To determine whether spinal facet osteoblasts at the curve apex display a different
Objectives. Low back pain is strongly associated with degeneration of the intervertebral disc (IVD). During degeneration, altered matrix synthesis and increased matrix degradation, together with accompanied cell loss is seen particularly in the nucleus pulposus (NP). It has been proposed that notochordal (NC) cells, embryonic precursors for the cells within the NP, could be utilized for mediating IVD regeneration. However, injectable biomaterials are likely to be required to support their
We previously reported that osteoblasts at the curve apex in adolescent idiopathic scoliosis (AIS) exhibit a differential
Background. While the human embryonic, foetal and juvenile intervertebral disc (IVD) is composed of large vacuolated notochordal cells, these morphologically distinct cells are lost with skeletal maturity being replaced by smaller nucleus pulpous cells. Notochordal cells are thought to be fundamental in maintaining IVD homeostasis and, hence, their loss in humans may be a key initiator of degeneration, leading ultimately to back pain. Therefore, it is essential to understand the human notochordal cell
Mesenchymal stem-cell based therapies have been
proposed as novel treatments for intervertebral disc degeneration,
a prevalent and disabling condition associated with back pain. The
development of these treatment strategies, however, has been hindered
by the incomplete understanding of the human nucleus pulposus phenotype
and by an inaccurate interpretation and translation of animal to
human research. This review summarises recent work characterising
the nucleus pulposus
Background. Signalling by growth differentiation factor 6 (GDF6/BMP13) has been implicated in the development and maintenance of healthy NP cell
Studies of the vestibular system in patients with idiopathic scoliosis (IS) have shown abnormalities in the semicircular canals (SCC) and the basicranium. Rousie (2008) revealed a statistically increased incidence of structural anomalies in the SCCs with three-dimensional computer generated modelling. Some of these findings were replicated in a small population by Cheng (2010). The primary goals of this investigation are verification of SCC abnormalities of patients with IS versus controls with use of three-dimensional modelling with subsequent development of a unique phenotypical classification. Our long-term goal is to provide new direction for hypothesis directed identification and characterisation of genes causally related to IS. 20 patients with IS and 20 controls matched for age and sex will be identified through the clinic with approval from the institutional review board. Power analyses were done to detect the difference in distributions as the proportion of fisher tests with p values less than 0·05. A sample size of 20 per group gives 86–99% power to realise results under conservative assumptions. IS patients and controls undergo vestibular system examination via T2 MRI imaging. Extracted data are evaluated by a team including Dr Rousie, ENT, radiology, and orthopaedic surgery. DNA is extracted with Gentra Puregene kits from Qiagen (Valencia, CA, USA). Developmental genes related to SCC and axial somatogenesis are being identified through a bioinformatics approach, targeting known IS genomic loci. Custom single-nucleotide polymorphism panels, statistical linkage, and association will identify genes of significance for sequencing.Introduction
Methods
Background. Chronic low back pain is strongly linked to degeneration of the intervertebral disc (IVD), which currently lacks any targeted treatments. This study explores NPgel, a biomaterial combined with notochordal cells (NC), developmental precursor cells, as a potential solution. NCs, known for anti-catabolic effects on IVD cells, present a promising avenue for regenerating damaged IVD tissue. Methods. Bovine IVDs underwent enzymatic degeneration before NPgel (+/- NC) injection. Degenerated bovine IVDs were cultured under biomechanical loading for 21 days. Histology and immunohistochemistry assessed NC survival,
Background. Current clinical treatment for spinal instability requires invasive spinal fusion with cages and screw instrumentation. We previously reported a novel injectable hydrogel (Bgel), which supports the delivery and differentiation of mesenchymal stem cells (MSCs) to bone forming cells and supports bone formation in vivo. Here, we investigated whether this system could be utilised to induce bone formation within intervertebral disc tissue as a potential injectable spinal fusion approach. Methodology. Bovine and Human Nucleus pulpous tissue explants were injected with Bgel with and without MSCs. Tissue samples were cultured under hypoxia (5%) in standard culture media for 4 weeks. Cell viability, histological assessment of matrix deposition, calcium formation, and cell
Background. Intervertebral disc degeneration (DD) is a complex age-related condition that constitutes the main risk factor for disabling back pain. DD is assessed using different traits extracted from MR imaging (MRI), normally combined to give summary measures (e.g. Pfirmann score). The aetiology of DD is poorly understood and despite its high heritability (75%), the precise genetic predisposition is yet to be defined. Genome wide association study (GWAS) is used to discover genetic variants associated with a disease or
Backgrounds and aim. Low back pain resulting from Intervertebral disc (IVD) degeneration is a serious worldwide problem, with poor treatment options available. Notochordal (NC) cells, are a promising therapeutic cell source with anti-catabolic and regenerative effect, however, their behaviour in the harsh degenerate environment is unknown. Thus, we aimed to investigate and compare their physiological behaviour in in vitro niche that mimics the healthy and degenerated intervertebral disc environment. Methodology. Porcine NC cells were encapsulated in 3D alginate beads to maintain their
Background and Purpose. Intervertebral disc (IVD) degeneration is a prominent cause of low back pain. IVD cells expressing angiopoietin-1 receptor Tie2 represent a progenitor cell population which decreases with progression of IVD degeneration. Homing of mesenchymal stem cells (MSCs) is a physiological mechanism aiming to enhance the regenerative capacity of the IVD. The purpose of this study was to assess the effect of MSC homing on the Tie2 positive IVD progenitor cell population, the IVD cell viability, and the proliferative
