Advertisement for orthosearch.org.uk
Results 1 - 20 of 48
Results per page:
Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_5 | Pages 95 - 95
1 Apr 2019
Ku M
Full Access

Purpose. Total knee replacement is the one of the most performed surgeries. However, patient's satisfaction rate is around 70–90 % only. The sacrifice of cruciate ligament might be the main reason, especially in young and active patients. ACL stabilizes the knee by countering the anterior displacing and pivoting force, absorbs the shock and provides proprioception of the knee. However, CR knees has been plagued by injury of PCL during the surgery and preservation of the ACL is a demanding technique. Stiffness is more common comparing to PS designed knee. To insert a tibial baseplate with PE is usually thicker than 8 mm comparing to 2–4 mm of removed tibial bone. The stuffing of joint space may put undue tension on preserved ACL and PCL. Modern designed BCR has been pushed onto market with more sophisticated design and instrumentation. However, early results showed high early loosening rate. Failure to bring the tibia forward during cementing may be the main cause. The bone island where ACL footprint locates is frequently weak, intraoperative fracture happens frequently. A new design was developed by controlled elevation and reattachment of the ACL footprint to meet all the challenges. Method. A new tibial baseplate with a keel was designed. The central part of the baseplate accommodates elevated bony island with ACL footprint. The fenestrations at the central part is designed for reattachment of bony island under proper tension with heavy sutures and fixed at anterior edge of the baseplate in suture bridge fashion and also for autograft to promote bony healing after reattachment. The suture bridge method has been used by arthroscopists for ACL avulsion fracture without the need of immobilization. The elevation of bony island release the tension in the ACL which come from stuffing of baseplate and PE insert and greatly facilitate cementing of the baseplate. The keel improve the weakness of traditional U shape design of BCR knees. Instead of keeping the bony island intact by separately cutting the medial and lateral tibial plateau in BCR knees in the past, we choose to saw the tibial plateau in one stroke as in PS knees, then removes the two condyles. The bony island includes the footprint both ACL and PCL. The central part of tibial baseplate will push the bony island upward which release the undue tension in the cruciate ligaments. Summary. We proposed a new solution for the kinematic conflict in the present bi-cruciate knee designs by elevation and re- attachment of bony island with ACL footprint at the same time simplify the ACL preservation. The simple tibial cutting procedure also facilitate the process. The technique protects PCL from injury during tibial bone cutting in CR knees. We believe the new BCR design has the potential to replace CR knee in term of function and longevity in the future


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_34 | Pages 196 - 196
1 Dec 2013
Pearce S Walter W Gillies M
Full Access

The design of the femoral prosthesis in cementless total hip arthroplasty is known to affect the initial strains in the cortex during implantation and in the early postoperative time period. High strains have a direct influence on periprosthetic fracture. This study compares the existing ABGII stem, which is proximally coated with a grit blasted titanium surface with hydroxyapatite coating with a prototype that has a rougher titanium plasma spray proximal coating. The Australian National Joint registry results 2011 reported the ABG2 femoral component cumulative percent revision (CPR) of 6.5 (93.5% survival), which compares favourably with equivalent stems with 10 year CPR data such as the Taperloc 6.6 and Corail 7.3.

Six pairs of fresh-frozen cadaveric femurs were mounted in blocks according to ISO guidelines in single leg stance setup. Five strain gauges were attached around the neck of the femur and then prepared according to routine operative techniques to accept the femoral prosthesis. Cortical strains were measured during insertion of the prosthesis with an instrumented mallet attached to an accelerometer. Subsequently, force-displacement readings were taken during cyclical loading on a servo-hydraulic machine and finally the stems were tested to failure.

Our results showed significantly less strain during cyclical loading of the stem with increased surface roughness (p < 0.05). They also showed no significant differences loads/strains during impaction (p = 0.159), no significant difference in micromotion (p = 0.148) and no significant difference in load-to-failure (p = 0.37).


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_3 | Pages 100 - 100
23 Feb 2023
Tran T Driessen B Yap V Ng D Khorshid O Wall S Yates P Prosser G Wilkinson M Hazratwala K
Full Access

Clinical success of prostheses in joint arthroplasty is ultimately determined by survivorship and patient satisfaction. The purpose of this study was to compare (non-inferiority) a new morphometric designed stem for total hip arthroplasty (THA) against an established comparator. A prospective randomised multi-centre study of 144 primary cementless THA performed by nine experienced orthopaedic surgeons was completed (70 received a fully coated collarless tapered stem and 74 received a morphometric designed proximally coated tapered stem). PROMs and blood serum markers were assessed preoperatively and at intervals up to 2-years postoperatively. In addition, measures of femoral stem fit, fill and subsidence at 2-years post-operatively were measured from radiographs by three observers, with an intra-class correlation coefficient of 0.918. A mixed effects model was employed to compare the two prosthesis over the study period. A p-value <0.05 was considered statistically significant. Demographics, Dorr types and blood serum markers were similar between groups. Both stems demonstrated a significant improvement in PROMs between the pre- and post-operative measurements, with no difference at any timepoint (p > 0.05). The fully coated tapered collarless femoral stem had a non-significantly higher intra-operative femoral fracture rate (5.8% vs 1.4%, p = 0.24), with all patients treated with cable fixation and partial weight bearing. The mean subsidence at 2-years was 2.5mm +/- 2.3mm for the morphometric stem and 2.4mm +/- 1.8mm for the fully coated tapered collarless femoral stem (p = 0.879). There was one outlier in each group with increased subsidence (fully coated tapered collarless femoral stem 6.9mm, morphometric wedge stem 7.4mm), with both patients reporting thigh pain at 2 years. When compared with an established stem, the newer designed morphometric wedge stem performed well with comparable radiological and PROM outcomes at 2 year follow up. Continued follow-up is required for long term benchmarking


