Worldwide, most spine imaging is either “inappropriate” or “probably inappropriate”. The Choosing Wisely recommendation is “Do not perform imaging for lower back pain unless red flags are present.” There is currently no detailed breakdown of lower back pain
True scaphoid fractures of the wrist are difficult to diagnose in children. In 5–40% of cases, a scaphoid fracture may not be detectable on initial X-ray, some fractures may take up to six weeks to become evident. Since missing a scaphoid fracture may have serious implications, many children with a suspected or “clinical” scaphoid fracture, but normal radiographs, may be over-treated. The purpose of this study was to identify predictors of true scaphoid fractures in children. A retrospective cohort study was performed using electronic medical records for all patients over a two-year period presenting to a tertiary paediatric hospital with hand or wrist injury. Charts were identified by ICD-10 diagnostic codes and reviewed for pre-specified inclusion and exclusion criteria. Patients with either a clinical or true scaphoid fracture were included. When a scaphoid fracture was suspected, but imaging was negative for fracture, the diagnosis of a clinical scaphoid fracture was made. True scaphoid fractures were diagnosed when a fracture was evident on any modality of
This study aimed to evaluate the clinical outcomes of paediatric patients who underwent a retrograde drilling treatment for their osteochondritis dissecans (OCD) of the talus. The secondary purpose was to identify factors that are predictive of a failure of the treatment. A retrospective study was done. All patients treated for talar OCD between 2014 and 2017 were reviewed to extract clinical and demographic information (age, sex, BMI, OCD size and stability, number of drilling, etc). Inclusion criteria were: (1) talar OCD treated with retrograde drilling, (2) less than 18 years, (3) at least one available follow up (4) stable lesion. Exclusion criteria was another type of treatment for a the talar OCD. Additionally, all pre-operative and post-operative
Quantitative assessment of metastatic involvement of the bony spine is important for assessing disease progression and treatment response. Quantification of metastatic involvement is challenging as tumours may appear as osteolytic (bone resorbing), osteoblastic (bone forming) or mixed. This investigation aimed to develop an automated method to accurately segment osteoblastic lesions in a animal model of metastatically involved vertebrae, imaged with micro computed tomography (μCT). Radiomics seeks to apply standardized features extracted from
Spinal stenosis is a condition resulting in the compression of the neural elements due to narrowing of the spinal canal. Anatomical factors including enlargement of the facet joints, thickening of the ligaments, and bulging or collapse of the intervertebral discs contribute to the compression. Decompression surgery alleviates spinal stenosis through a laminectomy involving the resection of bone and ligament. Spinal decompression surgery requires appropriate planning and variable strategies depending on the specific situation. Given the potential for neural complications, there exist significant barriers to residents and fellows obtaining adequate experience performing spinal decompression in the operating room. Virtual teaching tools exist for learning instrumentation which can enhance the quality of orthopaedic training, building competency and procedural understanding. However, virtual simulation tools are lacking for decompression surgery. The aim of this work was to develop an open-source 3D virtual simulator as a teaching tool to improve orthopaedic training in spinal decompression. A custom step-wise spinal decompression simulator workflow was built using 3D Slicer, an open-source software development platform for
With the increasing use of 3D
Periprosthetic joint infection (PJI) is a major complication affecting >1% of all total knee arthroplasties, with compromise in patient function and high rates of morbidity and mortality. There are also major socioeconomic implications. Diagnosis is based on a combination of clinical features, laboratory tests (including serum and articular samples) and
Joint laxity assessments have been a valuable resource in order to understand the biomechanics and pathologies of the knee. Clinical laxity tests like the Lachman test, Pivot-shift test and Drawer test are, however, subjective of nature and will often only provide basic information of the joint. Stress radiography is another option for assessing knee laxity; however, this method is also limited in terms of quantifiability and one-dimensionality. This study proposes a novel non-invasive low-dose radiation method to accurately measure knee joint laxity in 3D. A method that combines a force controlled parallel manipulator device, a
