Advertisement for orthosearch.org.uk
Results 1 - 20 of 27
Results per page:
Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_III | Pages 85 - 85
1 Feb 2012
Clarke A Wright T Downs-Wheeler M Smith G
Full Access

The purpose of this study was to determine the normal angle of rotation of the axis of each finger using digital image analysis, whether the rotation of the digits is symmetrical in the two hands of an individual, and the reliability of this method. Standardised digital photographic images were taken of thirty healthy volunteers. The palm of each hand was placed on a flat bench top with their fingers held in extension and adducted, to give an end-on image of all four fingers. Three independent observers analysed the images using Adobe Photoshop software. The rotational angle of each finger was defined as the angle created by a straight line connecting the radial and ulnar border of the nail plate and the bench top horizon. The three observers showed Inter-Rater Reliability of 92%. The mean angles of rotation were: Index 13°, Middle 10°, Ring 5°, Little 12°. The differences in angle of rotation of the index and middle finger between the left and right hand were statistically significant (p=0.003, and p=0.002 respectively), demonstrating asymmetry between the two sides. The differences in angle of rotation of the ring and little finger of the left and right hand were not significantly significant (p= 0.312 and p=0.716 respectively). In conclusion, symmetry was seen in the little and ring but not in the index and middle fingers. Digital image analysis provides a non-invasive and reproducible method of quantifying the rotation of normal fingers and may be of use as a diagnostic tool in the assessment and management of hand injuries


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_6 | Pages 91 - 91
1 Mar 2017
Wells C Feldman J Timmerman I Chow J Mihalko W Neel M Jennings J Haggard W
Full Access

Introduction. Decreasing tissue damage and recovery time, while improving quality of life have been the focus of many approaches to total hip arthroplasty (THA). In this study, we compared two approaches, a tissue-sparing superior capsulotomy percutaneously assisted approach (SP) and the traditional posterior approach (TR), to address the question of whether the novel technique reduces tissue damage. The secondary aim of this study focused on the measurement technologies utilized to quantify the damage resulting from either SP or TR. Image J, BioQuant, and cellSens were the image analysis programs employed. Statistical validation and comparisons of results between all platforms were performed. Methods. Both hips of freshly frozen cadaveric specimens (n = 8) were surgically prepared for THA with random procedure performed on left or right hip. All selected specimens had no prior implantation of devices to ensure all observed muscle damage occurred from the surgical technique. Surgeons resected tissue and performed necessary procedural steps up to device implantation. No devices were implanted during the study, as the aim was to quantify the damage caused by the incision and resection. After completion of the surgery, an independent surgeon (IS), who was blinded as to which method was performed on the specimen, excised the muscles and inspected areas of interest Assessment of the tissue damage was executed using a midsubstance cross-sectional area technique, validated by prior studies. High-resolution images of demarcated muscles were used for quantitative analysis. Three blinded independent reviewers quantified damaged tissue. The results were used to detect if statistically significant differences were present between the two methods. Furthermore, an independent reviewer using SPSS statistical software also assessed inter-program and inter-rater reliability. Results. The SP procedure significantly reduced percent of damaged GM tissue. GS tissue damage reduction with SP procedure was observed but the difference was not statistically significant. Between raters, the intraclass correlation coefficient (ICC) for the tissue damage measures was 0.870 (95% CI: 0.824 – 0.907). Within the individual applications, BioQuant and Image J had ICCs of 0.972 and 0.987, respectively. CellSens, however had an ICC value of 0.671. Discussion. For the three image analysis programs chosen, the damaged tissue was quantified within the software application and each user defined areas of interest slightly different, which reduced the interrater reliability. However, variation in the software may affect the degree of difference detected and/or the p-value. There was a statistically significant reduction in percent of damaged tissue, SP vs. TR, in the GM obtained from all programs. A statistically significant reduction in GS damage, SP vs. TR, was not detected in either program, which may be a result of the limited sample size. Significance. New surgical techniques require evaluation to determine if there are objective advantages over other techniques. Preclinical evaluation of these techniques has been limited. Providing quantitative evidentiary support has clinical and scientific relevance to patients, physicians, and healthcare providers.. Independent analysis of these results may depend on the user interface of image analysis programs and should be evaluated by multiple raters to ensure accuracy


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_6 | Pages 26 - 26
1 Jul 2020
Lemirre T Richard H Janes J Laverty S Fogarty U Girard C Santschi E
Full Access