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_2 | Pages 36 - 36
10 Feb 2023
Driessen B Yap V Ng D Korshid O Wall S Yates P Prosser G Wilkinson M Hazratwala K Tran. T
Full Access

Clinical success of prostheses in joint arthroplasty is ultimately determined by survivorship and patient satisfaction. The purpose of this study was to compare (non-inferiority) a new morphometric designed stem for total hip arthroplasty (THA) against an established comparator. A prospective randomised multi-centre study of 144 primary cementless THA performed by nine experienced orthopaedic surgeons was completed (70 received a fully coated collarless tapered stem and 70 received a morphometric designed proximally coated tapered stem). PROMs and blood serum markers were assessed preoperatively and at intervals up to 2-years postoperatively. In addition, measures of femoral stem fit, fill and subsidence at 2-years post-operatively were measured from radiographs by three observers, with an intra-class correlation coefficient of 0.918. A mixed effects model was employed to compare the two prostheses over the study period. A p-value <0.05 was considered statistically significant. Demographics and Dorr types were similar between groups. Both stems demonstrated a significant improvement in PROMs between the pre- and post-operative measurements, with no difference at any timepoint (p > 0.05). The fully coated tapered collarless femoral stem had a non-significantly higher intra-operative femoral fracture rate (5.8% vs 1.4%, p = 0.24), with all patients treated with cable fixation and partial weight bearing. The mean subsidence at 2-years was 2.5mm +/- 2.3mm for the morphometric stem and 2.4mm +/- 1.8mm for the fully coated tapered collarless femoral stem (p = 0.879). There was one outlier in each group with increased subsidence (fully coated tapered collarless femoral stem 6.9mm, morphometric wedge stem 7.4mm), with both patients reporting thigh pain at 2 years. When compared with an established stem, the newer designed morphometric wedge stem performed well with comparable radiological and PROM outcomes at 2 year follow up. Continued follow-up is required for long term benchmarking


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_14 | Pages 11 - 11
23 Jul 2024
Sarhan M Moreau J Francis S Page P
Full Access

Hip fractures frequently occur in elderly patients with osteoporosis and are rapidly increasing in prevalence owing to an increase in the elderly population and social activities. We experienced several recent presentations of TFNA nails failed through proximal locking aperture which requires significant revision surgery in often highly co-morbid patient population. The study was done by retrospective data collection from 2013 to 2023 of all the hip fractures which had been fixed with Cephalomedullary nails to review and compare Gamma (2013–2017) and TFNA (2017–2023) failure rates and the timing of the failures. Infected and Elective revision to Arthroplasty cases were excluded. The results are 1034 cases had been included, 784 fixed with TFNA and 250 cases fixed Gamma nails. Out of the 784 patients fixed with TFNA, 19 fixation failed (2.45%). Out of the 250 cases fixed with Gamma nails, 15 fixation failed (6%). Mean days for fixation failure were 323 and 244 days in TFNA and Gamma nails respectively. We conclude that TFNA showed remarkable less failure rates if compared to Gamma nails. At point of launch, testing was limited and no proof of superiority of TFNA over Gamma nail. Several failures identified with proximal locking aperture in TFNA which can be related to the new design which had Substantial reduction in lateral thickness at compression screw aperture


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_4 | Pages 92 - 92
1 Apr 2019
Matsuki K Matsuki K Sugaya H Takahashi N Hoshika S Tokai M Ueda Y Hamada H Banks S
Full Access

Background. Scapular notching is a complication after reverse shoulder arthroplasty with a high incidence up to 100%. Its clinical relevance remains uncertain; however, some studies have reported that scapular notching is associated with an inferior clinical outcome. There have been no published articles that studied positional relationship between the scapular neck and polyethylene insert in vivo. The purpose of this study was to measure the distance between the scapular neck and polyethylene insert in shoulders with Grammont type reverse shoulder arthroplasty during active external rotation at the side. Methods. Eighteen shoulders with Grammont type prosthesis (Aequalis Reverse, Tornier) were enrolled in this study. There were 13 males and 5 female, and the mean age at surgery was 74 years (range, 63–91). All shoulders used a glenosphere with 36mm diameter, and retroversion of the humeral implant was 10°in 4 shoulders, 15°in 3 shoulders, and 20°in 11 shoulders. Fluoroscopic images were recorded during active external rotation at the side from maximum internal to external rotation at the mean of 14 months (range, 7–24) after surgery. The patients also underwent CT scans, and three-dimensional glenosphere models with screws and scapula neck models were created from CT images. CT-derived models of the glenosphere and computer-aided design humeral implant models were matched with the silhouette of the implants in the fluoroscopic images using model-image registration techniques (Figure 1). Based on the calculated kinematics of the implants, the closest distance between the scapular neck and polyethylene insert was computed using the scapular model and computer-aided design insert models (Figure 2). The distance was computed at each 5° increment of glenohumeral internal/external rotation, and the data from 20°internal rotation to 40°external rotation were used for analyses. One-way repeated-measures analysis of variance was used to examine the change of the distance during the activity, and the level of significance was set at P < 0.05. Results. The mean glenohumeral abduction during the activity was 17°-22°. The mean distance between the neck and insert was approximately 1mm throughout the activity (Figure 3). The distance tended to become smaller with the arm externally rotated, but the change was not significant. Discussion. The reported incidence of scapular notching after Grammont type reverse shoulder arthroplasty is generally higher than the newer design prosthesis with the lateralized center of rotation. This may be associated with the design of the prosthesis, and the results of this study that the distance between the neck and insert was approximately 1mm throughout active external rotation at the side will support the high incidence of notching. We may need to analyze the distance with the newer design reverse shoulder prosthesis to prove the architectural advantage of the newer systems. Conclusion. The distance between the scapular neck and polyethylene insert was approximately 1mm throughout active external rotation activity in shoulders with Grammont type prosthesis


