header advert
Results 1 - 20 of 58
Results per page:
Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_1 | Pages 23 - 23
2 Jan 2024
Ciatti C Quattrini F Asti C Maniscalco P
Full Access

Previous scientific studies have highlighted how coupling is an important element affecting total hip arthroplasty's survival. This study aims to evaluate whether metal-on-metal (MOM) coupling could be a statistically significant risk factor. The data from the regional joint registry (Registro dell'Impiantologia Protesica Ortopedica, RIPO) was used for analysis. The data collection accuracy of this registry was 97.2% in 2017. We retrospective evaluate all MOM total hip arthroplasties (THAs) implanted in our department between January 01st 2000 and December 31st 2011. We used a control group composed by all other prosthesis implanted in our Department in the same time lapse. We registered 660 MOM THAs. Mean age of patients was 66.9 years. 603 patients have a >36mm head, while 78 a <36 mm one. Neck modularity was present in half of patients. 676 implants were cementless. We registered 69 revisions, especially due to aseptic mobilization (16 THAs), implant breakage (9 THAs) and periprosthetic fracture (6 THAs). The MOM THAs overall Kaplan-Meier survival rate was 87.2 at 15 years, and the difference between MOM THAs and other implants two curves is statistically significant (p<0.05). Male sex is a significant risk factors. Further evaluations are in progress to establish the presence of any additional risk factors. We think weight and/or BMI may be included in this category. Our study confirms the data currently present in the literature regarding a lower survival of metal-on-metal hip prostheses. The male sex is a statistically significant risk factor (p<0.05), while age, head size and modularity of the prosthetic neck are not statistically significant (p>0.05). Any new finds will be presented at the congress venue


Bone & Joint Research
Vol. 6, Issue 12 | Pages 649 - 655
1 Dec 2017
Liu Y Zhu H Hong H Wang W Liu F

Objectives. Recently, high failure rates of metal-on-metal (MOM) hip implants have raised concerns of cobalt toxicity. Adverse reactions occur to cobalt nanoparticles (CoNPs) and cobalt ions (Co. 2+. ) during wear of MOM hip implants, but the toxic mechanism is not clear. Methods. To evaluate the protective effect of zinc ions (Zn. 2+. ), Balb/3T3 mouse fibroblast cells were pretreated with 50 μM Zn. 2+. for four hours. The cells were then exposed to different concentrations of CoNPs and Co. 2+. for four hours, 24 hours and 48 hours. The cell viabilities, reactive oxygen species (ROS) levels, and inflammatory cytokines were measured. Results. CoNPs and Co. 2+. can induce the increase of ROS and inflammatory cytokines, such as tumour necrosis factor α (TNF-α), interleukin-1β (IL-1β) and interleukin-6 (IL-6). However, Zn pretreatment can significantly prevent cytotoxicity induced by CoNPs and Co. 2+. , decrease ROS production, and decrease levels of inflammatory cytokines in Balb/3T3 mouse fibroblast cells. Conclusion. These results suggest that Zn pretreatment can provide protection against inflammation and cytotoxicity induced by CoNPs and Co. 2+. in Balb/3T3 cells. Cite this article: Y. Liu, H. Zhu, H. Hong, W. Wang, F. Liu. Can zinc protect cells from the cytotoxic effects of cobalt ions and nanoparticles derived from metal-on-metal joint arthroplasties? Bone Joint Res 2017;6:649–655. DOI: 10.1302/2046-3758.612.BJR-2016-0137.R2


The Journal of Bone & Joint Surgery British Volume
Vol. 79-B, Issue 2 | Pages 316 - 321
1 Mar 1997
Brodner W Bitzan P Meisinger V Kaider A Gottsauner-Wolf F Kotz R

We determined serum cobalt levels in 55 patients by atomic absorption spectrophotometry before and after implantation of uncemented total hip arthroplasties. In a randomised, prospective trial 27 wrought Co-28Cr-6Mo-0.2C metal-on-metal articulations were compared with 28 ceramic-on-polyethylene hips which did not contain cobalt. Other sources of iatrogenic cobalt loading were excluded. The metal-on-metal group produced detectable serum cobalt levels (median 1.1 μg/l after one year) which were significantly different (p < 0.0001) from those of the ceramic-on-polyethylene control group (median below detection limit of 0.3 μg/l after one year). Our findings indicate that metal-on-metal bearings generate some systemic release of cobalt


Bone & Joint Research
Vol. 4, Issue 3 | Pages 29 - 37
1 Mar 2015
Halim T Clarke IC Burgett-Moreno MD Donaldson TK Savisaar C Bowsher JG