Juvenile Osteochondritis dissecans (JOCD) in humans and subchondral cystic lesions (SCL) in horses (also termed radiolucencies) share similarities: they develop in skeletally immature individuals at the same location in the medial femoral condyle (MFC) and their etiology is only partially understood but trauma is suspected to be involved. JOCD is relatively uncommon in people whereas SCLs arise in 6% of young horses leading to lameness. Ischemic chondronecrosis is speculated to have a role in both osteochondrosis and SCL pathogenesis. We hypothesize that MFC radiolucencies develop very early in life following a focal internal trauma to the osteochondral junction. Our aims were to characterize early MFC radioluciencies in foals from 0 to 2 years old. Distal femurs (n=182) from Thoroughbred horses (n=91, 0–2 years old), presented for post-mortem examination for reasons unrelated to this study, were collected. Radiographs and clinical tomodensitometry were performed to identify lesions defined as a focal delay of ossification. Micro-tomodensitometry (m-CT) and histology was then performed on the MFCs (CT lesions and age-matched subset of controls). Images were constructed in 3D. The thawed condyles, following fixation, were sectioned within the region of interest, determined by CT lesion sites. Hematoxylin eosin phloxin and safran (HEPS) and Martius-Scarlet-Blue (MSB) stains were performed. Histological parameters assessed included presence of chondronecrosis, fibrin, fibroplasia and osteochondral fracture. An additional subset of CT control (lesion-free) MFCs (less 6 months old) were studied to identify early chondronecrosis lesions distant from the osteochondral junction. One MFC in clinical CT triages controls had a small lesion on m-CT and was placed in the lesion group. All m-CT and histologic lesions (n=23) had a focal delay of ossification located in the same site, a weight bearing area on craniomedial condyle. The youngest specimen with lesions was less than 2 months old. On m-CT 3D image analysis, the lesions seemed to progressively move in a craniolateral to caudomedial direction with advancing age and development. Seventy-four percent (n=17/23) of the lesions had bone-cartilage separation (considered to be osteochondral fractures) confirmed by the identification of fibrin/clot on MSB stains, representing an acute focal bleed. Fibroplasia, indicating chronicity, was also identified (74%, n=17/23). In four cases, the chondrocytes in the adjacent cartilage were healthy and no chondronecrosis was identified in any sections in the lesions. Nineteen cases had chondronecrosis and always on the surface adjacent to the bone, at the osteochondral junction. None of the subset of control specimens, less than 6 months old (n=44), had chondronecrosis within the growth cartilage. Early subchondral cystic lesions of the medial femoral condyle may arise secondary to focal internal trauma at the osteochondral junction. The presence of fibrin/clot is compatible with a recent focal bleed in the lesion. Medial femorotibial joint internal forces related to geometry could be the cause of repetitive trauma and lesion progression. In the juvenile horse, and potentially humans, the early diagnosis of MFC lesions and rest during the susceptible period may reduce progression and promote healing by prevention of repetitive trauma, but requires further study


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_6 | Pages 50 - 50
1 Jul 2020
Gascoyne T Parashin S Zarrabian M
Full Access

The purpose of this research was to determine the feasibility of radiostereometric analysis (RSA) as a diagnostic tool for assessing non-union following spinal arthrodesis procedures. Further, to estimate clinical thresholds for precision and accuracy of the proposed method in the cervical and lumbar spine. A three-level lumbo-sacral and a four-level cervical posterior arthrodesis procedures were performed on an artificial spine model (Sawbones, WA). Using a spring loaded inserter (RSA Biomedical, Sweden), eight to ten RSA markers were placed within each of the L4 and L5 segments in the spinous process (L4 only), lamina, transverse processes, posterior and anterior (down the pedicle) wall of the vertebral body. Eight to ten markers were placed within the proximal sacrum (S1) at the medial and lateral crests, tuberosity, and within the sacral canal wall. Four to eight RSA markers were placed into the C3-C6 lateral masses. Titanium screws and rods were applied to the spinal segments. Identical procedures were then performed on a cadaveric spine using similar bead placement and hardware. RSA imaging consisted of 12 double exams (24 exams) of the cervical and lumbar regions for both the Sawbones and cadaveric spine to assess precision of measurement under zero-displacement conditions. The most distal vertebrae were considered the datum against which the movement of all other vertebrae was compared. The artificial spine was then dismantled for accuracy assessment in which the middle vertebrae (L5 and C4-C5) were moved relative to the superior (L4 and C3) and inferior (S1 and C6) vertebrae by known, incremental displacements on an imaging phantom device. Displacements occurred along the superior-inferior, anterior-posterior, and flexion-extension (rotational) axes of motion. RSA images were obtained at each displacement. Image analysis was performed using model-based software (RSACore v3.41, Leiden, Netherlands) to visualize implanted RSA beads in 3-D space. Precision was defined as the 95% confidence interval of error in measuring zero-displacement. Accuracy was defined as the mean difference (with 95% confidence interval) between the known and measured displacement. The rate of RSA bead detection was high with 5–8 implanted beads being visible in both the lumbar and cervical regions of the artificial and cadaveric spines. Translational RSA precision for both spines was better than 0.25 mm and 0.82 mm for the lumbar and cervical regions, respectively. Rotational precision was better than 0.40° and 1.9° for the lumbar and cervical regions, respectively. RSA accuracy for the artificial spine overall demonstrated less than 0.11 mm translational bias (margin < ±0.02 mm) and less than 0.22° rotational bias (margin < ±0.15°). This study demonstrates that RSA achieves sufficient precision and accuracy to detect intervertebral micromotion for the purpose of assessing arthrodesis. Well dispersed RSA bead placement is critical to achieving sufficient accuracy as well as avoiding occlusion by metal hardware. Cervical bead implantation is particularly sensitive to bead clustering due to small vertebrae size and proximity to critical structures. The results of this work will aid in the development of a clinical study to assess arthrodesis in patients


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_14 | Pages 68 - 68
1 Dec 2019
Sandbakken ET Witsoe E Sporsheim B Egeberg KW Foss O Hoang L Bjerkan G Bergh K
Full Access