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XL | Pages 192 - 192
1 Sep 2012
Tomaszewski P Verdonschot N Bulstra S Verkerke G
Full Access

For amputated patients, direct attachment of upper leg prosthesis to the skeletal system by a percutaneous implant is an alternative solution to the traditional socket fixation. Currently available implants, the OPRA system (Integrum AB, Göteborg, Sweden) and the ISP Endo/Exo prosthesis (ESKA Implants AG, Lübeck, Germany) [1-2] allow overcoming common soft tissue problems of conventional socket fixation and provide better control of the prosthetic limb [3], higher mobility and comfort [2, 4]. However, restraining issues such as soft-tissue infections, peri-prosthetic bone fractures [3, 5–8] and considerable bone loss around the stem [9], which might lead to implant's loosening, are present. Finally, a long a residual limb is required for implant fitting. In order to overcome the limiting biomechanical issues of the current designs, a new concept of the direct intramedullary fixation was developed. The aim was to restore the natural load transfer in the femur and allow implantations in short femur remnants (Figure 1). We hypothesize that the new design will reduce the peri-prosthetic bone failure risk and adverse bone remodeling. Generic CT-based finite element models of an intact femoral bone and amputated bones implanted with 3 analyzed implants were created for the study. Models were loaded with two loading cases from a normal walking obtained from the experimental measurements with the OPRA device [10-11]. Periprosthetic bone failure risk was evaluated by considering the von Mises stress criterion [12-14]. Subsequently the strain adaptive bone remodeling theory was used to predict long-term changes in bone mineral density (BMD) around the implants. The bone mineral content (BMC) change was measured around implants and the results were visualized in the form of DXA scans. The OPRA and the ISP implants induced the high stress concentration in the proximal region decreasing in the distal direction to values below physiological levels as compared with the intact bone. The stresses around the new design were more uniformly distributed along the cortex and resembled better the intact case. Consequently, the bone failure risk was reduced as compared to the OPRA and the ISP implants. The adaptive bone remodeling simulations showed high bone resorption around distal parts of the OPRA and the ISP implants in the distal end of the femur (on average −75% ISP to −78% OPRA after 60 months). The bone remodeling simulation did not reveal any bone loss around the new design, but more bone densification was seen (Figure 2). In terms of total bone mineral content (BMC) the OPRA and the ISP implants induced only a short-term bone densification in contrast to the new design, which provoked a steady increase in the BMC over the whole analyzed period (Figure 3). In conclusion, we have seen that the new design offers much better bone maintenance and lower failure probability than the current osseointegrated trans-femoral prostheses. This positive outcome should encourage further developments of the presented concept, which in our opinion has a potential to considerably improve safety of the rehabilitation with the direct fixation implants and allow treatment of patients with short stumps


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_34 | Pages 592 - 592
1 Dec 2013
Wright T Gunsallus K Lipman J Hotchkiss R Figgie MP
Full Access

Implant designs for hip and knee arthroplasty have undergone a continual improvement process, but development of implants for total elbow arthroplasty (TEA) have lagged behind despite the marked mechanical burden placed on these implants. TEA is not as durable with failure rates approaching thirty percent at five years. The Coonrad-Morrey (Zimmer, Warsaw, IN), a linked design, remains the standard-bearer, employing polyethylene bushings through which a metal axle passes. A common failure mode is bushing wear and deformation, causing decreased joint function as the bushing-axle constraint decreases and osteolysis secondary to release of large volumes of wear debris. Improving upon this poor performance requires determining which factors most influence failure, so that failure can be avoided through design improvements. The approach integrates clinical observations of failed TEAs with implant retrieval analysis, followed by measurements of loads across the elbow for use in stress analyses to assess the performance of previous designs, and, finally, new design approaches to improve performance. Examination of the clinical failures of more than seventy Coonrad-Morrey TEAs revealed patterns of decreased constraint and stem loosening. Implant retrieval analysis from more than thirty of these cases showed excessive bushing deformation and wear and burnishing of the fixation stems consistent with varus moments across the joint. To determine loads across the elbow, motion analysis data were collected from eight TEA patients performing various activities of daily living. The kinematic data were input into a computational model to calculate contact forces on the total elbow replacement. The motion that produced the maximum contact force was a feeding motion with the humerus in 90° of abduction. For this motion, the joint reaction forces and moments at the point of maximum contact were determined from a computational model. We applied these loads to numerical models of the articulating bushings and axle of the Coonrad-Morrey to examine polyethylene strains as measures of damage and wear. Strain patterns in response to the large varus moment applied to the elbow during feeding activities showed extensive plastic deformation in the locations at which deformation and wear damage were observed in our retrieved implants (Fig. 1). Finally, we examined a new semi-constrained design concept intended to meet two goals: transfer contact loads away from the center of the joint, thus allowing contact to provide a larger internal moment to resist the large external varus moment; and reduce polyethylene strains by utilizing curved contacting surfaces on both the axle and the bushings (Fig. 2). After a sensitivity analysis to determine optimal dimensional choices (e.g., bushing and axle radii), we compared the resulting polyethylene strains between the Coonrad-Morrey and new design at locations that experienced the largest strains (Fig. 3). Substantial decreases were achieved, suggesting far less deformation and wear, which should relate to marked improvements in performance. Currently, we are incorporating this new design concept, along with alterations in stem design achieved from examination of load transfer at the fixation interfaces based on the same loading conditions, to achieve an implant system intended to improve the performance of TEA


