaluated using the Scottish Intercollegiate Guidelines Network assessment tool for quality and minimization of bias. Data were synthesized and meta-analysis performed.


Bone & Joint Open
Vol. 5, Issue 8 | Pages 681 - 687
19 Aug 2024
van de Graaf VA Shen TS Wood JA Chen DB MacDessi SJ

Aims

Sagittal plane imbalance (SPI), or asymmetry between extension and flexion gaps, is an important issue in total knee arthroplasty (TKA). The purpose of this study was to compare SPI between kinematic alignment (KA), mechanical alignment (MA), and functional alignment (FA) strategies.

Methods

In 137 robotic-assisted TKAs, extension and flexion stressed gap laxities and bone resections were measured. The primary outcome was the proportion and magnitude of medial and lateral SPI (gap differential > 2.0 mm) for KA, MA, and FA. Secondary outcomes were the proportion of knees with severe (> 4.0 mm) SPI, and resection thicknesses for each technique, with KA as reference.


Bone & Joint Open
Vol. 5, Issue 8 | Pages 628 - 636
2 Aug 2024
Eachempati KK Parameswaran A Ponnala VK Sunil A Sheth NP

Aims

The aims of this study were: 1) to describe extended restricted kinematic alignment (E-rKA), a novel alignment strategy during robotic-assisted total knee arthroplasty (RA-TKA); 2) to compare residual medial compartment tightness following virtual surgical planning during RA-TKA using mechanical alignment (MA) and E-rKA, in the same set of osteoarthritic varus knees; 3) to assess the requirement of soft-tissue releases during RA-TKA using E-rKA; and 4) to compare the accuracy of surgical plan execution between knees managed with adjustments in component positioning alone, and those which require additional soft-tissue releases.

Methods

Patients who underwent RA-TKA between January and December 2022 for primary varus osteoarthritis were included. Safe boundaries for E-rKA were defined. Residual medial compartment tightness was compared following virtual surgical planning using E-rKA and MA, in the same set of knees. Soft-tissue releases were documented. Errors in postoperative alignment in relation to planned alignment were compared between patients who did (group A) and did not (group B) require soft-tissue releases.


The Bone & Joint Journal
Vol. 103-B, Issue 6 Supple A | Pages 150 - 157
1 Jun 2021
Anderson LA Christie M Blackburn BE Mahan C Earl C Pelt CE Peters CL Gililland J

Aims

Porous metaphyseal cones can be used for fixation in revision total knee arthroplasty (rTKA) and complex TKAs. This metaphyseal fixation has led to some surgeons using shorter cemented stems instead of diaphyseal engaging cementless stems with a potential benefit of ease of obtaining proper alignment without being beholden to the diaphysis. The purpose of this study was to evaluate short term clinical and radiographic outcomes of a series of TKA cases performed using 3D-printed metaphyseal cones.

Methods

A retrospective review of 86 rTKAs and nine complex primary TKAs, with an average age of 63.2 years (SD 8.2) and BMI of 34.0 kg/m2 (SD 8.7), in which metaphyseal cones were used for both femoral and tibial fixation were compared for their knee alignment based on the type of stem used. Overall, 22 knees had cementless stems on both sides, 52 had cemented stems on both sides, and 15 had mixed stems. Postoperative long-standing radiographs were evaluated for coronal and sagittal plane alignment. Adjusted logistic regression models were run to assess malalignment hip-knee-ankle (HKA) alignment beyond ± 3° and sagittal alignment of the tibial and femoral components ± 3° by stem type.


The Bone & Joint Journal
Vol. 102-B, Issue 6 Supple A | Pages 36 - 42
1 Jun 2020
Nishitani K Kuriyama S Nakamura S Umatani N Ito H Matsuda S

Aims

This study aimed to evaluate the association between the sagittal alignment of the femoral component in total knee arthroplasty (TKA) and new Knee Society Score (2011KSS), under the hypothesis that outliers such as the excessive extended or flexed femoral component were related to worse clinical outcomes.

Methods

A group of 156 knees (134 F:22 M) in 133 patients with a mean age 75.8 years (SD 6.4) who underwent TKA with the cruciate-substituting Bi-Surface Knee prosthesis were retrospectively enrolled. On lateral radiographs, γ angle (the angle between the distal femoral axis and the line perpendicular to the distal rear surface of the femoral component) was measured, and the patients were divided into four groups according to the γ angle. The 2011KSSs among groups were compared using the Kruskal-Wallis test. A secondary regression analysis was used to investigate the association between the 2011KSS and γ angle.


The Bone & Joint Journal
Vol. 103-B, Issue 1 | Pages 113 - 122
1 Jan 2021
Kayani B Tahmassebi J Ayuob A Konan S Oussedik S Haddad FS

Aims

The primary aim of this study was to compare the postoperative systemic inflammatory response in conventional jig-based total knee arthroplasty (conventional TKA) versus robotic-arm assisted total knee arthroplasty (robotic TKA). Secondary aims were to compare the macroscopic soft tissue injury, femoral and tibial bone trauma, localized thermal response, and the accuracy of component positioning between the two treatment groups.