Aim. In cases of prosthetic joint infections the sensitivity of bacterial cultivation of tissue samples is not 100%. In fact, the reported sensitivity based on standardized criteria and rigorous tissue sampling technique probably differs between 86 to 89%. It has been claimed that sonication of explanted prostheses with subsequent culturing of sonication fluid can increase the sensitivity of the test compared to culturing of tissue samples. To what degree bacteria embedded in biofilm is dislodged during the sonication process has to our knowledge not been fully elucidated. We studied the effect of sonication as a method to dislodge biofilm embedded Staphylococcus epidermidis in vitro. Method. 46 steel plates were colonized with biofilm forming S. epidermidis ATCC 35984 in TSB with 1% glucose aerobically at 37°C for 24 hours. Plates were cleansed for non-adherent bacteria before microscopy. Biofilm embedded bacteria were stained with LIVE/DEAD ™ BacLight ™ Bacterial Viability Kit for microscopy and visualized under vital conditions using EVOS™ FL Auto 2 Imaging System (epifluorescence) and an inverse confocal laser scanning microscope LSM510 (CLSM). All steel plates were subjected to epifluorescence microscopy before and after sonication. CLSM and SEM were used to confirm the presence of biofilm embedded bacteria after sonication. Pictures from epifluorescence microscopy were processed for image analysis with help of a macro application (Fiji) and the data was expressed as biofilm coverage rate (BCR). The sonication was performed using a BactoSonic® Bandolin sonicator and the applied effect in each glass test tube (40 kHz, 800W) was measured with a Bruel og Kjær 8103 hydrophone. The amount of bacteria in the sonication fluid was quantified by counting the number of colony forming units (CFU). Three steel plates acted as negative controls. Results. The BCR was highly variable on the plates after sonication. The biofilm was eradicated from the majority of the plates but a considerable number of plates still had biofilm attached to the surface in a highly variable manner. The amount of bacteria in the sonication fluid correlated poorly with BCR on corresponding plates. Conclusions. Our conclusion is that the ability of sonication to dislodge biofilm embedded S. epidermidis in vitro is not as effective as current opinion might suggest. After sonication biofilm still adhere to a significant number of plates in a highly varying manner. This prompts the need to investigate the effect of sonication on biofilm embedded bacteria formed in vivo


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_2 | Pages 80 - 80
1 Feb 2020
Robotti P Luchin V Galeotti F Molinari A
Full Access

AM Open Cell porous Ti Structures were investigated for compressive strength, morphology (i.e. pore size, struts size and porosity), and wear resistance with the aim to improve design capability at support of implant manufacturing. Specimens were manufactured in Ti6Al4V using a SLM machine. Struts sizes had nominal diameters of 200µm or 100µm, pores had nominal diameters of 700µm, 1000µm or 1500µm. These dimensions were applied to three different open-cell geometrical configurations: one with unit-cells based on a regular cubic arrangement (Regular), one with a deformed cubic arrangement (Irregular), and one based on a fully random arrangement (Fully Random). Morphological analysis was performed by image analysis applied onto optical and SEM acquired pictures. The analyses estimated the maximum and minimum Feret pores diameter, and the latter was used as one of the key parameters to describe the interconnected network of pores intended for bone colonization. Outcome revealed the systematic oversizing of the actual struts diameter Vs designed diameter; by opposite min. Feret diameters of the pores resulted significantly smaller than nominal pore diameters, thus better fitting within the range of pores dimension acknowledged to favor the osseointegration. Consequently, the actual total porosity is also reduced. Many technologic factors are responsible for the morphologic differences design vs actual, among these the influence of melting pool dimension, the struts orientation during building and the layer thickness have a significant impact. Mechanical compression was performed on porous cylinder samples. Test revealed the Yield Strength and Stiffness are highly sensitive to the actual porosity. Deformation behavior follows densification phenomenon at lower porosity, whereas at higher porosity the Gibson-Ashby model fits for most of the structure tested. The relationship among load direction, struts alignment and the collapse behavior of the unit cell geometries are discussed. Stiffness of the porous structure is evaluated in both quasistatic and cyclic compression. Wear was investigated according to Taber test method. The abrasion resistance is measured by scratching a ceramic wheel against the different AM porous structures along a circular path. Metal debris eventually loss were quantified by gravimetric analysis at different number of cycles. Correlation among AM porous structure geometry, porosity and wear loss is discussed. All the tested structures showed a debris loss within the limit suggested by FDA for the porous coating in contact with the bone tissue. The actual AM porous Titanium unit cell geometry and features are a key design input. In combination with all the other design factors of a device they may result helpful in address the stress shielding and prevent metal debris release issues. The study underlines the importance of the research activity in AM to support Design for Additive Manufacturing (DFAM) capability. For any figures or tables, please contact authors directly


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_5 | Pages 3 - 3
1 Apr 2019
Seo SG Kim JI
Full Access

Introduction. Although weight-bearing CT of the foot definitely reflects the morphology and deformity of joint, it is hard to obtain the standing CT due to difficulty of availability. Although 3D imaging reconstruction using radiographs has been reported in other joints, there is no study about foot joint. The purpose of this study is to develop a semi-automatic method based on a deformable surface fitting for achieving the weight-bearing 3D model reconstruction from standing radiographs for foot. Methods. Our method is based on a Laplacian surface deformation framework using a template model of foot. As pre- processing step, we obtained template surface meshes having the average shapes of foot bones (talus, calcaneus) from standing CT images (Planmed Verity) in 10 normal volunteers. In the reconstruction step, the surface meshes are deformed following guided user inputs with geometric constraints to recover the target shapes of 30 patients while preserving average bone shape and smoothness. Finally, we compared reconstructed 3D model to original standing CT images. Analysis was performed using Dice coefficients, average shape distance, maximal shape distance. Results. The obtained reconstruction model is close to the actual standing foot geometry (Dice coefficients 0.89, average shape distance 0.88 mm, maximum shape distance 6.33 mm). We present the accuracy and robustness of our method via comparison between the reconstructed 3D models and the original bone surfaces. Conclusions. Weight-bearing 3D foot model reconstruction from standing radiographs is concise and the effective method for analysis of foot joint alignment and deformity


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_7 | Pages 65 - 65
1 May 2016
Campbell P Kung M Ebramzadeh E Van Der Straeten C DeSmet K
Full Access