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_5 | Pages 84 - 84
1 Apr 2018
Michna V Phillips A Hayes K Tulkis P Raja L Abitante P
Full Access

Introduction. Long term acetabular component fixation is dependent on bone ingrowth, which is affected by initial stability and the contact area between the bone and acetabular component. Mismatch between the component and cavity size has been shown to be one reason for component loosening. Furthermore, the potential of acetabular fracture during insertion of oversized components is larger than line-to-line components. An ideal cavity preparation would be a true hemispherical cavity that can provide maximum contact area between the shell and bone while also achieving adequate press fit for implant initial stability. The goal of this study was to characterize the cavity morphology produced by a commercially available reamer and compare it to a new reamer design. Materials & Methods. 36mm and 52mm reamers (n=6) were selected from conventional reamers (Stryker, Mahwah, NJ), which have successful clinical history exceeding 20 years, and Smooth Cut Reamers (Tecomet, Warsaw, IN and Stryker, Mahwah, NJ), which are a new design. Hemispherical cavities were created in 30 pcf polyurethane foam blocks (Pacific Research Laboratories, WA) using a custom software for the Mako System (Stryker, Mahwah, NJ), with new reamers of both designs. A reamer 2mm smaller in diameter than the final size was used to create a pilot cavity to replicate a clinically relevant reaming scenario. The resulting cavities were scanned using a Triple Scan high resolution 3D Scanner (ATOS, Purchase, NY) to generate 3D models of each cavity. The models were then post processed, and the following dimensions were collected:. Gaussian best fit spherical diameter of the entire cavity (Dimension A). Gaussian best fit diameter at the rim of the cavity (measured at a distance of 0.25mm from the top surface of the foam block) (Dimension B). One-sided two sample T-tests were conducted to determine statistical significance. Results. The deviation was calculated by subtracting the desired diameter from the observed diameter, therefore, a negative value would indicate an undersized cavity. The average diametrical deviation for the 38 and 52mm reamers for dimension A was −0.22 ± 0.07 and −0.01 ± 0.11 respectively for the Smooth Cut Reamer. The average diametrical deviation for the 38 and 52mm reamers for dimension A was −0.60 ± 0.24 and −0.72 ± 0.21 respectively for the Conventional Reamer. The average diametrical deviation for the 38 and 52mm reamers for dimension B was −0.97 ± 0.05 and −0.54 ± 0.11 respectively for the Smooth Cut Reamer. The average diametrical deviation for the 38 and 52mm reamers for dimension B was −1.35 ± 0.28 and −1.53 ± 0.27 respectively for the Conventional Reamer. Discussion. This study evaluated the accuracy of two different acetabular reamer designs. Results indicate that the Smooth Cut Reamers produce a cavity that is larger and more accurate to the indicated size of the reamer as shown by the reduced diametrical deviation at the rim (p-value < 0.05) and average spherical diameter (p-value < 0.05). Further investigation is warranted to determine if the variation in cavity geometry impacts shell seating and initial stability


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_4 | Pages 10 - 10
1 Feb 2017
Harman M Schoeneberg L Otto S Schmitt S
Full Access

Introduction. In addition to traditional posterior-stabilized (PS) designs with cam-post articulations, there are two new design concepts used in total knee replacement (TKR) to “substitute” for cruciate ligament function and restore anterior-posterior stability. These include i) guided-motion PS designs with a modified cam-post that is less restrictive to axial rotation; and ii) non-PS designs that incorporate progressive articular congruency to substitute the function of the resected anterior cruciate ligament (ACL-substituting). Early post-marketing surveillance of such new TKR designs is valuable because instability, loosening, and high complication rates within the initial 5 year follow-up interval have proven problematic for some design. This study reports the early clinical performance of sequential patients implanted with a new ACL-substituting TKR design at a German Center of Excellence for Arthroplasty (EPZ-Max) hospital. Methods. This is a single-site, multi-surgeon retrospective study with Institutional Review Board approval. The nine surgeons involved all used uniform surgical techniques, including a mid-vastus approach, PCL preservation with a bone block, tibial component alignment with the natural tibial slope, no patellar resurfacing, and cement fixation. All patients meeting the following inclusion criteria were contacted by phone: a) primary TKR from July 2008-June 2009; b) implanted with an ACL-substituting design (3D Knee™, DJO Surgical); c) no prior knee arthroplasty; and d) willing to consent to participate. Recorded outcomes at the 5 year follow-up interval included range of motion, Knee Society knee/function scores (KSS), and radiographic results (alignment, radiolucent lines, osteolysis). Additional surgery was classified as “revision” (metal components removed) or “reoperation” (metal components not removed). Results. Out of 166 sequential patients, a study cohort of 69 patients (84 TKR) consented to participate. Average follow-up was 6.2+0.6 (4.7–7.3) years. Maximum flexion averaged 115°+9° (85°–145°), including 39% at >120°. The TKR had stable function and average KSS scores of 94 (knee) and 94 (function). There were four patients (5 TKR, 6.3%) with function scores of <60 points who had considerable pre-operative extension lags (>10°) that lingered (5°–10°) at follow-up. No TKR had evidence of osteolysis or loosening. Non-progressive radiolucent lines were evident post-operatively in 10 TKR and in one additional TKR at last follow-up. Seven (8.3%) TKR required reoperation or revision. Five TKR in the 0–5 year interval required reoperation to treat acute infection, progressive patellar arthritis, and traumatic patellar fracture, and revision to treat pain of unknown etiology (2 TKR revised at another hospital). Two TKR in the 5–6 year interval required revision arthroplasty to treat pain associated with a loose tibial insert screw and unknown symptoms (1 TKR revised at another hospital). Conclusion. This new ACL-substituting design incorporates progressive congruency in the lateral compartment. These data, combined with previous studies (Table 1), provides evidence that this ACL-substituting TKR design restores stability while being robust to surgical and patient variations. These results for a fixed-bearing, non-PS TKR design are supported by international registry data from more than 370,000 TKR in six countries, which demonstrate that survivorship of fixed-bearing cruciate-retaining TKR designs is significantly higher than posterior-stabilized TKR designs, both with and without patella resurfacing


