Abstract
Revision hip arthroplasty requires a comprehensive appreciation of abnormal bony anatomy. Advances in radiology and manufacturing technology have made three-dimensional representation of actual osseous anatomy obtainable. These models provide a visual and tactile reproduction of the bony abnormality in question.
Life size three dimensional models were manufactured from CT scans of two patients. The first had multiple previous hip arthroplasties and bilateral hip infections. There was a pelvic discontinuity on the right and a severe postero-superior deficiency on the left. The second patient had a first stage revision for infection and recurrent dislocations. Specific metal reduction protocols were used to reduce artefact. The dicom images were imported into Mimics, medical imaging processing software. The models were manufactured using the rapid prototyping process, Selective Laser Sintering (SLS).
The models allowed accurate templating using the actual prosthesis templates prior to surgery. Acetabular cup size, augment and buttress sizes, as well as cage dimensions were selected, adjusted and re-sterilised in advance. This reduced operative time, blood loss and improved surgical decision making. Screw trajectory simulation was also carried out on the models, thus reducing the chance of neurovascular injury.
With 3D printing technology, complex pelvic deformities can be better evaluated and can be treated with improved precision. The life size models allow accurate surgical simulation, thus improving anatomical appreciation and pre-operative planning. The accuracy and cost-effectiveness of the technique were impressive and its use should prove invaluable as a tool to aid clinical practice.