Bone ingrowth fixation of large diameter, beaded cobalt chromium cups is generally considered to be reliable but this is typically judged radiographically. To date, implant retrieval data of attached bone has been limited. This study evaluated correlations between the pre-revision radiographic appearance and the measured amount of bone attachment on one design of porous coated cup. Methods. Twenty-six monoblock, CoCr Birmingham Hip Resurfacing (BHR, Smith and Nephew, TN, USA) cups with macroscopic beads and hydroxyapatite coating were studied. Seventeen were revised for acetabular malposition with the remainder revised for femoral loosening (4), pain (1), infection (1), dislocation (1) or lysis (2). Median time to revision was 35 months (10 – 70 months). Ten patients were female; the median age of all patients was 54 years. The pre-revision radiographs were visually ranked for cup-bone integration as follows: 0 = none, 1 = < 50%, 2 = 50 – 75%, 3 = 76 – 95%, 4 = > 96% integration. Rankings were made for the superior and inferior aspects, without knowledge of the appearance of bone on the retrievals. The revised cups were photographed at an angle so the dome and the cup periphery were visualized. The area of bone in four equal segments in each of the superior and inferior aspects was measured with image analysis software. A probe was used to differentiate bone from soft tissue. Only bone that covered the beads was counted. Correlation coefficients were calculated for the radiographic and image analysis data. Results. Radiographically, most cups were assessed as having more than 50% of bone attachment and 7 cups were ranked as having almost total integration with bone. Only 2 cups were assessed radiographically as fully loose. Measured total bone attachment ranged from none to 55%. Superior and inferior percent ingrowth were highly correlated (corr=0.68, p<0.001) but there was no correlation between percent bone and x-ray rank (inferior corr=0.01, p=0.96; superior corr=0.23, p=0.26). There was no correlation between cup malpositioning as a reason for revision and x-ray integration ranking (superior p=0.34; inferior p=0.80). Discussion. Despite the radiographic appearance of good fixation, there was little or no correlation between percent area of actual bone attachment and x-ray appearance. One study limitation is the assumption that attached bone was indeed integrated with the beads as destructive sectioning was not done to verify this. Published autopsy retrieval studies have shown that even a small amount of actual ingrowth can provide clinically successful fixation. Another possible limitation was the variable quality of the radiographs. Never-the-less these results raise questions about the accuracy of radiographic analysis of bone fixation. The possibility that inadequate fixation is a cause for pain leading to revision should be considered even when the radiographic appearance indicates otherwise


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_1 | Pages 41 - 41
1 Feb 2021
Holyoak D Roberston B Siskey R
Full Access

Introduction. Orthopedic implants are subject to wear and release ultra-high molecular weight polyethylene (UHMWPE) debris. Analysis of UHMWPE wear particles is critical in determining the safety and effectiveness of novel orthopedic implants. Complete digestion of periprosthetic tissue and wear fluid is necessary to ensure accurate morphological and quantitative particle analysis. Acid digestion methods are more effective than enzymatic and base digestion approaches [Baxter+ 2009]. However, optimal digestion times, quantity, and type of acid are unclear for particle isolation. In addition, imaging and analysis techniques are critical to ensure accurate reporting of particle characteristics. Here, we 1) compared the efficacy of three acid-based digestion methods in isolating particles from a) bovine serum and b) animal/human tissue, and 2) analyzed the effects of imaging location on particle quantity/morphology results. Methods. 1a) UHMWPE (GUR 150) particles were generated by Mode I knee wear testing for 1 million cycles in bovine serum. Serum was digested in one of four solutions: 12.2M HCl, 15.8M HNO. 3. , a 1:1 volume ratio of HNO. 3. :HCl (aqua regia), or filtered H. 2. O (control). The serum:solution volume ratio was 1:5 [Niedzwiecki+ 2001, ISO 17853:2011]. Digestion occurred for 60min on a stir plate at 60°C. Each digest was combined with MeOH at a 1:5 digest:MeOH volume ratio and filtered using a 100 nm polycarbonate membrane. The particle-containing membranes were imaged (12 images/membrane) using scanning electron microscopy (SEM) to determine particle characteristics, including quantity, equivalent circular diameter (ECD) and aspect ratio (AR). 1b) Based on 1a, HNO. 3. was used to digest porcine and human tissue at concentrations of 1:40, 1:60, or 1:80 tissue:HNO. 3. volume ratios for either 1, 12, or 24 hours, followed by SEM analysis. 2) Particle characteristics were compared at nine locations (20 images/location) across a particle-containing membrane to determine the effects of imaging location. Results. 1a) HNO. 3. and aqua regia methods successfully digested the bovine serum, whereas the HCl and H. 2. O methods were unsuccessful (Fig.1A). Comparing HNO. 3. and aqua regia groups, particle characteristics and ECD frequency distribution were nearly identical (Fig.1B). 1b) Nitric acid did not fully digest porcine or human tissues. 2) Similar particle characteristics were observed in all nine locations analyzed across the polycarbonate membrane. The particle quantity, ECD, and AR for a representative center vs. intermediate location were 808 vs. 780 particles, 0.33±0.28 vs. 0.35±0.29 µm, and 1.57±0.56 vs. 1.51±0.4, respectively (Fig.2). Conclusions. Nitric acid and aqua regia are capable of digesting bovine serum using low quantities of acid for short duration, allowing precise analysis of UHMWPE particle debris from orthopedic implants. However, further optimization of digestion techniques for animal/human tissue is warranted. In addition, an accurate representation of particle distribution can be achieved without analyzing hundreds of images, because membrane location does not strongly influence particle results. Finally, ASTM F1877-16 – Standard Practice for Characterization of Particles – could benefit from adding software-based automated particle characterization as an optional method. An automated approach that uses k-means clustering image segmentation to identify particles and computer vision tools to extract relevant morphological features is under development and validation


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_22 | Pages 60 - 60
1 Dec 2017
Jensen LK Henriksen NL Jensen HE
Full Access