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_4 | Pages 120 - 120
1 Jan 2016
Watanabe T Muneta T Sekiya I Koga H Horie M Nakamura T Otabe K Banks S
Full Access

INTRODUCTION. Total knee arthroplasty (TKA) is one of the most successful and beneficial treatments for osteoarthritic knees. We have developed posterior-stabilized (PS) total knee prosthesis for Asian patients, especially Japanese patients, and have used it since November, 2010. The component was designed based on the CT images of osteoarthritic knees, aiming to achieve deep flexion and stability. The purpose of this study was to analyze in- vivo kinematics of this new prosthesis. METHODS. We analyzed a total of 28 knees implanted with PS TKAs: Fourteen knees with the new PS prosthesis (group A), and the other fourteen knees with a popular PS prosthesis as a control group (group B). Preoperative data of both groups were not significantly difference. Flat-panel radiographic knee images were recorded during five static knee postures including full extension standing, lunge at 90° and maximum flexion, and kneeling at 90° and maximum flexion. The three-dimensional position and orientation of the implant components were determined using model-based shape matching techniques. The results of this shape-matching process have standard errors of approximately 0.5° to 1.0° for rotations and 0.5 to 1.0 mm for translations in the sagittal plane. Unpaired t-tests were used for statistical analysis and probability values less than 0.05 were considered significant. RESULTS. The maximum implant flexion angles tended to be greater in group A than group B (Fig. 1a), averaging 117±8° and 109 ± 14° in lunge (p=0.054), and 119 ± 7° and 110 ± 14° in kneeling (p=0.061), in Groups A and B respectively. Femoral external rotation was significantly smaller in group A than group B (Fig. 1b), averaging 7±7° and 10±5° mm in lunge (p<0.05), and 6±7° and 8±3° in kneeling (p<0.05). The medial condylar AP translations were greater in group A than group B (Fig. 1c), averaging −7±3mm and −3±3mm in lunge (p<0.05), and −6±2mm and −4±3mm in kneeling (p<0.05), respectively. Lateral condylar AP translations were not significantly different between the two groups except at 90° kneeling (Fig. 1d). DISCUSSION. Both implants are designed to achieve deep flexion, preventing edge loading until 155° flexion. Post/cam engagement occurs at 75° flexion in both system and the implant shapes are similar. Positive correlations have been reported between increasing femoral posterior translation and greater maximum knee flexion. The cam/post design of the new implant is configured to provide approximately 8mm of posterior femoral translation at 120° flexion which, on average, was slightly greater than observed in the control knees. Slightly greater lunge and keeling flexion in knees with the new design may be a manifestation of this greater posterior femoral translation. Previous studies have failed to demonstrate axial rotation as a predictor of greater flexion. Likewise, our data do not show a relationship between axial rotation and maximum flexion. The new TKA designed for Asian knees appears to perform comparably to a traditional high-flexion PS design, but may show some improvement in functional flexion due to greater posterior femoral translation


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_3 | Pages 104 - 104
1 Feb 2017
Noble P Dua R Jones H Garrett K
Full Access

Background. Recent advances in materials and manufacturing processes for arthroplasty have allowed fabrication of intricate implant surfaces to facilitate bony attachment. However, refinement and evaluation of these new design strategies is hindered by the cost and complications of animal studies, particularly during early iterations in development process. To address this problem, we have constructed and validated an ex-vivo bone bioreactor culture system to enable empirical testing of candidate structures and materials. In this study, we investigated mineralization of a titanium wire mesh scaffold under both static and dynamic culturing using our ex vivo bioreactor system. Methods. Cancellous cylindrical bone cores were harvested from bovine metatarsals and divided into five groups under different conditions. After incubation for 4 & 7 weeks, the viability of each bone sample was evaluated using Live-Dead assay and microscopic anatomy of cells were determined using histology stain H&E. Matrix deposits on the scaffolds were examined with scanning electron microscopy (SEM) while its chemical composition was measured using energy-dispersive x–ray spectroscopy (EDX). Results. The viability of bone cores was maintained after seven weeks using our protocol and ex vivo system. From SEM images, we found more organic matrix deposition along with crystallite like structures on the metal samples pulled from the bioreactor indicating the initial stages of mineralization. EDX results further confirmed the presence of carbon and calcium phosphates in the matrix. Conclusion. A bone bioreactor can be used a tool alternate to in-vivo for bone ingrowth studies on new implant surfaces or coatings


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_7 | Pages 54 - 54
1 Apr 2017
Duncan C
Full Access