Aim. The current treatment concepts of acute and chronic osteomyelitis are associated with unsolved challenges and problems, underlining the need for ongoing medical research. The invention and prevalence of an absorbable, gentamicin-loaded ceramic bone graft, that is well injectable for orthopedic trauma and bone infections, enlarges the treatment scope regarding the rise of posttraumatic deep bony infections. This substance can be used either for infection, dead-space, or reconstruction management. The bone cement, eluting antibiotics continuously to the surrounding tissue, outperforms the intravenous antibiotic therapy and enhances the local concentration levels efficiently. This study aims to evaluate the power and practicability of bone cement in several locations of bony infections. Method. The occurrence of posttraumatic infections with acute or chronic osteomyelitis increases in trauma surgery along with progression of high impact injuries and consecutively high incidence of e.g. open fractures. We present a case-series of 33 patients (18w/15m; 56,8±19,4 years) with posttraumatic osteomyelitis at different anatomic sites, who were treated in our level I trauma center. All of these patients received antibiotic eluting bone cement (Cerement® G) for infection and reconstruction management. Results. With admission to our trauma-center all patients with obvious or suspected osteomyelitis undergo an interdisciplinary pre-work up, including thorough clinical examination and different measures of
Aim. The current treatment concepts of acute and chronic osteitis are associated with unsolved challenges and problems, underlining the need for ongoing medical research. The invention and prevalence of an absorbable, gentamicin-loaded ceramic bone graft, that is well injectable for orthopedic trauma and bone infections, enlarges the treatment scope regarding the rise of posttraumatic deep bone infections. This substance can be used either for infection, dead-space, or reconstruction management. The bone cement, eluting antibiotics continuously to the surrounding tissue, outperforms the intravenous antibiotic therapy and enhances the local concentration levels efficiently. This study aims to evaluate the power and practicability of bone cement in several locations of bone infections. Method. The occurrence of posttraumatic infections with acute or chronic osteitis increases in trauma surgery along with progression of high impact injuries and consecutively high incidence of e.g. open fractures. We present a case-series of 10 patients with posttraumatic osteitis at different anatomic sites, who were treated in our level I trauma center. All of these patients received antibiotic eluting bone cement* for infection and reconstruction management. Results. With admission to our trauma-center all patients with obvious or suspected osteitis undergo an inter-disciplinary pre-work up, including thorough clinical examination and different measures of
Simulation is an effective adjunct to the traditional surgical curriculum, though access to these technologies is often limited and costly. The objectives of this work were to develop a freely accessible virtual pedicle screw simulator and to improve the clinical authenticity of the simulator through integration of low-cost motion tracking. The open-source
Introduction. Shoulder arthroplasty is used to treat several common pathologies of the shoulder, including osteoarthritis, post-traumatic arthritis, and avascular necrosis. In replacement of the humeral head, modular components allow for anatomical variations, including retroversion angle and head-neck angle. Surgical options include an anatomic cut or a guide-assisted cut at a fixed retroversion and head-neck angle, which can vary the dimensions of the cut humeral head (height, anteroposterior (AP), and superoinferior (SI) diameters) and lead to negative long term clinical results. This study measures the effect of guide-assisted osteotomies on humeral head dimensions compared to anatomic dimensions. Methods. Computed tomography (CT) scans from 20 cadaveric shoulder specimens (10 male, 10 female; 10 left) were converted to three-dimensional models using