Aim. Despite the expanding research focusing on bacterial biofilm formation, specific histochemical biofilm stains have not been developed for light microscopy. Therefore, pathologists are often not aware of the presence of biofilm formation when examining slides for diagnosing bacterial infections, including orthopaedic infections. The aim of the present study was to develop a combined histochemical and immunohistochemical biofilm stain for simultaneous visualization of Staphylococcus aureus bacteria and extracellular matrix in different colours using light microscopy. Methods. Infected bone tissue was collected from two different porcine models of osteomyelitis inoculated with the biofilm forming S. aureus strain S54F9. The infection time was 5 and 15 days, respectively. First, 25 common histochemical protocols were used in order to find stains that could identify extracellular biofilm matrix. Hereafter, the histochemical protocols for Alcian Blue pH3, Luna and Methyl-pyronin green were combined with an immunohistochemical protocol based on a specific antibody against S. aureus. Finally, the three new combined protocols were applied to infected bone tissue from a child suffering from chronic staphylococcal osteomyelitis for more than a year. For all combined protocols applied on all types of tissue (porcine and human) the number of double stained bacterial aggregates were counted. On the same sections the percentage of extracellular matrix of representative bacterial aggregates was calculated by image analysis. Results. Simultaneous visualization of bacterial cells and extracellular matrix in different colours was detected in both porcine and human tissue sections with all three combined protocols. The bacterial cells were red to light brown and the extracellular matrix either light blue, blue or orange depending on the histochemical stain i.e. if it was Alcian blue pH3 (colouring polysaccharides), Luna or Methyl green-pyronin (both colouring extracellular DNA), respectively. In the porcine models, 10 percent of the bacterial aggregates in a 10× magnification field revealed both the extracellular matrix and bacteria simultaneously in two different colours. For the human case, this was seen in 90 percent of the bacterial aggregates. The percentage of extracellular matrix of representative bacterial aggregates was 60 and 20 percent in the human and porcine tissues, respectively. Conclusions. The amount of S. aureus biofilm extracellular matrix increased with infection time. A combination of histochemical and immunohistochemical staining is a practical method for identification and evaluation of S. aureus biofilm in orthopaedic infections


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_17 | Pages 87 - 87
1 Nov 2016
Penenberg B
Full Access

Despite our best efforts, orthopaedic surgeons do not always achieve desired results in acetabular cup positioning in total hip arthroplasty (THA). Although ideal abduction and anteversion angles vary depending on surgeon preference, patient factors and anatomy, studies have shown that improperly positioned cups lead to increased failure rates in THA. While there have been many technological advancements in THA, including using CT-guided and fluoroscopic techniques, the cost for the hospital and time required to use this technology sometimes force hospitals not to use them. New advancements in digital radiography and image analysis software allow contemporaneous assessment of cup position in real-time during the surgical procedure. Intra-operative, or “trial radiographs” with the patient in lateral decubitus position can be digitally manipulated to match pre-operative radiographs obtained with patients in the supine position to enable calculation of the abduction and anteversion angle in these patients. In our single surgeon experience, digital radiography takes approximately 4–6 seconds in order to obtain an AP pelvic radiograph. The use of the software to measure the cup position adds only 1–2 minutes to the operative time and minimises interference with workflow. The adjustments that can be made intra-operatively with this technology allow the surgeon to learn what factors in his surgical approach and technique are useful in achieving the desired component position. This allows the surgeon to have precise control over the cup position during the operation rather than experience disappointment and frustration while viewing the post-operative film. This cost-effective and efficient tool allows the surgeons to achieve the best results for their patients in real time without having to leave the operating room


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_5 | Pages 135 - 135
1 Mar 2017
Samagh S Penenberg B Woehnl A Brien W
Full Access

INTRODUCTION. Despite our best efforts, orthopaedic surgeons do not always achieve desired results in acetabular cup positioning in total hip arthroplasty. New advancements in digital radiography and image analysis software allow contemporaneous assessment of cup position in real-time during the surgical procedure. The purpose of this study was to describe and validate a technique in obtaining a true AP Pelvis radiograph in the lateral decubitus position to accurately assess cup position intra-operatively (Figure 1). METHODS. 350 consecutive patients undergoing THA through a soft-tissue sparing posterior approach were prospectively enrolled. Standard pre-operative supine radiographs were taken in the office to serve as a reference for intra-operative pelvic orientation and templating. Intra-operative AP Pelvis radiographs were obtained with the patient in the lateral decubitus position to appropriately match the pre-operative radiograph. Adjustments were made to correct for pelvic rotation by rotating the operating room table forward or backward. Radiographic beam angle adjustments allowed the surgeon to match pre-operative and intra-operative pelvic tilt (Figure 2). Two independent observers measured cup abduction angle. RESULTS. 95% of cups were placed within 30–50 degrees of abduction, with a mean angle of 38 degrees (STD +/− 5). 100% of cups measured post-operatively were placed within 3 degrees of their intra-operative measurement. Mean anteversion was 27.5 degrees (STD +/− 3.5). Intra-operative radiographs were repeated in 88% of cases in order to match to the pre-operative radiographs. The cup was repositioned in 28% of cases based on intra-operative measurements. Impingement during range of motion testing occurred in 3% of cases despite acceptable measurements, necessitating cup reposition. The intercross correlation coefficient between the two observers was 0.92. There was one dislocation reported in the 2-year follow-up. Changes in the pelvic inlet and outlet orientation changed the abduction angle measurement in a predictable way. We developed a formula and 3D model to predict the abudction angle based on the pelvic tilt, where a more outlet view would increase the abduction angle measurement (Figure 3). DISCUSSION AND CONCLUSION. Advancements in digital radiography allow for real-time cup position assessment, creating the opportunity for the surgeon to make the appropriate changes and confirm precise placement during the procedure. For figures/tables, please contact authors directly.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_10 | Pages 12 - 12
1 May 2016
Lombardo D Prey B Khan J Sabesan V
Full Access

