Abstract
Distal neck modularity places a modular connection at a mechanically critical location which is also the location that confers perhaps the greatest clinical utility. Assessment of femoral anteversion in 342 of our total hip replacement (THR) patients by CT showed a range from −24 to 61 degrees. The use of monoblock stems in some of these deformed femurs therefore must result in a failure to appropriately reconstruct the hip and have increased risks of impingement, instability, accelerated bearing wear or fracture, and adverse local tissue reaction (ALTR). However, the risks of failing to properly reconstruct the hip without neck modularity must be weighed against the additional risks introduced by neck modularity.
There are several critical design, material, and technique variables that are directly associated with higher or lower incidences of problems associated with modular neck femoral components. Unfortunately, in vitro testing of the fatigue strength of these constructs has failed to predict their behavior in vivo. Designs predicted to tolerate loads that far exceed those experienced in vivo still fail at unacceptably high rates. Titanium alloy neck components subjected to the stresses at the neck-stem junction continue to fail at an unacceptable incidence. CoCr alloy neck components, while theoretically stronger, still fracture and are further compromised by mechanically assisted crevice corrosion, metal hypersensitivity, and rarely, adverse tissue reaction.
Designs that have proven clinical strength and utility universally have larger, more robust junctions that extend into the metaphysis of the femur. While these designs are primarily designed for revision THR, they are occasionally indicated for primary THR. Overall, however, while design options at the neck-stem junction have unmatched clinical utility, no design that does not extend into the metaphysis has proven to be universally reliable. While routine use for primary THR does not appear clinically indicated based on current evidence, modular designs with proven successful proximal junctions appear to be indicated for extreme version or anatomical circumstances.