Advertisement for orthosearch.org.uk
Results 1 - 20 of 21
Results per page:
Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_2 | Pages 17 - 17
1 Feb 2020
Fattori A Negro ND Gunsallus K Lipman J Hotchkiss R Figgie M Wright T Pressacco M
Full Access

Introduction. Total Elbow Arthroplasty (TEA) is recognized as an effective treatment solution for patients with rheumatoid arthritis or for traumatic conditions. Current total elbow devices can be divided into linked or unlinked design. The first design usually presents a linking element (i.e. an axle) to link together the ulnar and humeral components to stabilize the joint; the second one does not present any linkage and the stability is provided by both intrinsic design constraints and the soft tissues. Convertible modular solutions allow for an intraoperative decision to link or unlink the prosthesis; the modular connections introduce however additional risks in terms of both mechanical strength and potential fatigue and fretting phenomena that may arise not only due to low demand activities loads, but also high demand (HD) ones that could be even more detrimental. The aim of this study was to assess the strength of the modular connection between the axle and the ulnar component in a novel convertible elbow prosthesis design under simulated HD and activities of daily living (ADLs) loading. Methods. A novel convertible total elbow prosthesis (LimaCorporate, IT) comprising both ulnar and humeral components that can be linked together by means of an axle, was used. Both typical ADLs and HD torques to be applied to the axle were determined based on finite element analysis (FEA); the boundary load conditions for the FEA were determined based on kinematics analysis on real patients in previous studies. The FEA resultant moment acting on the axle junction during typical ADLs (i.e. feeding with 7.2lbs weight in hand) was 3.2Nm while for HD loads (i.e. sit to stand) was 5.7 Nm. In the experimental setup, 5 axle specimens coupled with 5 ulnar bodies through a tapered connection (5 Nm assembly torque) were fixed to a torque actuator (MTS Bionix) and submerged in a saline solution (9g/l). A moment of 3.2 Nm was applied to the axle for 5M cycles through a fixture to test it under ADLs loading. After 5M cycles, the axles were analyzed with regards to fretting behavior and then re-assembled to test them against HD loading by applying 5.7 Nm for 200K cycles (corresponding to 20 years function). Results. All 5 samples withstood all 5.2M loading cycles without any mechanical failure. At the end of 5M cycles, each axle was still stable as the measured disassembly torque was 3.96 +/−0.18 Nm. Slight signs of fretting were detected on the tapered connection after 5M cycles, however they did not compromise the mechanical connection nor the stability. Discussion and Conclusions. Currently there are no reference standards that properly define protocols for biomechanical testing of elbow prostheses. In the present study, a test to mechanically assess the strength of an axle connection under both typical ADLs and HD loads was set. The connection was able to withstand the imposed conditions. In general, testing of TEA devices should include not only standard ADLs loads but also HD loads, which could be more detrimental for the long-term survivorship. For any figures or tables, please contact authors directly


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_4 | Pages 81 - 81
1 Apr 2019
Bitter T Marra M Khan I Marriott T Lovelady E Verdonschot N Janssen D
Full Access

Introduction. Fretting corrosion at the taper interface of modular connections can be studied using Finite Element (FE) analyses. However, the loading conditions in FE studies are often simplified, or based on generic activity patterns. Using musculoskeletal modeling, subject-specific muscle and joint forces can be calculated, which can then be applied to a FE model for wear predictions. The objective of the current study was to investigate the effect of incorporating more detailed activity patterns on fretting simulations of modular connections. Methods. Using a six-camera motion capture system, synchronized force plates, and 45 optical markers placed on 6 different subjects, data was recorded for three different activities: walking at a comfortable speed, chair rise, and stair climbing. Musculoskeletal models, using the Twente Lower Extremity Model 2.0 implemented in the AnyBody modeling System™ (AnyBody Technology A/S, Aalborg, Denmark; figure1), were used to determine the hip joint forces. Hip forces for the subject with the lowest and highest peak force, as well as averaged hip forces were then applied to an FE model of a modular taper connection (Biomet Type-1 taper with a Ti6Al4V Magnum +9 mm adaptor; Figure 2). During the FE simulations, the taper geometry was updated iteratively to account for material removal due to wear. The wear depth was calculated based on Archard's Law, using contact pressures, micromotions, and a wear factor, which was determined from accelerated fretting experiments. Results. The forces for the comfortable walking speed had the highest peak forces for the maximum peak subject, with a maximum peak force of 3644 N, followed by walking up stairs, with a similar maximum peak force of 3626 N. The chair rise had a lower maximum peak force of 2240 N (−38.5%). The simulated volumetric wear followed the trends seen in the peaks of the predicted hip joint forces, with the largest wear volumes predicted for a comfortable walking speed, followed by the stairs up activity and the chair rise (Figure 3). The subjects with the highest peak forces produced the most volumetric wear in all cases. However, the lowest peak subject had a higher volumetric wear for the stairs up case than the average subject. Discussion. This study explored the effect of subject-specific variations in hip joint loads on taper fretting. The results indicate that taper wear was predominantly affected by the magnitudes of the peak forces, rather than by the orientation of the force. A more comprehensive study, capturing the full spectrum of patient variability, can help identifying parameters that accelerate fretting corrosion. Such a study should also incorporate other sources of variability, including surgical factors such as implant orientation, sizing, and offset. These factors also affect hip joint forces, and can be evaluated in musculoskeletal models such as presented here


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_22 | Pages 5 - 5
1 May 2013
Murphy S
Full Access

Distal neck modularity places a modular connection at a mechanically critical location. However, this is also the location that confers perhaps the greatest clinical utility. Assessment of femoral anteversion in 342 of our THR patients by CT showed a range from −24 to 61 degrees. The use of monoblock stems in some of these deformed femurs therefore must result in a failure to appropriately reconstruct the hip and have increased risks of impingement, instability, accelerated bearing wear or fracture, and adverse local tissue reaction (ATLR). However, the risks of failing to properly reconstruct the hip without neck modularity must be weighed against the additional risks introduced by neck modularity. There are several critical design, material, and technique variables that are directly associated with higher or lower incidences of problems associated with modular neck femoral components. These include modular neck length, design and material of both parts including the junction design, wall thickness of the receiving junction, assembly force, and bearing diameter and material. With regard to stem design and material, it has been clearly shown that the incidence of titanium neck fractures is higher in stems with a thinner wall-thickness of the receiving junction than in stems with a thicker wall-thickness. Moreover, titanium necks have been largely replaced with CoCr necks with significantly higher yield and fatigue strength. It remains to be seen if the introduction of CoCr necks will decrease or increase the risks associated with distal neck modularity. With respect to titanium necks, our experience has shown no adverse local tissue reaction, no fractures of short necks (0 of 370) and a 0.34% incidence of fractures in long necks (2/580) at 3 to 8 years following surgery. This lower incidence of neck fracture compared to other reports may relate to the relatively more rigid stem and thicker wall of the junction receiving the neck compared to other stems. With respect to CoCr modular necks, one device that mated the CoCr modular neck with a beta-titanium alloy femoral component has been shown to have a high incidence of ALTR and has been recalled. While the CoCr on Conventional Titanium Alloy modular neck experience has had a statistically significantly lower incidence of problems, we believe that we have identified two cases of ALTR. If that is the case, the CoCr neck experience may well have a higher incidence of problems that the Ti neck experience. In summary, placing a modular connection at the stem-neck junction has great clinical utility but this is a very design sensitive location. There are risks associated with the use of non-modular neck components that are incapable of properly reconstructing the spectrum of pathology that presents. This failure can lead to instability, impingement, and polyethylene fracture. Yet, the use of titanium modular necks has a small risk of component fracture while the use of cobalt-chrome modular necks may have a higher risk of adverse local tissue reaction. While the existence of a modular neck may offer great advantages at the time of primary reconstruction and of future revision, currently the risk/benefit for the use of these components is strongest in patients with more significant anatomical abnormalities or more complex revision settings


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_7 | Pages 41 - 41
1 Apr 2017
Jacobs J
Full Access

Metal-on-metal bearing surfaces were reintroduced to take advantage of the reduction in volumetric wear afforded by these bearings and reduce the complications of osteolysis and aseptic loosening. In addition, metal-on-metal hip resurfacing and many metal-on-metal total hip replacement systems employed large diameter femoral heads, thereby reducing the risk of dislocations. Unfortunately, many metal-on-metal systems demonstrated poor survivorship and were associated with adverse local tissue reactions (ALTRs) related to metal debris generated from the bearings and/or modular connections. Careful clinical surveillance of patients with metal-on-metal bearings is warranted to identify patients with ALTR at an early stage in order to intervene prior to the development of extensive peri-articular soft tissue damage. Monitoring may include serum or whole blood metal levels and metal artifact reduction sequence magnetic resonance imaging (MARS-MRI) depending on the patient's signs and symptoms and the track record of the implanted device. While there currently is a lack of high quality evidence-based guidelines on the management of patients with either symptomatic or asymptomatic metal-on-metal total hip replacements, professional organizations have issued consensus-based algorithms to guide the practitioner in management. Ultimately, the decision for revision surgery should not be based on a single diagnostic test but on the entire clinical scenario


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_22 | Pages 4 - 4
1 Dec 2016
Jacobs J
Full Access

Corrosion at metal/metal modular interfaces in total hip arthroplasty was first described in the early 1990s, and the susceptibility of modular tapers to mechanically assisted crevice corrosion (MACC), a combination of fretting and crevice corrosion, was subsequently introduced. Since that time, there have been numerous reports of corrosion at this taper interface, documented primarily in retrieval studies or in rare cases of catastrophic failure. We have reported that fretting corrosion at the modular taper may produce soluble and particulate debris that can migrate locally or systemically, and more recently reported that this process can cause an adverse local tissue reaction (ALTR). Based on the type of tissue reaction and the presence of elevated serum metal ion levels, this process appears quite similar to ALTRs secondary to metal on metal bearing surfaces. While modularity in total hip replacement has demonstrable clinical benefits, modular junctions increase the risk of tribocorrosion and the types of ALTRs seen in patients with accelerated metal release from metal-on-metal bearing total hip replacements. The use of modular connections should be minimised in routine primary total hip replacement to avoid tribocorrosion-induced ALTRs


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_5 | Pages 12 - 12
1 Apr 2019
Campbell P Kung MS Park SH
Full Access

Background. Distal femoral replacements (DFR) are used in children for limb-salvage procedures after bone tumor surgery. These are typically modular devices involving a hinged knee axle that has peripheral metal-on-polyethylene (MoP) and central metal-on-metal (M-M) articulations. While modular connections and M-M surfaces in hip devices have been extensively studied, little is known about long-term wear or corrosion mechanisms of DFRs. Retrieved axles were examined to identify common features and patterns of surface damage, wear and corrosion. Methods. The cobalt chromium alloy axle components from 13 retrieved DFRs were cleaned and examined by eye and with a stereo microscope up to 1000× magnification. Each axle was marked into 6 zones for visual inspection: the proximal and distal views, and the middle (M-M) and 2 peripheral (MoP) zones. The approximate percentage of the following features were recorded per zone: polishing, abrasion or scratching, gouges or detectable wear, impingement wear (i.e. from non- intentional articulation), discoloration and pitting. Results. In each case, the middle M-M zones showed more damage features compared with peripheral MoP zones. Brown discoloration, presumably due to tribofilm deposits, was the predominant M-M area feature, particularly at the junction between the MoP and M-M zones. Higher magnification showed areas of polishing underlying the discoloration, suggesting repetitive removal of the surface metal and re-deposition of tribofilms (Fig 2B). 9 cases demonstrated reflective patches resembling “thumbprint” or “fish scale” markings, which, under higher magnification, showed signs of scratching and grooving in a radial pattern (Figs 2D, 3A). Pits were occasionally present but appeared to be from third-body damage as signs of corrosion were absent. Features that resembled carbides, sometimes with associated “comet” patterns of scratching were apparent under higher magnification in some areas. The MoP zones showed variable scratching, abrasion and wear polishing. The MoP to M-M junctional areas were demarcated by a distinct band corresponding, in some cases, to a narrow wear groove or gouge. 3 axles showed evidence of severe impingement wear on one proximal end. Discussion. This study of retrieved axle components demonstrated varying types of surface wear damage but no clear evidence of corrosion. This is presumably because these parts are in nearly constant motion during gait. Third-body damage may have resulted from the breakdown of surface carbides, leading to scratching, abrasion and wear polishing under high contact stress. Severe impingement wear presumably occurred after catastrophic damage to the polyethylene bushings, allowing eccentric loading and extensive metal wear. The components were revised for a range of clinical reasons including aseptic loosening and the need to expand the prosthesis during growth. With the exception of the few cases with severe impingement, it is unlikely that the wear features seen here contributed to the need for revision. While it was reassuring that corrosion was not a prominent feature of these modular M-M articulations, retrieval analysis of DFR components should be continued to confirm this finding, better document the in vivo wear processes and point to design features that might be improved for future patients. For any figures or tables, please contact the authors directly


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_10 | Pages 30 - 30
1 Jun 2018
Taunton M
Full Access

Patients with neuromuscular disease and imbalance present a particularly challenging clinical situation for the orthopaedic hip surgeon. The cause of the neuromuscular imbalance may be intrinsic or extrinsic. Intrinsic disorders include those in which the hip is in development, such as cerebral palsy, polio, CVA, and other spinal cord injuries and disease. This can result in subluxation and dislocation of the hip in growing children, and subsequent pain, and difficulty in sitting and perineal care. Extrinsic factors involve previously stable hips and play a secondary role in the development of osteoarthritis and contractures in later life. Examples of extrinsic factors are Parkinson's disease, dyskinesis, athetosis, and multiple sclerosis. Goals of treatment in adults with pain and dysfunction in the setting of neuromuscular imbalance are to treat contractures and to perform salvage procedures to improve function and eliminate pain. Treatment of patients with neuromuscular imbalance may include resection arthroplasty (Girdlestone), arthrodesis, or total hip arthroplasty. Resection arthroplasty is typically reserved for patients that are non-ambulatory, or hips that are felt to be so unstable that arthroplasty would definitely fail due to instability. In modern times arthrodesis has limited use as it negatively impacts function and self-care in patients with neuromuscular disorders. Total hip arthroplasty has the ability to treat pain, relieve contractures, and provide improved function. Due to the increased risk of instability, special considerations must be made during primary total hip arthroplasty in this patient cohort. Risk of instability may be addressed by surgical approach, head size, or use of alternative bearing constructs. Posterior approach may have increased risk of posterior dislocation in this patient group, particularly if a posterior capsular repair is not possible due to the flexion contractures and sitting position in many patients. Surgeons familiar with the approaches may utilise the anterolateral or direct anterior approach judicially. Release of the adductors may be performed in conjunction with primary total hip arthroplasty to help with post-operative range of motion and to decrease risk of instability. In a standard bearing, the selected head size should be the largest that can be utilised for the particular cup size. Rigorous testing of intra-operative impingement, component rotation, and instability is required. If instability cannot be adequately addressed by a standard bearing, the next option is a dual mobility bearing. Multiple studies have shown improved stability with the use of these bearings, but they are also at risk for instability, intraprosthetic dislocation, and fretting and corrosion of the modular connections. Another option is a constrained liner. However, this results in reduced range of motion, and an increased risk for mechanical complications of the construct. The use of a constrained liner in a primary situation should be limited to the most severe instability cases, and the patient should be counseled with the associated risks. If total hip arthroplasty results in repeated instability, revision surgery or Girdlestone arthroplasty may be considered


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_7 | Pages 11 - 11
1 Apr 2017
Murphy S
Full Access

Distal neck modularity places a modular connection at a mechanically critical location, which is also the location that confers perhaps the greatest clinical utility. The benefits of increased clinical options at that location must be weighed against the potential risks of adding an additional junction to the construct. Those risks include prosthetic neck fracture, taper corrosion, metal hypersensitivity, and adverse local tissue reaction. Further, in-vitro testing of ultimate or fatigue strength of femoral component designs has repeatedly failed to predict behavior in-vivo, raising questions about the utility of in-vitro testing that does not incorporate the effect of mechanically assisted crevice corrosion into the test design. The material properties of Ti alloy and CoCr alloy place limits on design considerations in the proximal femur. The smaller taper junctions that are necessary for primary reconstruction are particularly vulnerable to failure whereas larger taper junctions commonly used in revision modular femoral component designs have greater opportunity for success. Modular junctions of CoCr alloy on conventional Ti alloy have been shown to have a greater incidence of clinically significant mechanically assisted crevice corrosion and adverse reaction. Designs that have proven clinical strength and utility universally have larger, more robust junctions, that extend into the metaphysis of the femur. While these designs are primarily designed for revision total hip replacement (THR), they are occasionally indicated for primary THR. Overall, however, while design options at the neck-stem junction have unmatched clinical utility, no design that does not extend into the metaphysis has proven to be universally reliable. While routine use of modular neck components for primary THR does not appear to be clinically indicated based on current evidence, modular designs with proven successful proximal junctions appear to be indicated for revision THR and rare primary THR with extreme version or other anatomical circumstances


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_22 | Pages 5 - 5
1 Dec 2016
Murphy S
Full Access

Distal neck modularity places a modular connection at a mechanically critical location which is also the location that confers perhaps the greatest clinical utility. Assessment of femoral anteversion in 342 of our total hip replacement (THR) patients by CT showed a range from −24 to 61 degrees. The use of monoblock stems in some of these deformed femurs therefore must result in a failure to appropriately reconstruct the hip and have increased risks of impingement, instability, accelerated bearing wear or fracture, and adverse local tissue reaction (ALTR). However, the risks of failing to properly reconstruct the hip without neck modularity must be weighed against the additional risks introduced by neck modularity. There are several critical design, material, and technique variables that are directly associated with higher or lower incidences of problems associated with modular neck femoral components. Unfortunately, in vitro testing of the fatigue strength of these constructs has failed to predict their behavior in vivo. Designs predicted to tolerate loads that far exceed those experienced in vivo still fail at unacceptably high rates. Titanium alloy neck components subjected to the stresses at the neck-stem junction continue to fail at an unacceptable incidence. CoCr alloy neck components, while theoretically stronger, still fracture and are further compromised by mechanically assisted crevice corrosion, metal hypersensitivity, and rarely, adverse tissue reaction. Designs that have proven clinical strength and utility universally have larger, more robust junctions that extend into the metaphysis of the femur. While these designs are primarily designed for revision THR, they are occasionally indicated for primary THR. Overall, however, while design options at the neck-stem junction have unmatched clinical utility, no design that does not extend into the metaphysis has proven to be universally reliable. While routine use for primary THR does not appear clinically indicated based on current evidence, modular designs with proven successful proximal junctions appear to be indicated for extreme version or anatomical circumstances


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_3 | Pages 119 - 119
1 Feb 2017
Fitzwater F Shalhoub S Clary C Akhbari B Maletsky L
Full Access

Introduction. During primary total knee arthroplasty (TKA), surgeons occasionally encounter compromised bone and fixation cannot be achieved using a primary femoral component. Revision knee replacement components incorporate additional features to improve fixation, such as modular connection to sleeves or stems, and feature additional varus-valgus constraint in the post-cam mechanism to compensate for soft tissue laxity. The revision femoral component can be used in place of the primary femur to address fixation challenges; however, it is unclear if additional features of the revision femoral components adversely affect knee kinematics when compared to primary TKA components. The objective of this study was to compare weight-bearing tibiofemoral and patellofemoral kinematics between primary and revision femoral component with the primary tibial insert for a single knee replacement system. The hypothesis of the study was that kinematics for revision femoral components will be similar to kinematics of the primary femoral components. Methods. Eight cadaveric knees (age: 59±10 years, BMI 23.3±3.5) were implanted with a primary TKA system (ATTUNE™ Posterior Stabilized Total Knee Replacement System). Each knee was mounted and aligned in the Kansas Knee Simulator (Fig. 1) [1]. A deep knee bend was performed which flexed the knee from full extension to 110° flexion, while the medial-lateral translation, internal-external, and varus-valgus rotations at the ankle were unconstrained. The femoral component was then replaced with a revision femoral component of the same TKA system, articulating on the same primary insert component, and the deep knee bend was repeated. The translations of the lowest points (LP) of the medial and lateral femoral condyles along the superior-inferior axis of the tibia were calculated. In addition, tibiofemoral and patellofemoral kinematics were calculated for each cycle based on the Grood-Suntay coordinate system [2] [1]. The change in LP and patellofemoral kinematics from the primary to revision femurs were calculated. Student t-tests were performed at 5° increments of knee flexion to identify significant differences between the two implant types. Results. No significant differences were observed between primary and revision femur for both LP and patellofemoral kinematics (Fig 2,3). The revision femoral anterior-posterior lowest point translations were similar to that of the primary femur. Deviations in patellofemoral spin, tilt, and flexion were less than one degree throughout the range of flexion. Patellofemoral translations were less than .5 mm during mid-flexion and greatest deviations were observed during early flexion. Less than .5° deviation was observed in tibiofemoral VV and IE rotations. Discussion. Typical knee revision systems have compromised knee mechanics to improve femoral fixation, yielding poorer functional outcomes and high rates of reoperation [3, 4]. The primary and revision femoral components in this knee system have identical condylar articular geometry which explains the similarity in patellofemoral and tibiofemoral kinematics. Small difference in tibiofemoral kinematics could be a result of implant fixations using bone cement which slightly alters implant alignments between primary and revision surgeries. The revision femur resulted in similar kinematics and can be used during primary TKA when a stem is need for additional implant fixation without affecting the knee contact mechanics. For figures, please contact authors directly


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_7 | Pages 64 - 64
1 May 2016
Campbell P Nguyen M Priestley E
Full Access

The histopathology of periprosthetic tissues has been important to understanding the relationship between wear debris and arthroplasty outcome. In a landmark 1977paper, Willert and Semlitsch (1) used a semiquantitative rating to show that tissue reactions largely reflected the extent of particulate debris. Notably, small amounts of debris, including metal, could be eliminated without “overstraining the tissues” but excess debris led to deleterious changes. Currently, a plethora of terms is used to describe tissues from metal-on-metal (M-M) hips and corroded modular connections. We reviewed the evaluation and reporting of local tissue reactions over time, and asked if a dose response has been found between metal and tissue features, and how the use of more standardized terms and quantitative methodologies could reduce the current confusion in terminology. Methods. The PubMed database was searchedbetween 2000 and 2015 for papers using “metal sensitivity /allergy /hypersensitivity, Adverse Local Tissue Reaction (ALTR): osteolysis, metallosis, lymphocytic infiltration, Aseptic Lymphocytic Vasculitis-Associated Lesions (ALVAL), Adverse Reaction to Metal Debris (ARMD) or pseudotumor/ pseudotumour” as well as metal-on-metal / metal-metal AND hip arthroplasty/replacement. Reports lacking soft tissue histological analysis were excluded. Results. 131 articles describing M-M tissue histology were found. In earlier studies, the terms metal sensitivity / hypersensitivity /allergy implied or stated the potential for a Type IV delayed type hypersensitivity response as a reason for revision. More recently those terms have largely been replaced by broader terms such as ALTR, ALVAL and ARMD. ALVAL and metal hypersensitivity were often used interchangeably, both as failure modes and histological findings. Several histology scoring systems have been published but were only used in a limited number of studies. Correlations of histological features with metal levels or component wear were inconclusive, typically because of a high degree of variability. Interestingly, there were very few descriptions that concluded that the observed reactions were benign / normal or anticipated i.e. regardless of the histological features, extent of debris or failure mode, the histology was interpreted as showing an adverse reaction. Discussion. There is now an expanded set of terms to describe tissues but they lack clear definitions and typically do not use quantitative histological data to describe a wide range of periprosthetic reactions to metal. Lower limits of inflammation, necrosis or re-organization that represent a “normal” reaction to surgery and/or small amounts of wear debris are not clearly defined and are rarely discussed. The widespread adoption of the term “adverse” in the present tissue lexicon implies a cause and effect relationship between metal wear and corrosion products and histological features even though this has yet to be determined. The use of quantitative histological scores rather than subjective histological descriptions is imperative to improve the understanding and reporting of the range of periprosthetic reactions. In particular, a new lexicon that allows for a level of tissue reaction that is not misinterpreted as adverse is required


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_2 | Pages 132 - 132
1 Jan 2016
MacDonald D Kurtz SM Kocagoz S Hanzlik J Underwood RJ Gilbert J Lee G Mont M Kraay M Klein GR Parvizi J Day J Rimnac C
Full Access

Introduction. Recent implant design trends have renewed concerns regarding metal wear debris release from modular connections in THA. Previous studies regarding modular head-neck taper corrosion were largely based on cobalt chrome (CoCr) alloy femoral heads. Comparatively little is known about head-neck taper corrosion with ceramic femoral heads or about how taper angle clearance influences taper corrosion. This study addressed the following research questions: 1) Could ceramic heads mitigate electrochemical processes of taper corrosion compared to CoCr heads? 2) Which factors influence stem taper corrosion with ceramic heads? 3) What is the influence of taper angle clearance on taper corrosion in THA?. Methods. 100 femoral head-stem pairs were analyzed for evidence of fretting and corrosion. A matched cohort design was employed in which 50 ceramic head-stem pairs were matched with 50 CoCr head-stem pairs based on implantation time, lateral offset, stem design and flexural rigidity. Fretting corrosion was assessed using a semi-quantitative scoring scale where a score of 1 was given for little to no damage and a score of 4 was given for severe fretting corrosion. The head and trunnion taper angles were measured using a roundness machine (Talyrond 585, Taylor Hobson, UK). Taper angle clearance is defined as the difference between the head and trunnion taper angles. Results. The fretting corrosion scores were significantly lower for the stems in the ceramic head cohort when compared with the CoCr cohort. Stem alloy and stem flexural rigidity were predictors of stem fretting and corrosion damage in the ceramic head cohort, however not for the CoCr cohort. The mechanism of mechanically assisted crevice corrosion was the same in the two cohorts, with the exception being that, only one of the two surfaces (i.e., the trunnion) engaged in the oxide abrasion and repassivation process in the ceramic cohort. There was no significant correlation observed between taper angle clearance and visual fretting-corrosion scores for trunnions in the ceramic cohort (Rho=−0.17), trunnions in the CoCr cohort (Rho=0.24), or the femoral head tapers in the metal cohort (Rho=−0.05) (Figure 1). Additionally, visual fretting-corrosion scores in the metal cohort were similar between components with distal contact (negative taper angle clearance) and components with proximal contact (positive taper angle clearance) (p=0.43 and 0.56 for head and trunnion scores, respectively). Conclusions. The results suggest that by using a ceramic femoral head, CoCr fretting and corrosion from the modular head-neck taper may be mitigated, but not completely eliminated. The findings of this study support further study of the role of ceramic heads in potentially reducing femoral taper corrosion. Taper angle clearance was not correlated with the visual fretting-corrosion scores in the ceramic or CoCr cohort in the present study. The effects of taper angle clearance may not be significant compared to other factors leading to material loss or the lack of correlation may be due to the limitations in the visual scoring method. Research is underway quantify the volume of material release from explants to better understand the reasons for reduced fretting and corrosion observed in the ceramic head cohort


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_15 | Pages 108 - 108
1 Mar 2013
Higgs G Kurtz S Hanzlik J MacDonald D Kane WM Day J Klein GR Parvizi J Mont M Kraay M Martell J Gilbert J Rimnac C
Full Access

Introduction. Wear debris generation in metal-on-metal (MOM) total hip arthroplasty (THA) has emerged as a compelling issue. In the UK, clinically significant fretting corrosion was reported at head-taper junctions of MOM hip prostheses from a single manufacturer (Langton 2011). This study characterizes the prevalence of fretting and corrosion at various modular interfaces in retrieved MOM THA systems used in the United States. Methods and Materials. 106 MOM bearing systems were collected between 2003 and 2012 in an NIH-supported, multi-institutional retrieval program. From this collection, 88 modular MOM THA devices were identified, yielding 76 heads and 31 stems (22 modular necks) of 7 different bearing designs (5 manufacturers) for analysis. 10 modular CoCr acetabular liners and 5 corresponding acetabular shells were also examined. Mean age at implantation was 58 years (range, 30–85 years) and implantation time averaged 2.2 ± 1.8 years (range, 0–11.0 years). The predominant revision reason was loosening (n=52). Explants were cleaned and scored at the head taper, stem taper, proximal and distal neck tapers (for modular necks), liner, and shell interfaces in accordance with the semi-quantitative method of Goldberg et al. (2002). Results. Fretting and corrosion were observed on 68/76 (89%) head tapers, 21/31 (68%) stem tapers, 15/22 (68%) proximal modular neck tapers, 20/22 (91%) distal modular neck tapers, 10/10 (100%) modular liners and 5/5 (100%) modular shells. Scores were lower at proximal stem tapers than within the head tapers (p = 0.001) but were positively correlated (ρ = 0.56, p = 0.001). At the head-neck interface, significantly more damage was noted on head tapers of devices with modular necks (p<0.001). At the neck-stem interface, damage to modular necks was localized at the curved medial and lateral surfaces. A significant correlation was observed between implantation time and corrosion/fretting score at this region (ρ = 0.78, p < 0.001). Damage was noted at all shell-liner interfaces, manifested primarily as scratching with discoloration on the backside rim of liners and circular fretting patterns on shells. Discussion. These results support the inclusion of fretting and corrosion evaluation in standardized MOM retrieval inspection protocols. Adaptation of the method developed by Goldberg and colleagues is suitable for the variety of modular connections in contemporary MOM THA implants, which may incorporate modular femoral and/or acetabular components. Further quantitative assessment of wear at modular interfaces of retrieved MOM devices is therefore warranted


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_34 | Pages 551 - 551
1 Dec 2013
Tanino H Sato T Nishida Y Ito H
Full Access

INTRODUCTION:. Modular femoral stems of Total Hip Arthroplasty (THA) have been designed to fit the metaphysis and diaphysis separately. Clinical results with modular femoral stems are reported to be satisfactory, but there exists several concerns with modular implant connections, including fretting corrosion, fracture of implant, and dissociation the stem from the proximal sleeve. Recently, we have become aware of another potential consequence of the modular design: sleeve deformation secondary to forces encountered during insertion. In our patients, we noted that the stems would not fully seat in the machined taper of the sleeve, indicating that some type deformation to the sleeve had occurred. We began an in vivo study to characterize this phenomenon. The objectives of this study were (1) Does deformation occur by impacting the sleeve into the metaphysis? (2) If so, quantify the sleeve deformation in hip arthroplasty patients. MATERIALS AND METHODS:. One man and 7 women undergoing primary THA were enrolled. This project was approved by IRB. This modular system (4-U CLS; Nakashima Medical Co., Japan) consists of a metaphyseal sleeve that connects with the diaphyseal stem via a Morse taper. The sleeve was impacted into the metaphysis first, followed by the stem. A custom taper gauge for each size of sleeve (Figure 1A) was inserted into the sleeve before and after impacting the sleeve into the metaphysis, and the distance between the top of the sleeve and the top of the gauge was measured using a caliper (* in Figure 1B). Deformation was defined as the difference in distance between the before and the after impacted dimensions. Preoperative femoral morphology, assessed using Dorr classification system, was type A in 2 hips, type B in 5 hips, and type C in 1 hip. RESULTS:. Intraoperatively, all sleeves had measurable deformity. Deformation ranged from 0.1 to 3.2 mm and averaged 1.18 ± 1.11 mm. Deformation was marginally related to bone type. Sleeve implanted into type A bone experienced 2.45 mm deformation, sleeve implanted into type B bone experienced 0.88 mm deformation, and sleeve implanted into type C bone experienced 0.1 mm deformation (Figure 2). And the largest deformation was observed at 51 years youngest male patient. DISCUSSION:. The small number studied in this study is a limitation. And we are not certain how long the deformation of the sleeve lasts. Despite the limitations, this study showed that deformation of sleeve occurred by impacting the sleeve into the metaphysis, and sleeves implanted into harder bone experienced larger mean deformation than sleeves implanted into less dense bone. This phenomenon may not have been a relevant issue in the past, but recent studies have reported the deformation of metal acetabular cup. The deformation can affect the torsional stability of modular implant connection and fretting corrosion, so further investigation will be needed. The modular femoral stem with sleeve remains an excellent design, providing good initial stability and long-term results. However, greater understanding of sleeve is important to orthopaedic surgeons


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_34 | Pages 58 - 58
1 Dec 2013
Flohr M Haeussler K Preuss R Streicher R
Full Access

INTRODUCTION. Modular metal-on-metal hip implants show increased revision rates due to fretting and corrosion at the interface. High frictional torque potentially causes such effects at the head-taper interface, especially for large hip bearings. The aim of this study was to investigate fretting and corrosion of sleeved ceramic heads for large ceramic-on-ceramic (CoC) bearings. METHODS. The investigated system consists of a ceramic head (ISO 6474-2; BIOLOX® Option), a metal sleeve (Ti-6Al-4V, ISO 5832-3) and different metal stem tapers (Ti-6Al-4V, ISO 5832-3; stainless steel, ISO 5832-1; CoCrMo, ISO 5832-12). Three different test methods were used to assess corrosion behaviour and connection strength of head-sleeve-taper interfaces: . –. Fretting corrosion acc. to ASTM F1- Corrosion under in-vivo relevant loads. –. Frictional torque under severe i like conditions. Standardized fretting corrosion tests were carried out. Additionally, a long term test (0.5 mio. cycles) under same conditions was performed. Corrosion effects under 4.5 kN (stair climbing) and 10 kN (stumbling) were determined for three groups. One group was fatigue tested applying 4.5 mio. cycles at 4.5 kN and 0.5 mio. cycles at 10 kN in a corrosive fluid. In parallel two control groups (heads only assembled at same load levels) were stored in the same fluid for same time period. Pull-off tests were performed to detect the effect of corrosion on the interface strength. A new designed test was performed to analyse the connection strength and fretting-corrosion effects on the head-sleeve taper interfaces caused by frictional torque of large CoC bearings (48 mm). Two separate loading conditions were investigated in a hip joint simulator. One created bending torque (pure abduction/adduction), the other set-up applied rotational torque (pure flexion). A static axial force of 3 kN and movements with a frequency of 1 Hz up to 5 mio. cycles in the same corrosive fluid as in the second set of tests were applied for both tests. Surface analysis of the taper and sleeve surfaces was peformed. In order to detect loosening caused by frictional torque, torque-out tests were conducted after simulator testing. RESULTS. The measured currents (static and dynamic) from standard ASTM testing showed low values for all investigated taper materials even for long term testing (0.5 mio. cycles). The strength of the head-sleeve-taper connection was not affected by storing and fatigue testing in corrosive fluid at 4.5 kN and 10 kN. No critical increase or decrease of pull-off force could be observed. No loosening of the head-taper-sleeve connection was detected after hip simulator testing applying high frictional torque. For large CoC bearings (48 mm) with titanium alloy sleeves on appropriate stem tapers no critical corrosion effects could be found. Even testing low corrosion resistant stainless steel tapers as a worst case material showed only tribo-chemical layers and plastic deformation of the taper surfaces. CONCLUSION. All different tests of large ceramic modular heads (48 mm) with titanium adapters on various taper materials exhibited only minor effects on the surfaces of the modular connections. Even worst case material combinations, high loads, corrosive fluid and high frictional torque did not show any critical results using such aggressive test methods


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_3 | Pages 11 - 11
1 Feb 2017
Parker A Ali A Nambu S Obert R
Full Access

Objectives. Modularity in total knee arthroplasty, particularly in revisions, is a common method to fit the implants to a patient's anatomy when additional stability or fixation is needed. In such cases, it may be necessary to employ multiple points of modularity to better match the anatomy. Taper junction strength at each of these levels is critical to maintain the mechanical stability of the implant and minimize micromotion. This effect of distributed assembly loads through multiple tapers and the resulting strength of the construct have not been previously evaluated on this revision tibial implant. The purpose of this study was to evaluate the possible dissipation of impaction force through multiple taper connections as compared to a single connection. Methods. Two different constructs representative of modular implants were studied: a construct with a single axial taper connection (Group A; representing implant-stem) was compared to a construct with an adaptor that included two, offset, modular taper connections (Group B; representing implant-adapter-stem). For Group A, the stem taper was assembled and impacted through the stem. For Group B, the two tapers of the adapter and stem were hand assembled with the mating components and impacted simultaneously through the stem. Assembly load for each construct was recorded. As shown in Figure 1, the constructs were then fixed in a mechanical test frame and an axial distraction force was applied to the end of the stem at a constant displacement rate of 0.075 mm/sec until taper separation or mechanical failure occurred. Force and displacement data were recorded at 50 Hz. Disassembly force was normalized to assembly force for each component. Minitab software was used to analyze the data using a t-test. Results. Separation occurred at the implant-stem interface for all components of Group A, without component fracture. Separation occurred at the adapter-stem interface for all components of Group B. There were neither component fractures nor separation of the implant-adapter interface. As seen in Figure 2, the disassembly force for Group A was greater than Group B (p = 0.456), likely due to the higher assembly forces. However, the ratio of these forces (disassembly/assembly) was greater for Group B than Group A, but not statistically significant (0.794 vs. 0.754 with p = 0.657). Discussion. There are no applicable standards for required taper disassembly strength. However, the results of this study indicate that the addition of a second taper connection and offset does not significantly change the static ratio of disassembly to assembly force of the studied constructs. Axial distraction forces vary with activity and constraint afforded by a particular prosthesis. Future work to further characterize the behavior of these constructs could include varying loading rate to determine if that affects the location of taper disassociation. A period of fatigue testing could also be added to evaluate the effect of cyclic loading on the taper connections


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_5 | Pages 107 - 107
1 Mar 2017
Reiner T Bader N Panzram B Kretzer J Zeifang F
Full Access

Purpose. Total shoulder arthroplasty (TSA) has become a successful treatment option for degenerative shoulder disease. With the increasing incidence in primary TSA procedures during the last decades, strategies to improve implant longevity become more relevant. Implant failure is mainly associated with mechanical or biological causes. Chronic inflammation as a response to wear particle exposure is regarded as a main biological mechanism leading to implant failure. Metal ions released by fretting and corrosion at modular taper connections of orthopedic implants can cause cell-mediated hypersensitivity reactions and might lead to aseptic loosening. Modularity is also commonly used in total shoulder replacement. However, little is known about metal ion exposure in patients following TSA. The objective of this study was to determine in-vivo blood metal ion levels in patients after TSA and to compare blood metal ion levels to control subjects without metal implants. Methods. A total of 19 patients with anatomical total shoulder prosthesis (TSA group) and 20 patients with reverse total shoulder prosthesis (RSA group) who underwent unilateral total shoulder replacement at our hospital between March 2011 and December 2014 with no other metal implant or history of environmental metal ion exposure were recruited for analysis of blood metal ion concentrations of cobalt (Co), chromium (Cr) and titanium (Ti) at a mean follow-up period of 2.3 years (0.7–4.3). For comparison of metal ion concentrations blood samples were obtained in a healthy control group of 23 subjects without metal implants. Ethical approval and informed consent of each patient were obtained for this study. Results. Median cobalt ion levels were 0.14µg/l (range 0.03–0.48) in the TSA group, 0.18 µg/l (0.10–0.66) in the RSA group and 0.11µg/l (0.03–0.19) in the control goup. Median chromium ion levels were 0.34µg/l (0.09–1.26) in the TSA group, 0.48µg/l (0.17–2.41) in the RSA group and 0.14µg/l (0.04–0.99) in the control goup. Median titanium ion levels were 0.86µg/l (0.10–1.64) in the TSA group, 1.31µg/l (0.75–4.52) in the RSA group and 0.62µg/l (0.32–2.14) in the control goup. There was a statistically significant difference in chromium and titanium ion concentrations between both study groups and the control group (see figure 1–3). Conclusion. Patients with unilateral total shoulder replacement demonstrated elevated blood metal ion concentrations. Median blood metal ion levels were higher in the RSA group compared to the TSA group, which could be attributable to the modularity of the reverse total shoulder system. However, overall metal ion levels were relatively low compared to those seen in patients with metal-on-metal total hip replacements. The role of local metal ion exposure in the development of aseptic loosening or hypersensitivity reactions associated with total shoulder arthroplasty should be further investigated. For figures/tables, please contact authors directly.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_9 | Pages 61 - 61
1 May 2016
Mueller U Kretzer J
Full Access