Cementless stem fixation is a widely used method of stem revision in North America and elsewhere in the world. There is abundant literature in its support. Most of the reports from 1985 to 2005 related to proximally or extensively porocoated designs, the former falling into disfavor with time because of unpredictable outcomes. With few exceptions (e.g. S-ROM) the modularity of these designs was limited to the head/neck junction. But this generation of designs was associated with some issues such as insertional fractures, limited control of anteversion (and risk of dislocation), limited applicability in the setting of severe bone loss (Paprosky Type 4 osteolysis or Vancouver Type B3 periprosthetic fracture), as well as ongoing concern relating to severe proximal stress shielding. In the past decade we have seen the mounting use of a new design concept: tapered fluted titanium stems (TFTS), which incorporate the advantages of titanium (for less flexural rigidity), conical taper (for vertical taper-lock stability), longitudinal ribs or flutes (for rotational stability), and surface preparation which attracts bone ongrowth for long term fixation. Four consecutive reports from our center have documented the superiority of the TFTS in our hands, with encouraging outcomes even when dealing with severe bone loss or periprosthetic fractures. There is an increasing body of other literature which reports a similar experience. Furthermore, with increasing experience and confidence in this design concept, we now use a monoblock or non-modular design in the majority of cases in which a TFTS is indicated. This circumvents the potential drawbacks of stem modularity, including taper corrosion and taper junction fracture. Our recent report of this concept in 104 cases with a 2-year minimum follow-up supports the use of this concept in many if not most stem revisions. The question remains as to which should be favored? Because of equipoise in the outcomes of the two fundamental stem designs, at least in our hands, clearly the surgeon needs to ask other, more practical questions:. Am I familiar enough with the TFTS technique so as to bypass the potential versatility of the modular stem for the simplicity and potential cost savings of the non-modular?. Is this a case in which modularity will offer me distinct advantages (periprosthetic fracture, and severe bone loss as examples). Should I introduce the nonmodular TFTS to my practice, choosing straightforward cases first; ones in which I would comfortably and with confidence use an extensively porocoated stem?


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_3 | Pages 44 - 44
1 Jan 2016
Miyamoto S Iida S Suzuki C Kishida S Nakamura J Shinada Y Hgiwara S Omae T
Full Access

Introduction. The cement mantle thickness for cemented stem during total hip arthroplasty (THA) is different between the complete cement mantle technique and the line-to-line technique. In the line-to-line technique, the size of the rasp is same as that of the stem. We performed THA in321 hipsof 289 patientsusing a new designed triple-tapered polished cemented stem. We investigated the short-term result of these 321 hips clinically and radiographically. Materials and Methods. From February 2002 to December 2012, 321 THAs were performed in 289 patients with the use oftriple-tapered polished cemented stem (Trilliance). Of these, 306 hips in 274 patients who were followed over 6 months, were evaluated. All THAs were undergone with direct anterior approach in supine position. The third generation cementing technique was standardized. The mean age at surgery was 65.3 years and the mean follow-up period was 24.6 months. Clinical results were evaluated by Japanese Orthopaedic Association (JOA) hip score. Intra-postoperative complications were investigated. Radiographic examinations were performed to investigate the findings of stem loosening, stress shielding, radiolucent line, osteolysis, stem subsidence, stem alignmentand cementing grade on plain radiograph. Results. The mean JOA hip score improved from 40.7 pointspreoperatively to 93.2 points at the final follow-up. As complication, 1 late onset deep infection, 2 postoperative dislocations and 1 intraoperative fracture occurred. The mean stem subsidence was 0.22mm at 6 months, 0.33mm at 1year, 0.42mm at 2 years, 0.48mm at 3 years, and 0.53mm at 4 years


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_4 | Pages 87 - 87
1 Feb 2017
Kuropatkin G Osin D
Full Access

Managing severe acetabular bone defects during primary and revision total hip arthroplasty is a challenging problem. Standard treatment options for this cases is using of acetabular reconstruction type-Burch-Schneider rings. Unfortunately, the possibility of osseointegration of these implants with surrounding bone has always remained a contentious issue. The emergence in recent years of new designs of trabecular titanium, representing a symbiosis of acetabular reconstructive plates and modular cup helped to solve this problem on a completely new level. The aim of this prospective study is to evaluate the short and mid-term clinical and radiographic outcomes of different types of acetabular revision cups - old and new design. From 2006 to 2015, we performed 48 acetabular reconstruction with reconstruction rings CONTUR Smith and Nephew(group 1) and 34 operations with Delta TT Lima Revision system (group 2). The mean age of patients was 59.2 years (range 30–79). Indications for operations included fractures in acetabular region (10 pat – 12,2 %), acetabular nonunions with bone defects (14 pat – 17,1%), aseptic loosening with multiple dislocation of the primary implants in 38 cases (46,3%) and second stage of infection treatment in 20 cases (24.4%). Clinical and functional outcomes were evaluated by Harris Hip Score (HHS). Bone density in Charnley's zones was measured by dual-energy x-ray absorptiometry. With CONTUR reconstruction rings were used 3 different types of bearing surface articulation (22 metal/polyethylene, 10 ceramic/polyethylene, and 16 oxinium/polyethylenel). With Delta TT Revision system were used metal/poly couples in 22 cases, ceramic/poly in 6 cases, and ceramic/ceramic couple in 4 cases. In two patients with high risk of dislocations were used double mobility system. In all operations with CONTUR rings was used bone impaction grafting to fill cavitary defects (Paprosky 2B-3A), with Delta TT Revision system in 14 cases (41,2%) additionally TT augments were used. In group 1 were 3 dislocations (6,3 %), 2 deep infections (4,2 %) and 4 aceptic loosenings with secondary instability of implants (8,3 %). In group 2 Trabecular Titanium showed a high capacity of osseointegration, providing good results in short-term follow-up. We registered only 2 dislocations (5,8 %) and 1 aceptic loosening (2,9 %). The mean HHS increased from 39.7 (range 23–62) preoperatively to 86.5 (range 68–98) at the last follow-up examination. The implanted cups were radiographically stable at the last follow-up visit (1 and 2 years) without radiolucent lines or periprosthetic osteolysis. Conclusions. Delta Revision TT is a good solution for acetabular reconstruction even when there are cavitary and segmental bone defects. Modularity of this system make it possible to correct inlay position, center of hip rotation and minimising the risk of dislocation


