Advertisement for orthosearch.org.uk
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

Spine

INJECTABLE SPINAL FUSION

The Society for Back Pain Research (SBPR) Annual General Meeting 2019, ‘From Bench to Bedside’. Sheffield, England, 5–6 September 2019.



Abstract

Introduction

We have developed a new synthetic hydrogel that can be injected directly into the intervertebral disc (IVD) without major surgery. Designed to improve fixation of joint prosthesis, support bone healing or improve spinal fusion, the liquid may support the differentiation of native IVD cells towards osteoblast-like cells cultured within the hydrogel. Here we investigate the potential of this gel system (Bgel) to induce bone formation within intervertebral disc tissue.

Methods

IVD tissue obtained from patients undergoing discectomy, or cadaveric samples, were cultured within a novel explant device. The hydrogel was injected, with and without mesenchymal stem cells (MSCs), and cultured under hypoxia, to mimic the degenerate IVD environment, for 4 weeks. Explants were embedded to wax and native cellular migration into the hydrogel was investigated, together with cellular phenotype and matrix deposition.

Results

Increased collagen deposition was seen in tissue explants injected with Bgel, with evidence of elevated native cell migration towards the hydrogel. Increased collagen staining was seen in explants injected with Bgel together with MSCs. Alizarin red staining was utilised to investigate calcium deposition. Tissue explants, in the absence of Bgel, showed limited calcium deposition. This was increased in hydrogel-treated samples, with large clumping regions in the tissue that was injected with Bgel and MSCs.

Conclusion

The injection of our synthetic hydrogel into disc tissue explants increased the amount of collagen and calcium deposition. This was further enhanced by the incorporation of MSCs, suggesting the promotion of bone formation. Current work is investigating phenotypic markers for bone formation within these tissues.

CS and CLM have a patent on the hydrogel system described in this abstract.

Funded by EPSRC and Grow MedTech


Email: