Abstract
Systemic concentrations of metal ions (cobalt and chromium) are persistently elevated in patients with metal-on-metal hip resurfacing (MOMHR) compared to conventional total hip arthroplasty (THA). Several studies by us and others have described the detrimental effects of metal exposure on survival and function of various cell types in-vitro, but the mechanisms for these effects remain unclear. Epigenetic modifications following chronic metal exposure is a possible mechanism that could mediate these effects. Here we test the methylation status in genomic DNA from MOMHR (“cases”) and THA (“controls”) patient-groups, and its correlation with circulating metal levels.
The cohort consisted of 34 patients with a well-functioning MOMHR at a median follow-up of 9.75 years. These were individually matched for gender, age and time-since-surgery to a non-exposure group consisting of patients with THA. Genomic DNA was isolated from blood samples and cell composition estimated using the ‘estimateCellCounts’ function in ‘minfi R-package’. Methylation was assessed using the Illumina 450k BeadChip array analysing 426,225 probes. Logit model was fitted at each probe with case/control status as independent variable and covariates of gender, age, time-since-surgery, smoking, non-arthroplasty metal exposure, and cell composition. DNA methylation age was assessed using an online calculator (https://dnamage.genetics.ucla.edu/) and comparisons made between cases and controls, and correlated with circulating metal levels.
Cell distributions did not differ between the cases and controls (Wilcoxon test p<0.17) with no probe having an association at 5% FDR. Circulating metal levels and LVEDD also had no association with any probe at 5% FDR. There was no preferential age acceleration between cases and controls (Wilcox p<0.7), and it had no correlation with plasma-chromium or blood-cobalt levels (p<0.9).
In summary, large methylation changes following MOMHR seem to be absent, compared to THA. Future research with larger samples will be needed to clarify the presence and extent of small methylation changes.