Background. A challenge to obtaining proper glenoid placement in total shoulder arthroplasty is eccentric posterior bone loss and associated glenoid retroversion. This bone loss can lead to poor stability and perforation of the glenoid during arthroplasty. The purpose of this study was to evaluate the three dimensional morphology of the glenoid with associated bone loss for a spectrum of osteoarthritis patients using 3-D computed tomography imaging and simulation software. Methods. This study included 29 patients with advanced glenohumeral osteoarthritis treated with shoulder arthroplasty. Three-dimensional (3D) reconstruction of preoperative CT images was performed using image analysis software. Glenoid bone loss was measured at ten, vertically equidistant axial planes along the glenoid surface at four distinct anterior-posterior points on each plane for a total of 40 measurements per glenoid. The glenoid images were also fitted with a modeled pegged glenoid implant to predict glenoid perforation. Results. The average bone loss was greatest posteriorly in the AP plane at the central axis of the glenoid in the SI plane. Walch A2 and B1 shoulders had bone loss more centrally located, while Walch B2 shoulders displayed more posterior and inferior bone loss. There was a significant difference in the overall average bone loss for patients with no predicted peg perforation compared to patients predicted to have peg perforation (p=0.37). Peg perforation was most common in Walch B2 shoulders, in the posterior direction, and involved the central and posterior-inferior peg. Discussion. These data demonstrate a clear, anatomical pattern of glenoid bone loss for different classes of glenohumeral arthritis. These findings can be used to develop various models of glenoid bone loss to guide surgeons, predict failures, and help develop better glenoid implant


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_21 | Pages 69 - 69
1 Dec 2016
Kopka M Rahnemani-Azar A Abebe E Labrum J Irrgang J Fu F Musahl V
Full Access

Knee laxity following anterior cruciate ligament (ACL) injury is a complex phenomenon influenced by various biomechanical and anatomical factors. The contribution of soft tissue injuries – such as ligaments, menisci, and capsule – has been previously defined, but less is known about the effects of bony morphology. (Tanaka et al, KSSTA 2012) The pivot shift test is frequently employed in the clinical setting to assess the combined rotational and translational laxity of the ACL deficient knee. In order to standardise the maneuver and allow for reproducible interpretation, the quantitative pivot shift test was developed. (Hoshino et al, KSSTA 2013) The aim of this study is to employ the quantitative pivot shift test to determine the effects of bone morphology as determined by magnetic resonance imaging (MRI) on rotatory laxity of the ACL deficient knee. Fifty-three ACL injured patients scheduled for surgical reconstruction (36 males and 17 females; 26±10 years) were prospectively enrolled in the study. Preoperative magnetic resonance imaging (MRI) scans were reviewed by two blinded observers and the following parameters were measured: medial and lateral tibial slope, tibial plateau width, femoral condyle width, bicondylar width, and notch width. (Musahl et al. KSSTA 2012). Preoperatively and under anaesthesia, a quantitative pivot shift test was performed on each patient by a single experienced examiner. An image analysis technique was used to quantify the lateral compartment translation during the maneuver. Subjects were classified as “high laxity” or “low laxity” based upon the median value of lateral compartment translation. (Hoshino et al. KSSTA 2012) Independent t-tests and univariate logistic regression were used to investigate the relationship between the pivot shift grade and various features of bone morphology. Statistical significance was set at p<0.05. A high inter-rater reliability was observed in all MRI measurements of bone morphology (ICC=0.72–0.88). The median lateral compartment translation during quantitative pivot shift testing was 2.8mm. Twenty-nine subjects were classified as “low laxity” (2.8mm). The lateral tibial plateau slope was significantly increased in “high laxity” patients (9.3+/−3.4mm versus 6.1+/−3.7mm; p<0.05). No other significant difference in bone morphology was observed between the groups. This study employed an objective assessment tool – the quantitative pivot shift test – to assess the contribution of various features of bone morphology to rotatory laxity in the ACL deficient knee. Increased lateral tibial plateau slope was shown to be a significant independent predictor of high laxity. These findings could help guide treatment strategies in patients with high grade rotatory laxity. Further research into the role of tibial osteotomies in this sub-group is warranted


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_5 | Pages 27 - 27
1 Feb 2016
Amini M Ngo T McCormack R Amiri S
Full Access

C-Arm fluoroscopy is limited by its 2D imaging modality and is incapable of providing accurate 3D quantitative assessment of operative anatomy. In High Tibial Osteotomy (HTO), assessing the distance between the mechanical axis of the leg and the centre of the knee joint is difficult to accomplish due to limited fluoroscopic view size. A previously developed sensor-based tracking system (TC-Arm)adds on to C-arm equipment to provide additional quantitative capabilities. A new image-based tracking module was developed for TC-Arm using a reference panel with an array of fiducial markers. The image analysis software segments the marker positions in each image and identifies image coordinates with respect to the panel. Each image's parameters are identified by 2D-3D matching of the panel's 3D model to the marker's epipolar geometries. Finally, the defined linear transformation matrices are applied for positioning all the fluoroscopic images with respect to the same global reference. A Sawbone model of the leg was used as a phantom and marked with radio-dense fiducial markers at the centres of each joint. An Optotrak optoelectronic tracking system data was used to validate the new module's functions. First, tracking accuracy was determined by comparing orthogonal-stereo views and the reconstructed positions of the panel's design. Secondly, TC-Arm's results were compared to the corresponding digitised references points on the Sawbone model to calculate errors in the varus/valgus angle and mechanical axis deviation. The new addition to the TC-Arm has a reasonable tracking accuracy (<3.6mm, <4°) considering HTO: The system measured the mechanical axis deviation for HTO application with an accuracy of 1.3 mm and 1.4°. Comparing these results with the acceptable tolerance of less than 10 mm for MAD reported in the literature, our demonstrated results are considered to be within an acceptable range. With the new module, the capability for three-dimensional quantitative assessments of operative anatomies of any size can be added to any C-arm equipment in the OR. This can have great potential for many complex orthopaedic trauma, reconstruction, or preservation surgeries including HTO