Objectives. Third-body wear is believed to be one trigger for adverse results with metal-on-metal (MOM) bearings. Impingement and subluxation may release metal particles from MOM replacements. We therefore challenged MOM bearings with relevant debris types of cobalt–chrome alloy (CoCr), titanium alloy (Ti6Al4V) and polymethylmethacrylate bone cement (PMMA). Methods. Cement flakes (PMMA), CoCr and Ti6Al4V particles (size range 5 µm to 400 µm) were run in a MOM wear simulation. Debris allotments (5 mg) were inserted at ten intervals during the five million cycle (5 Mc) test. . Results. In a clean test phase (0 Mc to 0.8 Mc), lubricants retained their yellow colour. Addition of metal particles at 0.8 Mc turned lubricants black within the first hour of the test and remained so for the duration, while PMMA particles did not change the colour of the lubricant. Rates of wear with PMMA, CoCr and Ti6Al4V debris averaged 0.3 mm. 3. /Mc, 4.1Â mm. 3. /Mc and 6.4 mm. 3. /Mc, respectively. . Conclusions. Metal particles turned simulator lubricants black with rates of wear of MOM bearings an order of magnitude higher than with control PMMA particles. This appeared to model the findings of black, periarticular joint tissues and high CoCr wear in failed MOM replacements. The amount of wear debris produced during a 500 000-cycle interval of gait was 30 to 50 times greater than the weight of triggering particle allotment, indicating that MOM bearings were extremely sensitive to third-body wear. Cite this article: Bone Joint Res 2015;4:29–37


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_11 | Pages 292 - 292
1 Jul 2014
Lawrence H Deehan D Holland J Kirby J Tyson-Capper A
Full Access

Summary. Metal-on-metal hip replacements have been associated with adverse reactions including inflammatory pseudotumours and soft tissue necrosis. We have shown that cobalt can directly activate toll-like receptor 4, an immune receptor causing pro-inflammatory interleukin-8 secretion. This may contribute to adverse reaction development. Introduction. Metal-on-metal hips have the highest failure rate of any joint arthroplasty material. Reasons for failure include the development of pseudotumours, soft tissue necrosis and pain around the affected joint. The adverse reactions appear to be inflammatory as failing joints are often infiltrated by immune cells such as lymphocytes. However the exact cellular and biological mechanisms underlying this inflammation are unknown. Toll-like receptor 4 (TLR4) is found on the surface of immune cells including macrophages and dendritic cells. It is activated by lipopolysaccharide (LPS) from Gram negative bacteria, inducing an immune response against the pathogen through increased secretion of pro-inflammatory cytokines. It has recently been shown that nickel can activate TLR4, causing inflammation. Cobalt, a component of many metal-on-metal joints, is adjacent to nickel in the periodic table and shares a number of nickel's properties. Consequently we hypothesised that cobalt ions from metal-on-metal joints can activate TLR4. Methods. An in vitro cell culture model was developed using human and murine TLR4 reporter cell lines to investigate the effects of metal ions, including cobalt, on TLR4. Real-time PCR was used to examine the effect of cobalt on inflammatory gene expression, including IL-8, CCL-2 and IRAK-2, while an ELISA assay was conducted to investigate IL-8 protein expression in a human macrophage cell line (MonoMac 6). The TLR4 agonist LPS was included as a positive control and as a negative control TLR4 activation was blocked using the chemical agonist CLI-095 (Invivogen, UK). Results. Using human TLR4 reporter cells we show that cobalt at clinically-relevant concentrations can activate human TLR4. This effect appears unique to humans as murine TLR4 is unresponsive to cobalt but still responds to LPS. We also demonstrate that in human macrophages physiologically-relevant concentrations of cobalt cause increased pro-inflammatory IL-8 secretion (p<0.001). IL-8 is involved in perpetuating the immune response by recruiting more inflammatory cells to the site of inflammation. Cobalt-induced IL-8 secretion can be blocked using a TLR4 antagonist (p<0.001) showing that the effect is due to cobalt activation. Cobalt ions also alter gene expression in human macrophages. Cobalt upregulates expression of IL-8 and IRAK2 genes; IRAK2 is a key component of the TLR4 signalling pathway. Interestingly, cobalt causes downregulation of the CCL2 gene whereas it is upregulated in response to LPS. Discussion. In this study we have demonstrated that cobalt ions can activate human TLR4 signalling and in human macrophages this can increase expression of pro-inflammatory IL-8. We have also developed a robust series of assays for determining the effects of metal ions and other orthopaedic materials on the TLR4 signalling pathway. These methods will be used to investigate the immunological effects of additional orthopaedic metals (e.g. chromium, titanium and molybdenum). This work has identified a key pathway involved in the immune response to metal ions which can now be investigated for genetic variability and as a potential therapeutic target


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXVI | Pages 33 - 33
1 Aug 2012
Lord J Langton D Nargol A Joyce T
Full Access

Wear debris induced osteolysis is a recognized complication in conventional metal-on-polyethylene hip arthroplasty. One method of achieving wear reduction is through the use of metal-on-metal articulations. One of the latest manifestations of this biomaterial combination is in designs of hip resurfacing which are aimed at younger, more active patients. But, do these metal-on-metal hip resurfacings show low wear when implanted into patients?. Using a Mitutoyo Legex 322 co-ordinate measuring machine (scanning accuracy less than 1 micron) and a bespoke computer program, volumetric wear measurements for retrieved Articular Surface Replacements (ASR, DePuy) metal-on-metal hip resurfacings were undertaken. Measurements were validated against gravimetric calculations for volumetric wear using a sample femoral head that was artificially worn in vitro. At 5mm3, 10mm3, and 15mm3 of material removal, the method was shown to be accurate to within 0.5mm3. Thirty-two femoral heads and twenty-two acetabular cups were measured. Acetabular cups exhibited mean volumetric wear of 29.00mm3 (range 1.35 - 109.72mm3) and a wear rate of 11.02mm3/year (range 0.30 - 63.59mm3/year). Femoral heads exhibited mean wear of 22.41mm3 (range 0.72 - 134.22mm3) and a wear rate of 8.72mm3/year (range 0.21 - 31.91mm3/year). In the 22 cases where both head and cup from the same prosthesis were available, mean total wear rates of 21.66mm3/year (range 0.51 - 95.50mm3/year) were observed. Revision was necessitated by one of five effects; early femoral neck fracture (4 heads), avascular necrosis (AVN) (2 heads, 1 cup), infection (1 head, 1 cup), adverse reaction to metal debris (ARMD) (19 heads, 18 cups) or ARMD fracture (6 heads, 2 cups). Mean paired wear rates for the AVN and infection retrievals were 0.51mm3/year and 3.98mm3/year respectively. In vitro tests typically offer wear rates for metal-on-metal devices in the region of 2-4mm3. Mean paired wear rates for ARMD and ARMD fracture were 17.64mm3/year and 68.5mm3/year respectively, significantly greater than those expected from in vitro tests. In the 4 cases of early fracture, only the heads were revised so a combined wear rate calculation was not possible. The heads exhibited mean wear rate of 8.26mm3/year. These high wear rates are of concern


Introduction. The purpose of this study was to evaluate the functional and radiographical results in patients who underwent a modified minimally invasive two-incision total hip arthroplasty using large-diameter metal-on-metal articulations for osteonecrosis of the femoral head. Methods. From December 2007 to July 2008, 45 hips (33 patients) underwent total hip arthroplasty for the treatment of osteonecrosis of the femoral head. There was 1 woman (2 hips) and 32 men (43 hips) who had a mean age of 39 years (range, 22 to 64 years). The minimum follow-up was 12 months (range, 12 to 19 months). The authors modified the original minimally invasive two-incision total hip arthroplasty technique and used large-diameter metal-on-metal articulations. In the lateral position, an anterolateral approach was used between the gluteus medius and tensor fascia lata muscles and for the posterior approach the muscle plane was between the piriformis and gluteus medius muscles. The acetabular components, Durom¯ (Zimmer) in 20 hips and Magnum¯ (Biomet) was used in 25 hips. M/L taper¯ (Zimmer) femoral stems were used in all cases. The size of the femoral heads were 38 mm (1 hip), 40 mm (3 hips), 42 mm (13 hips), 44 mm (18 hips), 46 mm (5 hips), 48 mm (4 hips) and 50 mm (1 hip). Postures such as excessive flexion or adduction which cause dislocation were not restricted, post-operatively. Functional results were measured by Harris hip scores (HHS), WOMAC scores, and range of motion. Radiographic evaluation was assessed for positions of components and post-operative complications were noted. Results. Mean operation time was 72 minutes (range, 54 to 94 minutes). The mean Harris hip score improved from 50 points (range, 38 to 73 points) pre-operatively to 96 points (range, 84 to 100 points) post-operatively, and the mean WOMAC score improved from 68 points (range, 50 to 93 points) to 28 points (range, 26 to 34 points). The mean flexion improved from 85° pre-operatively to 122° post-operatively. The mean internal rotation improved from 2.5° pre-operatively to 25.3° post-operatively. The mean external rotation improved from 31.8° pre-operatively to 60.1° post-operatively. The mean abduction improved from 24.0° pre-operatively to 41.6° post-operatively. The mean adduction improved from 19.4 ° pre-operatively to 26.6° post-operatively. All patients were able to sit cross legged and squat. On radiological evaluation, the mean lateral opening angle of the acetabular component was 39.4° (range, 32.2°-48.5°) and the mean stem position was valgus 0.3° (range, varus 2.8° to valgus 2.0°). At last follow-up, all femoral and acetabular components were well-fixed without loosening or subsidence. There were no complications such as dislocation, immediate post-operative deep infection or delayed infection. Conclusion. Modified minimally invasive two-incision total hip arthroplasty using large-diameter metal-on-metal articulations for osteonecrosis of the femoral head results in satisfactory early clinical and radiologic results


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_16 | Pages 42 - 42
1 Oct 2016
Pasko K Hall R Neville A Tipper J
Full Access

Surgical interventions for the treatment of chronic neck pain, which affects 330 million people globally [1], include fusion and cervical total disc replacement (CTDR). Most of the currently clinically available CTDRs designs include a metal-on-polymer (MoP) bearing. Numerous studies suggest that MoP CTDRs are associated with issues similar to those affecting other MoP joint replacement devices, including excessive wear and wear particle-related inflammation and osteolysis [2,3]. A device with a metal-on-metal (MoM) bearing has been investigated in the current study. Six MoM CTDRs made from high carbon cobalt-chromium (CoCr) were tested in a six-axis spine simulator, under standard ISO testing protocol (ISO-18192-1) for a duration of 4 million cycles (MC). Foetal bovine calf serum (25%v/v), used as a lubricant, was changed every 3.3×10. 5. cycles and saved for particle analysis. Components were taken down for measurements after each 10. 6. cycles; surface roughness, damage modes and gravimetric wear were assessed. The mean wear rate of the MoM CTDRs was 0.24mm. 3. /MC (SD=0.03), with the total volume of 0.98mm. 3. (SD=0.01) lost over the test duration. Throughout the test, the volumetric wear was linear; no significant bedding-in period was observed. The mean pre-test surface roughness decreased from 0.019μm (SD=0.005) to 0.012μm (SD=0.002) after 4MC of testing. Prior to testing, fine polishing marks on the bearing surfaces were observed using light microscopy. Following 4MC of testing, these polishing marks had been removed. Consistently across all components, surface discolouration and multidirectional, criss-crossing, circular wear tracks, caused by abrasive wear, were observed. The wear results showed low wear rates exhibited by MoM CTDRs (0.24mm. 3. /MC), when compared CTDR designs incorporating metal-on-polymer bearings (0.56mm. 3. /MC) [4] as well as MoM lumbar CTDRs [5,6] (0.76mm3/MC – 6.2mm. 3. /MC). These findings suggest that MoM CTDRs are more wear resistant than MoP CTDRs, however the particle characterisation and biological consequences of wear remain to be determined


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XVIII | Pages 28 - 28
1 May 2012
Masters J Sandison A Diss T Lali F Skinner J Hart A
Full Access

Metal-on-metal (MOM) hip resurfacings release chromium and cobalt wear debris into the surrounding joint. The hip tissue taken from failed MOM hips shows specific histological features including a subsurface band-like infiltrate of macrophages with particulate inclusions, perivascular lymphocytic infiltrate and fibrin exudation. This tissue response has been called Aseptic Lymphocytic Vasculitis Associated Lesion (ALVAL). There is a recognised carcinogenic potential associated with hexavalent chromium and epidemiological data from first generation MOM arthroplasties may suggest an increased incidence of haematological malignancy. The ALVAL type reaction includes a marked proliferation of lymphocytes in the perivascular space and thorough investigation of this lymphocytic response is warranted. This study aims to further characterise the lymphocytic infiltrate using immunohistochemistry and to test clonality using polymerase chain reaction (PCR). Tissues from revised all cause failed MOM hip arthroplasties (n=77) were collected and analysed initially using routine H&E staining. Those that met the diagnostic criteria of ALVAL described above (n=34) were further stained with a panel of immunohistochemical markers (CD3, CD4, CD8 (T-cell markers) and CD20 (B-cell marker)). 10 representative ALVAL cases were selected and sent for gene rearrangement studies using PCR to determine whether the lymphocytes were polyclonal or monoclonal in nature. The analysis of the lymphocytic aggregates in ALVAL, showed a mixed population of B and T cells. Within the aggregates, there was a predominance of B cells (CD20) over T cells (CD3). Of the 10 cases which were analysed by PCR, 7 were suitable for interpretation. None of these cases showed evidence of monoclonal lymphocyte proliferation. The carcinogenic potential of wear debris from MOM hips, particularly affecting the haematopoietic system should be investigated. This study has shown a predominantly B-lymphocyte response in tissues surrounding MOM hips which is polyclonal. Although the numbers are small, the study suggests an immune mediated response in MOM hip tissue and excludes a neoplastic proliferation. However, long term follow up of patients with MOM hips may be prudent


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XVIII | Pages 55 - 55
1 May 2012
Mellon SJ Kwon Y Simpson DJ Murray DW Gill HS
Full Access

Introduction. Metal-on-metal (MoM) hip resurfacing arthroplasty is a popular choice for young and active patients. However, there are concerns recently regarding soft tissue masses or pseudotumours. The appearance of these complications is thought to be related blood metal ion levels. The level of metal ions in blood is thought to be the result of MoM wear. In the present study the contribution of acetabulum orientation to stress distribution was investigated. Methods. Four subjects with MoM resurfacings and with known blood metal ion levels underwent motion analysis followed by CT scans. The positions of the acetabular (cup) and femoral components were determined the CT data relative to local coordinate systems in the pelvis (PCS) and the femur (FCS). Transformations, calculated from the motion analysis data, between the PCS and FCS gave the position of the cup relative to the femoral component for each frame of captured motion data. Hip reaction forces were taken from published data1. The intersection of hip reaction force with each subject's cup and the increase in inclination required to move the force to the edge of the cup was calculated for 2% intervals during the stance phase of gait. Finite element models representing each subject's cup and femoral components were created and contact stresses were determined for the native cup inclination angle. For each model, the effect of increasing the inclination of the cup, by up to 10°, in 1° increments, was determined. Results and Discussion. The two subjects with high metal ion levels had inclination angles of 60.2° and 53.7° whereas the two with low metal ion levels had inclination angles of 45.6° and 46.5°. The subjects with high metal ion levels required very little increase to their inclination angle to cause the hip reaction force vector to intersect at the edge. The contact stress on the cup increased dramatically when the inclination angle was such that the hip reaction force intersected with the edge. The average increase in contact stress under edge-loading conditions was 57% for the two subjects with high metal ions. In contrast, the subjects with low metal ions exhibited no change in contact stress when the inclination angle of their cups was increased by 10°. The inter-subject variability in the measured hip reaction forces was greater than the amount of increase in cup inclination required to induce edge-loading for the subjects with high metal ion levels. These results suggest that poor positioning of the cup during surgery may result in edge-loading, a greater rate of wear and adverse biological reactions associated with metal ion release


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_15 | Pages 103 - 103
1 Nov 2018
Gill RHS
Full Access

Metal on metal hip replacements have been one of worst failures in recent years in terms of orthopaedic implants. Some of these devices have had catastrophic failure rates, with reports of 48% failure at 6 years. The failure of these devices has led to considerable suffering, pain and reduction in quality of life; consequently, they have given rise to high costs and multi-million-dollar legal cases. This talk will describe the history of the current metal on metal failure and discuss some of the reasons why might have occurred. It will also consider the reasons that wear debris arising from the trunnion is worse in terms of biological activity then that arising from the bearing surfaces.


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_15 | Pages 104 - 104
1 Nov 2018
Scholes C Ebrahimi M Farah S Field C Kerr D Kohan L
Full Access

The aim of this study was to report the procedure survival and patient-reported outcomes in a consecutive series of patients <50yrs at the time of hip arthroplasty with a metal-on-metal hip resurfacing system who have progressed to a minimum of 10yrs follow-up. Patients presenting for treatment of degenerative conditions of the hip electing to undergo hip resurfacing were included in a clinical registry (N=226 patients; 238 procedures). Procedure survival was confirmed by crosschecking to the Australian Orthopaedic Association National Joint Replacement Registry and comparing to all procedures by other surgeons nationwide. Kaplan-meier survival curves with 95% confidence intervals were constructed, while patient-reported outcome measures were compared with t-tests and postoperative scores assessed with anchor analysis to age and gender-matched normative data. At mean follow up of 12 years, six cases were revised with a cumulative survival rate of 96.8% (95%CI 94.2–99.4) at 15 years. Majority of revisions were early (<3yrs) and occurred in females (N=4). Patient-reported general health, disease state, hip function and activity level maintained large improvements beyond 10 years post-implantation and were equal to or exceeded age and gender-matched normative data. Metal-on-metal hip resurfacing in males and females aged <50 years at time of surgery demonstrated a high rate of cumulative survival beyond 10 years follow up. The results demonstrate excellent outcomes in this age group.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_16 | Pages 34 - 34
1 Oct 2016
Steinberg J Shah K Gartland A Zeggini E Wilkinson J
Full Access

Systemic concentrations of metal ions (cobalt and chromium) are persistently elevated in patients with metal-on-metal hip resurfacing (MOMHR) compared to conventional total hip arthroplasty (THA). Several studies by us and others have described the detrimental effects of metal exposure on survival and function of various cell types in-vitro, but the mechanisms for these effects remain unclear. Epigenetic modifications following chronic metal exposure is a possible mechanism that could mediate these effects. Here we test the methylation status in genomic DNA from MOMHR (“cases”) and THA (“controls”) patient-groups, and its correlation with circulating metal levels.

The cohort consisted of 34 patients with a well-functioning MOMHR at a median follow-up of 9.75 years. These were individually matched for gender, age and time-since-surgery to a non-exposure group consisting of patients with THA. Genomic DNA was isolated from blood samples and cell composition estimated using the ‘estimateCellCounts’ function in ‘minfi R-package’. Methylation was assessed using the Illumina 450k BeadChip array analysing 426,225 probes. Logit model was fitted at each probe with case/control status as independent variable and covariates of gender, age, time-since-surgery, smoking, non-arthroplasty metal exposure, and cell composition. DNA methylation age was assessed using an online calculator (https://dnamage.genetics.ucla.edu/) and comparisons made between cases and controls, and correlated with circulating metal levels.

Cell distributions did not differ between the cases and controls (Wilcoxon test p<0.17) with no probe having an association at 5% FDR. Circulating metal levels and LVEDD also had no association with any probe at 5% FDR. There was no preferential age acceleration between cases and controls (Wilcox p<0.7), and it had no correlation with plasma-chromium or blood-cobalt levels (p<0.9).

In summary, large methylation changes following MOMHR seem to be absent, compared to THA. Future research with larger samples will be needed to clarify the presence and extent of small methylation changes.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXVI | Pages 5 - 5
1 Aug 2012
Dhinsa B Perera J Gallagher K Spiegelberg B Hanna S Tai S Pollock R Carrington R Cannon S Briggs T
Full Access

The aim of this study is to investigate whether MoM implants result in more chromosome aberrations and increased blood metal ions postoperatively whe compared to MoP implants.

MoM arthroplasties are being inserted in increasing numbers of younger patients due to the increased durability and reduced requirements for revision in these implants. Recent studies have raised many concerns over possible genotoxicity of MoM implants.

This is a prospective study of patients who have undergone elective total hip replacement, they were selected and then randomised into two groups. Group A received a MoP implant and group B received a MoM implant. Patients are reviewed pre-operatively (control group), at 3 months, 6 months, 1 year and 2 years post-operatively. On each occasion blood tests are taken to quantify metal ion levels (chromium, cobalt, titanium, nickel and vanadium) using HR-ICPMS method and chromosome aberrations in T lymphocytes using 24 colour fluorescent in situ hydridisation (FISH).

51 patients have been recruited to date, 23 of whom had MoP prosthesis and 28 a MoM. 47 of these had their 1 year follow-up with blood analysis and 38 have had 2 year follow up. There appeared to be a bedding period for both MoM and MoP groups, with an increase in metal ion release. The blood concentration of chromium, cobalt and titanium rise significantly in the MoM group at the 2 year stage. Chromosome aberrations occurred in both groups. Both the MoM and MoP groups showed increase frequency of aneuploidy aberrations and structural damage. The greatest increase in metal ion levels occurred at the 1 to 2 year interval corresponding to significant rise in chromosome aberrations.

Preliminary results of this study show that the levels of chromium, cobalt and titanium are significantly higher in the MoM group compared to the MoP group. This corresponds to increases in chromosome aberrations in the groups with increases in structural chromosome damage after two years.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXVI | Pages 77 - 77
1 Aug 2012
Lord J Langton D Nargol A Meek R Joyce T
Full Access

Metal-on-metal hip resurfacing prostheses are a relatively recent intervention for relieving the symptoms of common musculoskeletal diseases such as osteoarthritis. While some short term clinical studies have offered positive results, in a minority of cases there is a recognised issue of femoral fracture, which commonly occurs in the first few months following the operation. This problem has been explained by a surgeon's learning curve and notching of the femur but, to date, studies of explanted early fracture components have been limited.

Tribological analysis was carried out on fourteen retrieved femoral components of which twelve were revised after femoral fracture and two for avascular necrosis (AVN). Eight samples were Durom (Zimmer, Indiana, USA) devices and six were Articular Surface Replacements (ASR, DePuy, Leeds, United Kingdom). One AVN retrieval was a Durom, the other an ASR. The mean time to fracture was 3.4 months. The AVNs were retrieved after 16 months (Durom) and 38 months (ASR).

Volumetric wear rates were determined using a Mitutoyo Legex 322 co-ordinate measuring machine (scanning accuracy within 1 micron) and a bespoke computer program. The method was validated against gravimetric calculations for volumetric wear using a sample femoral head that was artificially worn in vitro. At 5mm3, 10mm3, and 15mm3 of material removal, the method was accurate to within 0.5mm3. Surface roughness data was collected using a Zygo NewView500 interferometer (resolution 1nm).

Mean wear rates of 17.74mm3/year were measured from the fracture components. Wear rates for the AVN retrievals were 0.43mm3/year and 3.45mm3/year. Mean roughness values of the fracture retrievals (PV = 0.754nm, RMS = 0.027nm) were similar to the AVNs (PV = 0.621nm, RMS = 0.030nm), though the AVNs had been in vivo for significantly longer.

Theoretical lubrication calculations were carried out which found that in both AVN retrievals and in seven of the twelve cases of femoral fracture the roughening was sufficient to change the lubrication regime from fluid film to mixed. Three of these surfaces were bordering on the boundary lubrication regime. The results show that even before the femoral fracture, wear rates and roughness values were high and the implants were performing poorly.


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_13 | Pages 11 - 11
1 Mar 2013
Matthies A Suarez A Karbach L Henckel J Skinner J Noble P Hart A
Full Access

There are several component position and design variables that increase the risk of edge loading and high wear in metal-on-metal hip resurfacing (MOM-HR). In this study we combined all of these variables to calculate the ‘contact patch to rim distance’ (CPRD) in patients undergoing revision of their MOM-HR. We then determined whether CPRD was more strongly correlated with component wear and blood metal ion levels, when compared to any other commonly reported clinical variable. This was a retrospective study of 168 consecutively collected MOM-HR retrieval cases. All relevant clinical data was documented, including pre-revision whole blood cobalt and chromium ion levels. Wear of the bearing surfaces was then measured using a roundness-measuring machine. We found four variables to be significantly (p < 0.05) correlated with component wear and blood metal ion levels: (1) cup inclination angle, (2) cup version angle, (3) arc of cover, and (4) CPRD. The correlations between CPRD and both wear and ion levels were significantly stronger than those seen with any other variable (all p < 0.0001). Our study has shown that CPRD is the best predictor of component wear and blood metal ion levels, and may therefore be a useful parameter to help determine those patients who are at risk of high wear and require more frequent clinical surveillance.


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_11 | Pages 149 - 149
1 Jul 2014
Slagis S Skrepnik N Wild J Robertson M Nielsen B Skrepnik T Eberle R
Full Access

Summary

Management of metal on metal hip replacements can be accomplished with a simple algorithm including easily available metal ion levels and hip MRI with metal artifact reducing software. After revision serum metal ion levels can be expected to fall rapidly.

Introduction

Metallic ion release may be related to bearing surface wear and thus serves as an indicator of the in-vivo performance of metal on metal articulations. The purpose of this prospective, controlled study was to compare new large head metal on metal hip components with established modular metal on metal and metal on polyethylene and to determine their effects on serum metal levels before and after revision.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXVI | Pages 2 - 2
1 Aug 2012
Prentice J Clark M Stockley I Wilkinson J
Full Access

Background and objectives

Local bone-related adverse events occur more frequently following metal-on metal hip resurfacing (MOMHR) versus convention total hip arthroplasty (THA). High local tissue levels of cobalt and chromium may contribute to impaired bone health, however the systemic effects on bone of exposure to elevated metal levels after MOMHR are unknown.

Methods

In this cross-sectional study we compared whole body bone mineral density (WB-BMD) and biochemical markers of bone turnover in 31 healthy male subjects at a mean of 8 years after MOMHR versus 31 individually age and time since surgery matched male subjects after conventional THA. All subjects had well-functioning prostheses and were in good self-reported health as assessed by Oxford Hip Score and EQ-5D questionnaire. WB-BMD was measured by dual energy x-ray absorptiometry and adjusted for pre-morbid osteoporosis risk factors using the FRAX tool, and for the presence of the metal prostheses using identical exclusion regions. Bone turnover markers were measured on fasting morning serum or 24hr urine collection by electro-chemiluminescent assay. Cobalt and chromium were measured by ICP-MS.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_16 | Pages 39 - 39
17 Nov 2023
FARHAN-ALANIE M Gallacher D Kozdryk J Craig P Griffin J Mason J Wall P Wilkinson M Metcalfe A Foguet P
Full Access