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_6 | Pages 7 - 7
1 Mar 2017
Siggelkow E Uthgenannt B Greuter D Sauerberg I Bandi M
Full Access

INTRODUCTION. The intact, healthy human knee joint is stable under anterior-posterior (AP) loading but allows for substantial internal-external (IE) laxity. In vivo clinical studies of the intact knee consistently demonstrate femoral rollback with flexion (Hill et al., 2000, Dennis et al., 2005). A tri-condylar, posterior stabilized (PS) total knee arthroplasty (TKA) with a rotating platform bearing (TKA-A) has been designed to address these characteristics of the intact knee. The third condyle is designed to guide the femoral component throughout the entire flexion arc (AP stability and femoral rollback with flexion), while the rotating platform bearing allows for IE rotation. This study used a computer model to compare the AP and IE laxity of a new TKA-A to that of two clinically established TKAs (TKA-B: rotating PS TKA, TKA-C: fixed PS TKA) and to demonstrate improvements in AP stability, IE rotation, and femoral rollback. METHODS. A specimen-specific, robotically calibrated computer knee model (Siggelkow et al., 2012), consisting of the femur, tibia and fibula as well as the kinetic contribution of the ligaments and capsule was virtually implanted with appropriate sizes of TKA-A, TKA-B and TKA-C adhering to the respective surgical techniques. A similar extension gap was targeted for all designs. The following kinematic data resulting from applied loads and moments were analyzed: 1) Passive AP and IE laxity (AP load: ± 50 N, IE moment: ± 6 Nm) of the midpoint between the flexion facet centers (Iwaki et al., JBJS, 2000) under low compression (44 N), 2) AP position of the medial and lateral low points (LP) of the femoral component during a lunge motion (Varadarajan et al., 2008). RESULTS. The TKA-A design demonstrated decreased AP laxity compared to TKA-B and TKA-C at all evaluated flexion angles beyond full extension (Figure 1, A). Both the TKA-A and TKA-B designs demonstrated greater IE laxity than TKA-C in early and mid-flexion (Figure 1, B). Considering lunge kinematics, the TKA-A design experienced the greatest rollback (change in AP position) of both condyles throughout flexion (lateral: 13 mm, medial: 7 mm) compared to TKA-B and TKA-C (lateral: 10 mm, medial: −1 mm; lateral: 9 mm medial: 6 mm), respectively. Rollback of the lateral condyle was greater than that of the medial condyle for all designs, which is consistent with the patterns reported for the intact knee (Hill et al., 2000, Dennis et al., 2005). Furthermore, the rate of rollback was more consistent for TKA-A compared to TKA-B and TKA-C. CONCLUSION. The new tri-condylar TKA design exhibited greater AP stability at all flexion angles and greater IE laxity through mid-flexion compared to two clinically-established TKA designs. In addition, posterior femoral rollback was more continuous for this new design. We attribute these findings to the design of the third condyle and the rotating platform bearing. For any figures or tables, please contact authors directly (see Info & Metrics tab above).


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_9 | Pages 49 - 49
1 May 2016
Mohammed A
Full Access

Background. External fixation for a fracture-dislocation to a joint like the elbow, while maintaining joint mobility is currently done after identifying the center of rotation under X-ray guidance, when applying either a mono-lateral or a circular fixator. Current treatment. using the galaxy fixation system by Orthofix, the surgeon needs to correctly identify the center of rotation of the elbow under X-ray guidance on lateral views. If the center of rotation of the fixator is not aligned with that of the elbow joint, the assembly will not work, i.e. the elbow will be disrupted on trying to achieve flexion or extension movements. Figures (A, B, C and D) summarize the critical steps in identifying the centre of rotation (Courtesy of Orthofix Orthopedics International). New design. This new idea aims to propagate the principle of sliding external fixation applied on the extensor side of a joint, with the limbs of the fixator being able to slide in and out during joint extension and flexion respectively, without hindering the joint movement. Taking the ulno-humeral joint as an example, it is enough to apply the sliding external fixator in line with the subcutaneous border of the ulna, and the pins in the sagital plane, without the need to use x-ray guidance to identify the center of rotation, which simplifies the procedure, and makes it less technically demanding. The sliding external fixator over the elbow involves two bars which accommodate half pins fixation with headless grip screws to hold the pins, identical to the Rancho cubes technique by Smith & Nephew, these slide snugly into sleeves, those sleeves linked together through a hinge behind the elbow, and the bars are spring loaded to the hinge through the inside of the sleeves, which means they will slid into the sleeves in extension and out in flexion. Length of the sleeve should prevent the bars from dislodgement, and the cross section of both the bars and the sleeves have to correspond to each other for the sleeves to accommodate the bars within them and to prevent rotational instability within the construct itself. Summary. Applying an external fixator on the extensor surface is an idea could lead to major changes in external fixation product design, the ulno-humeral joint is taken as an example, and other joints could also be addressed taking in consideration joint size and anatomical structures at risk. The sliding technique makes the application easier, without the need to X-ray guided identification of the center of rotation