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_2 | Pages 92 - 92
1 Jan 2016
Kato T Sako S Koba Y
Full Access

Purpose. Posterior pelvis tilt (PPT) would affect lumbar lordosis and lead to hip flexion, which causes difficulties walking and standing in patients with hip disorders. Hip flexion movement associated with PPT is well known. We investigated the effect of the angle of hip flexion without the movement of PPT in the supine position. Methods. The study enrolled 24 healthy males with an average age of 20.5 ± 2.3 years. Two pelvic positions in the supine position were investigated: (1) the limited position of the PPT by 500ml PET bottle with water placed under their low back, and (2) the position without placing a PET bottle. We assessed unilateral hip flexion angle with photos taken with a digital camera. For reference, we took an X-ray of a healthy female and observed the lumbo-sacral from the sagittal plane in the supine position. Analysis. Data was processed by Image analysis software (Image J 1.42, NIH). Paired t-tests were used to assess the range of motion of individual joints in each position in the sagittal plane. MEPHAS software (Oosaka University. Japan) was used for all statistical processing, and the level of significance was set at P < 0.05. In addition, we also measured the lumbo-sacral angle (LSA), the lumbo-lordotic angle (LLA) and the sacral slope angle (SSA) with the X-ray. Results. The angle of hip flexion decreased 22.9±6.04 degrees on average in the limited position with a PET bottle compared with the position without a bottle (P<0.01). The angle of pelvis decreased 4.8±2.0 degrees on average. Discussion. The angle of hip flexion significantly decreased in the limited position with a PET bottle. Our results suggest the association movement of the PPT with hip flexion movement in the supine position. This suggests that movements of the LLA and SSA are involved greatly in hip flexion. Significance of study. Our results provide evidence that could lead to more effective way of measurement of the primary hip joint (coxal femoral joint) flexion in the supine position for the patients with hip diseases. If we can measure primary hip joint (coxal femoral joint) flexion, it may also be measured mobility of the pelvis. Measurement of the hip joint flexion should consider the movement of the lumbar vertebrae and the sacral slope


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_5 | Pages 43 - 43
1 Feb 2016
Tokunaga K
Full Access

Introduction. The safe zone of the acetabular cup for THA was discussed based on the AP X-ray films of hip joints. A supine position is still used to determine the cup position for CAOS such as navigation systems. There were few data about the implant positions after THA in standing positions. The EOS X-Ray Imaging Acquisition System (EOS system) (EOS imaging Inc, Paris, France) allows image acquisition with the patients in a standing or sitting position. We can obtain AP and lateral X-ray images with high-quality resolution and low dose radiation exposure. Recently, we have obtained the EOS system for the first time in Japan. We investigated 3D accuracy of the EOS system for implant measurements after THA. Patients and Methods. We measured the implant angles of the 68 patients (59 females and 9 males, average age: 61y.o.) who underwent THA using the EOS system. The cup inclination and anteversion were measured in the anterior pelvic plane (APP) coordinate. The femoral stem antetorsion was defined as angles between the stem neck axis and the posterior condylar axis. These data were compared with the implant angles of the same patients measured by the post-operative CT scan images and the 3D image analysis using the ZedHip software (LEXI, Japan). Results. The cup inclinations (average ±SE) measured by the EOS system and the CT scan were 40.6 ± 0.64° and 42.9 ± 0.53°, respectively. The cup anteversions were 22.9 ± 1.3° and 22.8 ± 1.0°, respectively. The stem antetorsions were 28.9 ± 1.3° and 29.8 ± 1.6°, respectively. The differences (average ± SE) between the EOS system and the CT scan in the cup inclination, the cup anteversion, and the stem antetorsion were −2.3 ± 0.38°, −0.09 ± 0.82°, and −0.90 ± 0.91°, respectively. There were strong correlations in measurement values between the EOS system and the CT scan (the Spearman's correlation coefficients of the cup inclination, the cup anteversion, and the stem antetorsion were 0.6521 [p<0.001], 0.7154 [p<0.001], and 0.8645 [p<0.001], respectively). Discussion. The EOS system provides acceptable clinical accuracies in measuring acetabular cup and femoral stem angles after THA. The accuracy of the cup angles was accorded with that of the basic experimental data using a dry pelvis. Our data also demonstrated clinically acceptable accuracy in the measurement of stem antetorsion. This system can provide accurate snap shots of variable postures with high resolution. Using the EOS system, we may establish real optimum positions of THA implants by measuring the patients after THA in several postures including standing, squatting or sitting positions which required for Japanese ADL


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_8 | Pages 63 - 63
1 May 2016
Jenny J Bureggah A Diesinger Y
Full Access

