Abstract
INTRODUCTION
Despite our best efforts, orthopaedic surgeons do not always achieve desired results in acetabular cup positioning in total hip arthroplasty. New advancements in digital radiography and image analysis software allow contemporaneous assessment of cup position in real-time during the surgical procedure. The purpose of this study was to describe and validate a technique in obtaining a true AP Pelvis radiograph in the lateral decubitus position to accurately assess cup position intra-operatively (Figure 1).
METHODS
350 consecutive patients undergoing THA through a soft-tissue sparing posterior approach were prospectively enrolled. Standard pre-operative supine radiographs were taken in the office to serve as a reference for intra-operative pelvic orientation and templating. Intra-operative AP Pelvis radiographs were obtained with the patient in the lateral decubitus position to appropriately match the pre-operative radiograph. Adjustments were made to correct for pelvic rotation by rotating the operating room table forward or backward. Radiographic beam angle adjustments allowed the surgeon to match pre-operative and intra-operative pelvic tilt (Figure 2). Two independent observers measured cup abduction angle.
RESULTS
95% of cups were placed within 30–50 degrees of abduction, with a mean angle of 38 degrees (STD +/− 5). 100% of cups measured post-operatively were placed within 3 degrees of their intra-operative measurement. Mean anteversion was 27.5 degrees (STD +/− 3.5). Intra-operative radiographs were repeated in 88% of cases in order to match to the pre-operative radiographs. The cup was repositioned in 28% of cases based on intra-operative measurements. Impingement during range of motion testing occurred in 3% of cases despite acceptable measurements, necessitating cup reposition. The intercross correlation coefficient between the two observers was 0.92. There was one dislocation reported in the 2-year follow-up. Changes in the pelvic inlet and outlet orientation changed the abduction angle measurement in a predictable way. We developed a formula and 3D model to predict the abudction angle based on the pelvic tilt, where a more outlet view would increase the abduction angle measurement (Figure 3).
DISCUSSION AND CONCLUSION
Advancements in digital radiography allow for real-time cup position assessment, creating the opportunity for the surgeon to make the appropriate changes and confirm precise placement during the procedure.
For figures/tables, please contact authors directly.