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_1 | Pages 135 - 135
1 Jan 2016
Pourmoghaddam A Kreuzer S Freedhand A
Full Access

Introduction. Cementless stems have been used in treatment of patients with osteoarthritis however, the new design concept of neck preserving stems also known as short femoral stems have been utilized to decrease the potentially adverse symptoms of the standard stems such as stress shielding and thigh pain. In this ongoing study we aim to demonstrate the clinical and radiographic outcome of direct anterior approach of total hip arthroplasty (THA) by using short stem prosthesis. Methods. In this study, 390 total cases of THA in 345 patients who underwent an anterior approach of THA by using a short-stem prosthesis (Minihip, Corin) between 2009 and 2013 were reviewed. This group included 282 male and 62 female patients. Table 1 summarizes the demographic information of the patients. In 48 cases avascular necrosis (AVN) was the diagnosis and 339 cases was reported to be due to osteoarthritis. Twenty eight patients were assessed to have American Society of Anesthesiologist (ASA) physical functional score of class I, 258 patients had class II, 103 had class III, and 1 had class IV. Table 2 shows the Charnley classification of the patients. In the current study we evaluated the outcomes of the surgery by utilizing Hip Disability and Osteoarthritis Outcome Score (HOOS) subscales (Pain, Symptoms, Function in daily living (ADL), Function in sport and recreation (Sport/Rec) and Quality of life (QOL)). Results. All HOOS subscores were significantly increased postoperatively (F (5,97) = 1679, p < 0.001). The outcome are summarized in Table 4 and Figure 1. No failure of the implant has yet been reported however in 9 cases (2%) calcar fracture occurred during the surgery that was successfully treated with cerclage wires. Conclusion and Discussion. This study continues to support the excellent clinical outcomes of this short-stem prosthesis when is used for primary total hip arthroplasty. This short stem implant is an excellent choice particularly for younger individuals by preserving femoral neck bone that may provide easier revision procedures in the future


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_3 | Pages 134 - 134
1 Jan 2016
Reimeringer M Nuno N Ouellet J
Full Access

Introduction. Originally, the vertical expandable titanium rib (VEPTR™) was developed to treat children with Thoracic insufficiency syndrome secondary to fused ribs and congenital scoliosis. Over the years its usage has widen and is currently being used to treat all etiology of early onset scoliosis (EOS). A major draw back remains the size of the titanium VEPTR™ implant. In keeping with the new trend of chrome-cobalt alloy (CoCr). spinal implants, we set out to explore if redesigning the VEPTR™ was mechanically sound. The aim of this study was twofold. Firstly, we investigate the mechanical properties of a VEPTR™ made with CoCr alloy compared to that of titanium alloy. Secondly we investigated how much we could down size the VEPTR™. Materials & Methods. Finite element analyses were performed on 3 different VEPTR™ designs (rod diameter of 6mm, 5mm and 4mm) subjected to a compressive load of 500N (equivalent to a 50Kg child). For each configuration, two materials, titanium alloy and chrome-cobalt alloy, were used. Maximum Von Mises stress distribution (VMSD), plastic strain (PS) and total displacement (TD) of the VEPTR™ were measured as indicators of mechanical properties of the implant. Results. Results for the maximum Von Mises stress distribution (VMSD), plastic strain and total displacement (TD) can be seen on the table 1. Discussion. Results confirm that yield strength of titanium material is greater than that of Co-Cr, while Plastic strain (PS) is greater for a CoCr VEPTR™ than for titanium VEPTR™. As expected a 6 mm CoCr VEPTR resist displacement almost twice as a 6 mm titanium VEPTR. Little difference is noted in plastic strain and VonMises stress at 6mm. Down sizing the implant to 5 mm in titanium or CoCr may runs the risk of implant failure as both exceeds their failure point and they both deform 0.29% and 6.6% respectively, placing the 5mm CoCr at higher risk of failure. Our results suggest that the VEPTR™ design could be reduced to 5mm however requires a new design to minimize the risk of failure. 4mm rods will not withstand a 50kg load


Orthopaedic Proceedings
Vol. 97-B, Issue SUPP_1 | Pages 58 - 58
1 Feb 2015
Duncan C
Full Access

Cementless stem fixation is a widely used method of stem revision in North America and elsewhere in the world. There is abundant literature in its support. Most of the reports from 1985 to 2005 related to proximally or extensively porocoated designs, the former falling into disfavor with time because of unpredictable outcomes. With few exceptions (eg S-ROM) the modularity of these designs was limited to the head/neck junction. But this generation of designs was associated with some issues such as insertional fractures, limited control of anteversion (and risk of dislocation), limited applicability in the setting of severe bone loss (Paprosky Type 4 osteolysis or Vancouver Type B3 periprosthetic fracture), as well as ongoing concern relating to severe proximal stress shielding. In the past decade we have seen the mounting use of a new design concept: tapered fluted titanium stems (TFTS), which incorporate the advantages of titanium (for less flexural rigidity), conical taper (for vertical taper-lock stability), longitudinal ribs and flutes (for rotational stability), and surface preparation which attracts bone on growth for long term fixation. Four consecutive reports from our center have documented the superiority of the TFTS in our hands, with encouraging outcomes even when dealing with severe bone loss or periprosthetic fractures. There is an increasing body of other literature which reports a similar experience. Furthermore, with increasing experience and confidence in this design, we now use a monoblock or non-modular design in greater than 95% of cases in which a TFTS is indicated at our center. This circumvents the potential drawbacks of stem modularity, including taper corrosion and taper junction fracture