Abstract. Introduction. Component mal-positioning in total hip replacement (THR) and total knee replacement (TKR) can increase the risk of revision for various reasons. Compared to conventional surgery, relatively improved accuracy of implant positioning can be achieved using computer assisted technologies including navigation, patient-specific jigs, and robotic systems. However, it is not known whether application of these technologies has improved prosthesis survival in the real-world. This study aimed to compare risk of revision for all-causes following primary THR and TKR, and revision for dislocation following primary THR performed using computer assisted technologies compared to conventional technique. Methods. We performed an observational study using National Joint Registry data. All adult patients undergoing primary THR and TKR for osteoarthritis between 01/04/2003 to 31/12/2020 were eligible. Patients who received metal-on-metal bearing THR were excluded. We generated propensity score weights, using Sturmer weight trimming, based on: age, gender, ASA grade, side, operation funding, year of surgery, approach, and fixation. Specific additional variables included position and bearing for THR and patellar resurfacing for TKR. For THR, effective sample sizes and duration of follow up for conventional versus computer-guided and robotic-assisted analyses were 9,379 and 10,600 procedures, and approximately 18 and 4 years, respectively. For TKR, effective sample sizes and durations of follow up for conventional versus computer-guided, patient-specific jigs, and robotic-assisted groups were 92,579 procedures over 18 years, 11,665 procedures over 8 years, and 644 procedures over 3 years, respectively. Outcomes were assessed using Kaplan-Meier analysis and expressed using hazard ratios (HR) and 95% confidence intervals (CI). Results. For THR, analysis comparing computer-guided versus conventional technique demonstrated HR of 0.771 (95%CI 0.573–1.036) p=0.085, and 0.594 (95%CI 0.297–1.190) p=0.142, for revision for all-causes and dislocation, respectively. When comparing robotic-assisted versus conventional technique, HR for revision for all-causes was 0.480 (95%CI 0.067 –3.452) p=0.466. For TKR, compared to conventional surgery, HR for all-cause revision for procedures performed using computer guidance and patient-specific jigs were 0.967 (95% CI 0.888–1.052) p=0.430, and 0.937 (95% CI 0.708–1.241) p=0.65, respectively. HR for analysis comparing robotic-assisted versus conventional technique was 2.0940 (0.2423, 18.0995) p = 0.50. Conclusions. This is the largest study investigating this topic utilising propensity score analysis methods. We did not find a statistically significant difference in revision for all-causes and dislocation although these analyses are underpowered to detect smaller differences in effect size between groups. Additional comparison for revision for dislocation between robotic-assisted versus conventionally performed THR was not performed as this is a subset of revision for all-causes and wide confidence intervals were already observed for that analysis. It is also important to mention this NJR analysis study is of an observational study design which has inherent limitations. Nonetheless, this is the most feasible study design to answer this research question requiring use of a large data set due to revision being a rare outcome. Declaration of Interest. (b) declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research reported:I declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research project


The Journal of Bone & Joint Surgery British Volume
Vol. 91-B, Issue 6 | Pages 835 - 842
1 Jun 2009
Hart AJ Skinner JA Winship P Faria N Kulinskaya E Webster D Muirhead-Allwood S Aldam CH Anwar H Powell JJ

We carried out a cross-sectional study with analysis of the demographic, clinical and laboratory characteristics of patients with metal-on-metal hip resurfacing, ceramic-on-ceramic and metal-on-polyethylene hip replacements. Our aim was to evaluate the relationship between metal-on-metal replacements, the levels of cobalt and chromium ions in whole blood and the absolute numbers of circulating lymphocytes. We recruited 164 patients (101 men and 63 women) with hip replacements, 106 with metal-on-metal hips and 58 with non-metal-on-metal hips, aged < 65 years, with a pre-operative diagnosis of osteoarthritis and no pre-existing immunological disorders. Laboratory-defined T-cell lymphopenia was present in13 patients (15%) (CD8. +. lymphopenia) and 11 patients (13%) (CD3. +. lymphopenia) with unilateral metal-on-metal hips. There were significant differences in the absolute CD8. +. lymphocyte subset counts for the metal-on-metal groups compared with each control group (p-values ranging between 0.024 and 0.046). Statistical modelling with analysis of covariance using age, gender, type of hip replacement, smoking and circulating metal ion levels, showed that circulating levels of metal ions, especially cobalt, explained the variation in absolute lymphocyte counts for almost all lymphocyte subsets