INTRODUCTION. Measurement of range of motion is a critical item of any knee scoring system. Conventional measurements used in the clinical settings are not as precise as required. Smartphone technology using either inclinometer application or photographic technology may be more precise with virtually no additional cost when compared to more sophisticated techniques such as gait analysis or image analysis. No comparative analysis between these two techniques has been previously performed. The goal of the study was to compare these two technologies to the navigated measurement considered as the gold standard. MATERIAL. Ten patients were consecutively included. Inclusion criterion was implantation of a TKA with a navigation system. METHODS. Two free angle measurement applications were downloaded to the Smartphone: one using inclinometer technology, the other using camera technology. After navigation assisted TKA and just before wound closure, the operated knee was positioned at full extension, 30±2°, 60±2°, 90±2° and 120±2° according to the navigated measurement. At each step, the knee flexion angle was measured with both Smartphone applications: inclinometer application (figure 1) and camera application (figure 2). For each of the ten patients, 5 navigated, 5 inclinometer and 5 camera measurements were obtained for each patient, giving three sets of 50 repeat measurements. The sample size was calculated to get a significance level of 0.05 and a power of 0.8 to detect a 10° difference. The difference between the three sets of measurements was analyzed with an ANOVA test for repeat measurements, with post-hoc comparisons with a paired Wilcoxon test. The correlation between the three sets of measurements was analyzed with a Kendall test, with post-hoc comparisons with a Spearman test. All tests were performed at a 0.05 level of significance, and post-hoc comparisons were performed at a 0.01 level of significance. RESULTS. The mean paired difference between navigated and camera measurements was 0.7° (SD 1.5°), with one difference greater than 3°. The mean paired difference between navigated and inclinometer measurements was 7.5° (SD 5.3°), with 16 differences greater than 10°. The mean paired difference between inclinometer and camera measurements was −6.8° (SD5.2°), with 7 differences greater than 10°. The ANOVA test for repeat measurements showed a significant difference between the three sets of measurements (p<0.001). The results of post-hoc paired comparisons with the Wilcoxon test are reported in table 2. The Kendall test showed that the distribution of the three sets of measurements was no different. The post-hoc paired correlations with the Spearman test showed a good coherence between all pairs of measurements (R² between 0.02 and 0.12). No pre-operative criteria showed a significant influence on the differences observed. DISCUSSION. Measuring the knee flexion angle with the camera of a smartphone is effective in a routine clinical practice. Accuracy can be better than other conventional measurement techniques. All applications of a smartphone do not have the same precision and must be validated before clinical use. CONCLUSION. Smartphone technology enables a more accurate assessment of the knee range of motion after TKA than conventional measurement techniques. To view tables/figures, please contact authors directly


Bone & Joint Open
Vol. 2, Issue 8 | Pages 599 - 610
1 Aug 2021
Hothi H Bergiers S Henckel J Iliadis AD Goodier WD Wright J Skinner J Calder P Hart AJ

Aims

The aim of this study was to present the first retrieval analysis findings of PRECICE STRYDE intermedullary nails removed from patients, providing useful information in the post-market surveillance of these recently introduced devices.

Methods

We collected ten nails removed from six patients, together with patient clinical data and plain radiograph imaging. We performed macro- and microscopic analysis of all surfaces and graded the presence of corrosion using validated semiquantitative scoring methods. We determined the elemental composition of surface debris using energy dispersive x-ray spectroscopy (EDS) and used metrology analysis to characterize the surface adjacent to the extendable junctions.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_1 | Pages 67 - 67
1 Jan 2016
Chalayon O Epperson RT Bloebaum R Abdo N
Full Access

Introduction. Fixation has been shown to be the primary indicator of an implant's long-term success. Failure to achieve attachment, especially in acetabular and TKR, has been attributed to a lack of initial stability and gaps between the implant and bone. Gaps greater than 150 microns allow fibrous tissue to form. Properly addressing implant design features can help avoid adverse outcomes. ASTM International Standards (F1854-09) do not assess the relationship between porosity of the coating and that of cancellous bone, which can lead to an absence of mechanical interlock. This study developed a virtual program that uses human cancellous bone to predict potential skeletal attachment for implants properly placed for TJR. The goal of the Virtual Paradigm was to assess initial contact surface area at the time of implantation. Methods. Seven human femurs and tibias were used. Bones from 11 males and 3 females were used, ages ranging from 40 to 61. Five porous coatings were assessed: Biofoam (Wright Medical), Fiber Mesh, CSTI, Tantalum (Zimmer), and P² (DJO Global). Specimen Processing. Each bone was resected 2 mm beyond the articulating surface into the cancellous host using surgical TKA instruments. The specimens and coatings were embedded in PMMA. For Part 1, the specimens and coatings were cut perpendicular to the neutral axis, displaying a surface view for scanning electron microscopy (SEM). For Part 2, the coatings were cross-sectioned for SEM, ground, and polished to optical finish. Imaging: Part 1. The bone and coating sections displaying the surface view were imaged using SEM under backscatter (BSE) at 22x. Three images were taken of each tibia section, resulting in 12 images. Three images were taken of each femur section, resulting in 9 images. Analysis: Part 1. Each bone image was overlaid onto each coating image. Using various computer programs (IQ Materials, Fastone Image Viewer, Corel Photopaint X3), available bone was normalized to 100% and bone-implant contact was marked red (Figure 1). Imaging: Part 2. The cross-sectioned coatings were imaged with SEM-BSE at 30x. For each implant, 3 images were taken and assembled together (Microsoft Research ICE). Analysis: Part 2. Using the programs, bone images were overlaid onto each coating to establish a 200-micron region of initial contact. The surface of the coating within this region was calculated to represent surface roughness (Figure 2). Results. Bone porosity ranged from 14.04%-23.04% in the femur and 11.85%-23.68% in the tibia. Percent contact between the implant and bone ranged from 3.28%-43.47% (Figure 1). Surface roughness ranged from 5.4–11.1 mm (Figure 2). Opening porosity of the coatings ranged from 52.54%-94.97% (Figure 3). Discussion. Long-term success of cementless TJR depends on mechanical stability and bone attachment. This virtual study addressed fixation and contact between coatings and cancellous bone, and it can be used to evaluate innovative materials intended for TJR. This program challenged the limits of ASTM Standards for screening coatings. The results of this study demonstrated that the Virtual Bone-Implant Surface Contact Paradigm could be used in the early phases of implant development and testing to assess clinical success