Background. Humeral version is the twist angle of the humeral head relative to the distal humerus. Pre-operatively, it is most commonly measured referencing the transepicondylar axis, although various techniques are described in literature (Matsumura et al. 2014, Edelson 1999, Boileau et al., 2008). Accurate estimation of the version angle is important for humeral head osteotomy in preparation for shoulder arthroplasty, as deviations from native version can result in prosthesis malalignment. Most humeral head osteotomy guides instruct the surgeon to reference the ulnar axis with the elbow flexed at 90°. Average version values have been reported at 17.6° relative to the transepicondylar axis and 28.8° relative to the ulnar axis (Hernigou, Duparc, and Hernigou 2014), although it is highly variable and has been reported to range from 10° to 55° (Pearl and Volk 1999). These studies used 2D CT images; however, 2D has been shown to be unreliable for many glenohumeral measurements (Terrier 2015, Jacxsens 2015, Budge 2011). Three-dimensional (3D) modeling is now widely available and may improve the accuracy of version measurements. This study evaluated the effects of sex and measurement system on 3D version measurements made using the transepicondylar and ulnar axis methods, and additionally a flexion-extension axis commonly used in biomechanics. Methods. Computed tomography (CT) scans of 51 cadaveric shoulders (26 male, 25 female; 32 left) were converted to 3D models using
Revision hip arthroplasty requires a comprehensive appreciation of abnormal bony anatomy. Advances in radiology and manufacturing technology have made three-dimensional representation of actual osseous anatomy obtainable. These models provide a visual and tactile reproduction of the bony abnormality in question. Life size three dimensional models were manufactured from CT scans of two patients. The first had multiple previous hip arthroplasties and bilateral hip infections. There was a pelvic discontinuity on the right and a severe postero-superior deficiency on the left. The second patient had a first stage revision for infection and recurrent dislocations. Specific metal reduction protocols were used to reduce artefact. The dicom images were imported into Mimics,
Introduction. Failure rates of Metal-on-Metal (MoM) ASR XL hip implants have been unacceptably high compared with other bearing surfaces, so patients must be monitored over the time checking for disorders in clinical condition, blood tests or in
Background. The use of Computed Tomography (CT) as a
Introduction. Proper acetabular component orientation is an important part of successful total hip replacement surgery. Poorly positioned implants can lead to early complications, such as dislocation. Mal-positioned acetabular components can also generate increase wear debris due to edge loading which can cause pre-mature loosening. It is essential to be able to measure post-operative implant orientation accurately to assure that implants are positioned properly. It is difficult and potentially inaccurate to manually measure implant orientation on a post-op radiograph. This is particularly true for the immediate post-op radiograph where the patient is not as well aligned relative to the x-ray beam. However, the best time to determine if an acetabular component is mal-aligned is immediately following surgery so the patient could be taken back to the OR for immediate revision. Taking post-op CT scans is expensive and subjects the patient to increased radiation exposure, so using CT post-operatively is not done routinely. With the increased use of robotics and computer navigation at surgery there are often pre-op CT scans for total hip replacement patients. Current radiological tools do not take advantage of this pre-op CT scan for assessment of acetabular component orientation. A new software module for Mimics
Introduction. Acetabular cup orientation has been shown to be a factor in edge-loading of a ceramic-on-ceramic THR bearing. Currently all recommended guidelines for cup orientation are defined from static measurements with the patient positioned supine. The objectives of this study are to investigate functional cup orientation and the incidence of edge-loading in ceramic hips using commercially available, dynamic musculoskeletal modelling software that simulates each patient performing activities associated with edge-loading. Methodology. Eighteen patients with reproducible squeaking in their ceramic-on-ceramic total hip arthroplasties were recruited from a previous study investigating the incidence of noise in large-diameter ceramic bearings. All 18 patients had a Delta Motion acetabular component, with head sizes ranging from 40 – 48mm. All had a reproducible squeak during a deep flexion activity. A control group of thirty-six patients with Delta Motion bearings who had never experienced a squeak were recruited from the silent cohort of the same original study. They were matched to the squeaking group for implant type, acetabular cup orientation, ligament laxity, maximum hip flexion and BMI. All 54 patients were modelled performing two functional activities using the Optimized Ortho Postoperative Kinematics Simulation software. The software uses standard
A good understanding of musculoskeletal pathologies not only requires a good knowledge of normal human anatomy but also an insight in human evolution and development. Biomechanical studies of the musculoskeletal system have greatly improved our understanding of the human musculoskeletal system via
Purpose. With the advent of newer