Background. Stem cell therapy has been suggested as a potential regenerative strategy to treat IVD degeneration and GDF6 has been shown to differentiate adipose-derived stem cells (ASCs) into an NP-like
Background. Intervertebral disc degeneration is implicated as a major cause of chronic lower back pain. Current therapies for lower back pain are aimed purely at relieving the symptoms rather than targeting the underlying aberrant cell biology. As such focus has shifted to development of cell based alternatives. Notochordal cells are progenitors to the adult nucleus pulposus that display therapeutic potential. However, notochordal cell
Background. Degeneration of the intervertebral disc (IVD) is a major cause of Low back pain. We have recently reported a novel, injectable liquid L-pNIPAM-co-DMAc hydrogel (NPgel), which promote differentiation of MSCs to nucleus pulposus (NP) cells without the need for additional growth factors. Here, we investigated the behaviour of hMSCs incorporated within the hydrogel injected into NP tissue. Methods. hMSCs were injected either alone or within NPgel, into bovine NP tissue explants and maintained at 5% O. 2. for up to 6wks. Media alone and acellular NPgel were also injected into NP explants to serve as controls. Cell viability was assessed by Caspase 3 immunohistochemistry and the
Lumbar spinal stenosis (LSS) is a common skeletal system disease that has been partly attributed to genetic variation. However, the correlation between genetic variation and pathological changes in LSS is insufficient, and it is difficult to provide a reference for the early diagnosis and treatment of the disease. We conducted a transcriptome-wide association study (TWAS) of spinal canal stenosis by integrating genome-wide association study summary statistics (including 661 cases and 178,065 controls) derived from Biobank Japan, and pre-computed gene expression weights of skeletal muscle and whole blood implemented in FUSION software. To verify the TWAS results, the candidate genes were furthered compared with messenger RNA (mRNA) expression profiles of LSS to screen for common genes. Finally, Metascape software was used to perform enrichment analysis of the candidate genes and common genes.Aims
Methods
Purpose of study and background. We have previously reported the development of injectable hydrogels for potential disc regeneration (NPgel) or bone formation which could be utilized in spinal fusion (Bgel). As there are multiple sources of mesenchymal stem cells (MSCs), this study investigated the incorporation of patient matched hMSCs derived from adipose tissue (AD) and bone marrow (BM) to determine their ability to differentiate within both hydrogel systems under different culture conditions. Methods and Results. Human fat pad and bone marrow derived MSCs were isolated from femoral heads of patients undergoing hip replacement surgery for osteoarthritis with informed consent. MSCs were encapsulated into either NPgel or Bgel and cultured for up to 6 weeks in 5% (NPgel) or 21% (Bgel) O. 2. Histology and immunohistochemistry was utilized to determine
Degenerative cervical spondylosis (DCS) is a common musculoskeletal disease that encompasses a wide range of progressive degenerative changes and affects all components of the cervical spine. DCS imposes very large social and economic burdens. However, its genetic basis remains elusive. Predicted whole-blood and skeletal muscle gene expression and genome-wide association study (GWAS) data from a DCS database were integrated, and functional summary-based imputation (FUSION) software was used on the integrated data. A transcriptome-wide association study (TWAS) was conducted using FUSION software to assess the association between predicted gene expression and DCS risk. The TWAS-identified genes were verified via comparison with differentially expressed genes (DEGs) in DCS RNA expression profiles in the Gene Expression Omnibus (GEO) (Accession Number: GSE153761). The Functional Mapping and Annotation (FUMA) tool for genome-wide association studies and Meta tools were used for gene functional enrichment and annotation analysis.Aims
Methods
Introduction. We have developed a new synthetic hydrogel that can be injected directly into the intervertebral disc (IVD) without major surgery. Designed to improve fixation of joint prosthesis, support bone healing or improve spinal fusion, the liquid may support the differentiation of native IVD cells towards osteoblast-like cells cultured within the hydrogel. Here we investigate the potential of this gel system (Bgel) to induce bone formation within intervertebral disc tissue. Methods. IVD tissue obtained from patients undergoing discectomy, or cadaveric samples, were cultured within a novel explant device. The hydrogel was injected, with and without mesenchymal stem cells (MSCs), and cultured under hypoxia, to mimic the degenerate IVD environment, for 4 weeks. Explants were embedded to wax and native cellular migration into the hydrogel was investigated, together with cellular
Purpose of study and background. IVD degeneration is a major cause of Low back pain. We have previously reported an injectable hydrogel (NPgel), which induces differentiation of human MSCs to disc cells and integrates with NP tissue following injection in vitro. However, the translation of this potential treatment strategy into clinic is dependent on survival and differentiation of MSCs into disc cells within the degenerate IVD. Here, we investigated the viability and differentiation of hMSCs incorporated into NPgel cultured under conditions mimicking the healthy and degenerate microenvironment of the disc. Methods and Results. MSCs were cultured in NP gel under 5% O. 2. in either: standard culture (DMEM, pH7.4); healthy disc (DMEM, pH7.1); degenerate disc (low glucose DMEM, pH6) or degenerate disc plus IL-1β. Following 4 weeks histological staining and immunohistochemical analysis investigated viability, ECM synthesis and matrix degrading enzyme expression. Here we have shown that viability and NP cell differentiation of MSCs incorporated within NPgel was mostly unaffected by treatment with conditions such as low glucose, low pH and the presence of cytokines, all regarded as key contributors to disc degeneration. In addition, the NPgel was shown to prevent MSCs from displaying a catabolic