Introduction. Taper corrosion has been identified to be major problem in total hip replacement during the past years. Patients may suffer from adverse local tissue reactions (ALTR) due to corrosion products that are released from modular taper connection. So far, the mechanism that leads to taper corrosion in taper connections is not fully understood. Some retrieval studies tried to correlate implant related design parameters to the incidence and the severeness of taper corrosion. For example Kocagöz et al.[1] have not seen an influence of the taper clearance to taper corrosion. Hothi et al.[2] showed that shorter and rougher tapers increase taper corrosion. One limitation of retrieval studies may be that the analysed tapers are used and may have been altered during in vivo service. Beside the effect of taper corrosion many surgeons are not aware that the tapers may vary among different manufactors. With our study we want to provide taper related data that may be used for comparison and correlation (e.g. retrieval studies). Therefore we aimed to assess and compare geometric and topographic design parameters of currently available hip stem tapers from different manufacturers. Material. For comparison well established cementless hip stems made of titanium alloy were choosen. All of them have a 12/14-taper. The analysed implants are shown in Fig. 1. As geometrical parameters the taper angle, the opening taper diameter and the taper length were measured using a coordinate measuring machine (CMM) (MarVision MS 222, Mahr, Göttingen, Germany; accuracy: ±2.3 µm). Several topographical parameters (e.g. Ra, Rz, etc.) were determined using a tactil roughness measurement instrument (Perthometer M2, Mahr, Göttingen, Germany; accuracy: 12 nm). Three independent samples of each taper were measured five times. Results. In Fig. 2 the geometrical parameters like taper angle and opening diameter are given. As roughness parameters the average roughness (Ra) and the average maximum height of the profile (Rz) are presented in Fig. 3. Discussion and conclusion. As expected, this study shows that the tapers differ among the manufactures. Regarding the geometry, high variations in taper length were seen whereas the taper angle and opening taper diameter vary only to a small extent. However, if the combination of taper angle and opening diameter are considered these small differences may become relevant regarding the contact situation in the taper junction. Clearly, the tapers differed in topography. The surface roughness parameters vary to a large extent from smooth to very rough values. In combination all these parameters will influence the crevice of the taper junction. Considering that taper corrosion is mostly initiated within the crevice, further studies may help to understand the influence of taper variations to the corrosion mechanism


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_34 | Pages 379 - 379
1 Dec 2013
Kretzer JP Reinders J Sonntag R Merle C Omlor G Streit M Gotterbarm T Aldinger P
Full Access

Corrosion in modular taper connections of total joint replacement has become a hot topic in the orthopaedic community and failures of modular systems have been reported. The objective of the present study was to determine in vivo titanium ion levels following cementless total hip arthroplasty (THA) using a modular neck system. A consecutive series of 173 patients who underwent cementless modular neck THA and a ceramic on polyethylene bearing was evaluated retrospectively. According to a standardized protocol, titanium ion measurements were performed on 67 patients using high-resolution inductively coupled plasma-mass spectrometry. Ion levels were compared to a control group comprising patients with non-modular titanium implants and to individuals without implants. Although there was a higher range, modular-neck THA (unilateral THA: 3.0 μg/L (0.8–21.0); bilateral THA: 6.0 μg/L (2.0–20.0)) did not result in significant elevated titanium ion levels compared to non-modular THA (unilateral THA: 2.7 μg/L (1.1–7.0), p = 0.821; bilateral THA: 6.2 μg/L, (2.3–8.0), p = 0.638). In the modular-neck THA group, patients with bilateral implants had significantly higher titanium ion levels than patients with an unilateral implant (p < 0.001). Compared to healthy controls (0.9 μg/L (0.1–4.5)), both modular THA (unilateral: p = 0.029; bilateral p = 0.003) and non-modular THA (unilateral: p < 0.001; bilateral: p < 0.001) showed elevated titanium ion levels. The data suggest that the present modular stem system does not result in elevated systemic titanium ion levels in the medium term when compared to non-modular stems. However, more outliner were seen in modular-neck THA. Further longitudinal studies are needed to evaluate the use of systemic titanium ion levels as an objective diagnostic tool to identify THA failure and to monitor patients following revision surgery


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_34 | Pages 474 - 474
1 Dec 2013
Panagiotidou A Meswania J Hua J Muirhead-Allwood SK Skinner JA Hart A Blunn G
Full Access

Introduction:. There has been widespread concern regarding the adverse tissue reactions after metal-on-metal (MoM) total hip replacements (THR). Concerns have also been expressed with mechanical wear from micromotion and fretting corrosion at the head/stem taper junction in total hip replacements. In order to understand the interface mechanism a study was undertaken in order to investigate the effect of surface finish and contact area associated with modular tapers in total hip replacements with a single combination of materials of modular tapers. Methods:. An inverted hip replacement setup was used (ASTM F1875-98). 28 mm Cobalt Chrome (CoCr) femoral heads were coupled with either full length (standard) or reduced length (mini) 12/14 Titanium (Ti) stem tapers. These Ti stem tapers had either a rough or smooth surface finish whilst all the head tapers had a smooth surface finish. Wear and corrosion of taper surfaces were compared after samples were sinusoidally loaded between 0.1 kN and 3.1 kN for 10 million cycles at 4 Hz. In test 1 rough mini stem tapers were compared with rough standard stem tapers whilst in test 2 rough mini stem tapers were compared with smooth mini stem tapers. Surface parameters and profiles were measured before and after testing. Electrochemical static and dynamic corrosion tests were performed between rough mini stem tapers and smooth mini stem tapers under loaded and non-loaded conditions. Results:. In test 1 following the mechanical loading test the surface roughness parameters on the head taper were significantly increased when they were coupled with the mini stem tapers compared to the standard stem tapers (p = 0.046). Similarly in test 2 the surface roughness parameters on the head tapers were significantly increased when mini rough stem tapers were used compared to smooth mini stem tapers (p = 0.04). Corrosion testing showed breaching of the passive film on the rough but not the smooth neck tapers. Conclusion:. This study has identified enhanced fretting corrosion at the modular taper junction associated with roughened surface finish and small neck tapers and points to the overall concern associated with the use of modular taper connections in orthopaedic implants. Crevice corrosion is identified as the predominant mechanism, with evidence of pitting in all rough mini neck tapers. The greatest wear and corrosion was in the plane where the greatest bending moments were generated, implicating fretting as a mechanism. The rough mini neck tapers have a reduced surface area at the interface and ultimately bending forces are concentrated here