Methods

This prospective randomized controlled trial included 30 patients with osteoarthritis of the knee undergoing conventional TKA versus robotic TKA. Predefined serum markers of inflammation and localized knee temperature were collected preoperatively and postoperatively at six hours, day 1, day 2, day 7, and day 28 following TKA. Blinded observers used the Macroscopic Soft Tissue Injury (MASTI) classification system to grade intraoperative periarticular soft tissue injury and bone trauma. Plain radiographs were used to assess the accuracy of achieving the planned postioning of the components in both groups.


The Bone & Joint Journal
Vol. 102-B, Issue 4 | Pages 426 - 433
1 Apr 2020
Boettner F Sculco P Faschingbauer M Rueckl K Windhager R Kasparek MF

Aims

To compare patients undergoing total knee arthroplasty (TKA) with ≤ 80° range of movement (ROM) operated with a 2 mm increase in the flexion gap with matched non-stiff patients with at least 100° of preoperative ROM and balanced flexion and extension gaps.

Methods

In a retrospective cohort study, 98 TKAs (91 patients) with a preoperative ROM of ≤ 80° were examined. Mean follow-up time was 53 months (24 to 112). All TKAs in stiff knees were performed with a 2 mm increased flexion gap. Data were compared to a matched control group of 98 TKAs (86 patients) with a mean follow-up of 43 months (24 to 89). Knees in the control group had a preoperative ROM of at least 100° and balanced flexion and extension gaps. In all stiff and non-stiff knees posterior stabilized (PS) TKAs with patellar resurfacing in combination with adequate soft tissue balancing were used.


The Bone & Joint Journal
Vol. 100-B, Issue 8 | Pages 1033 - 1042
1 Aug 2018
Kayani B Konan S Pietrzak JRT Huq SS Tahmassebi J Haddad FS

Aims

The primary aim of this study was to determine the surgical team’s learning curve for introducing robotic-arm assisted unicompartmental knee arthroplasty (UKA) into routine surgical practice. The secondary objective was to compare accuracy of implant positioning in conventional jig-based UKA versus robotic-arm assisted UKA.

Patients and Methods

This prospective single-surgeon cohort study included 60 consecutive conventional jig-based UKAs compared with 60 consecutive robotic-arm assisted UKAs for medial compartment knee osteoarthritis. Patients undergoing conventional UKA and robotic-arm assisted UKA were well-matched for baseline characteristics including a mean age of 65.5 years (sd 6.8) vs 64.1 years (sd 8.7), (p = 0.31); a mean body mass index of 27.2 kg.m2 (sd 2.7) vs 28.1 kg.m2 (sd 4.5), (p = 0.25); and gender (27 males: 33 females vs 26 males: 34 females, p = 0.85). Surrogate measures of the learning curve were prospectively collected. These included operative times, the Spielberger State-Trait Anxiety Inventory (STAI) questionnaire to assess preoperative stress levels amongst the surgical team, accuracy of implant positioning, limb alignment, and postoperative complications.


Bone & Joint Research
Vol. 8, Issue 6 | Pages 228 - 231
1 Jun 2019
Kayani B Haddad FS


The Bone & Joint Journal
Vol. 101-B, Issue 7 | Pages 838 - 847
1 Jul 2019
Robinson PG Clement ND Hamilton D Blyth MJG Haddad FS Patton JT

Aims

Robotic-assisted unicompartmental knee arthroplasty (UKA) promises accurate implant placement with the potential of improved survival and functional outcomes. The aim of this study was to present the current evidence for robotic-assisted UKA and describe the outcome in terms of implant positioning, range of movement (ROM), function and survival, and the types of robot and implants that are currently used.

Materials and Methods

A search of PubMed and Medline was performed in October 2018 in line with the Preferred Reporting Items for Systematic Review and Meta-Analysis statement. Search terms included “robotic”, “knee”, and “surgery”. The criteria for inclusion was any study describing the use of robotic UKA and reporting implant positioning, ROM, function, and survival for clinical, cadaveric, or dry bone studies.


The Bone & Joint Journal
Vol. 96-B, Issue 12 | Pages 1644 - 1648
1 Dec 2014
Abdel MP Pulido L Severson EP Hanssen AD

Instability in flexion after total knee replacement (TKR) typically occurs as a result of mismatched flexion and extension gaps. The goals of this study were to identify factors leading to instability in flexion, the degree of correction, determined radiologically, required at revision surgery, and the subsequent clinical outcomes. Between 2000 and 2010, 60 TKRs in 60 patients underwent revision for instability in flexion associated with well-fixed components. There were 33 women (55%) and 27 men (45%); their mean age was 65 years (43 to 82). Radiological measurements and the Knee Society score (KSS) were used to assess outcome after revision surgery. The mean follow-up was 3.6 years (2 to 9.8). Decreased condylar offset (p < 0.001), distalisation of the joint line (p < 0.001) and increased posterior tibial slope (p < 0.001) contributed to instability in flexion and required correction at revision to regain stability. The combined mean correction of posterior condylar offset and joint line resection was 9.5 mm, and a mean of 5° of posterior tibial slope was removed. At the most recent follow-up, there was a significant improvement in the mean KSS for the knee and function (both p < 0.001), no patient reported instability and no patient underwent further surgery for instability.

The following step-wise approach is recommended: reduction of tibial slope, correction of malalignment, and improvement of condylar offset. Additional joint line elevation is needed if the above steps do not equalise the flexion and extension gaps.

Cite this article: Bone Joint J 2014;96-B:1644–8.