Introduction. Instability continues to be the number one reason for revision in primary total hip arthroplasty (THA). Commonly, impingement precedes dislocation, inducing a levering out the prosthetic head from the liner. Impingement can be prosthetic, bony or soft tissue, depending on component positioning and anatomy. The aim of this virtual study was to investigate whether bony or prosthetic impingement occurred first in well positioned THAs, with the hip placed in deep flexion and
Aims. Traumatic central cord syndrome (CCS) typically follows a
Introduction. Genu recurvatum deformities are unusual before total knee arthroplasty (TKA), occurring in less than 1% of patients. The purpose of this study is to evaluate the clinical and radiographic results of primary TKA in patients that had recurvatum deformities before surgery. Patients and Methods. The inclusion criteria was to have recurvatum deformity over 10 degrees on lateral standing X-ray view. We retrospectively reviewed 22 knees with pre-operative recurvatum deformities, and the incident was 1.0% of all TKAs at our hospital. The etiology of the arthritis was osteoarthritis in 21 knees, of which 3 knees were neuropathic disease, and rheumatoid arthritis in 1 knee. There were 6 men and 16 women, and the average age was 73.3 years (range, 53 to 83 years) at the time of operation. The average follow-up period was 15 months (range, 3 to 81 months). We performed to use medial parapatellar approach and bone cutting was done by measured resection technique. The surgical knacks were resection of less distal femur and proximal tibia bone to make extension gap tightly, additionally decrease the tibial posterior slope. Posterior-stabilizer (PS) implants (NexGen LPS: Zimmer, Bisurface KU4+: JMM) were used in 20 knees and constrained implants (NexGen RH knee: Zimmer, Endo-Model Hinge Knee: Link) were in 2 knees with neuropathic joints. Results. The averaged Knee Society Knee and Function score improved from 33.1 points to 94.1 points, and 28.0 points to 60.5 points at the time of the last follow-up. The femorotibial angle changed from averaged 183.4 degrees (range, 162 to 195 degrees) preoperatively to averaged 173.3 degrees (range, 170 to 177 degrees). Preoperative
Introduction. Genu recurvatum is a deformity rarely seen in patients receiving total knee arthroplasty. This deformity is defined as
Introduction. Severe angular deformities in total knee arthroplasty require specific attention to bone resections and soft tissue balancing. This can add technical complexity and time, with some authors reporting an increase of approximately 20 minutes in mean surgery time when managing large deformities with conventional instrumentation [1]. We evaluate the utility of computer-navigation with imageless BoneMorphing® and Apex Robotic Technology, or A.R.T.® for managing large deformities in TKA. BoneMorphing® allows for real-time visualization of virtual bone resection contours, limb alignment and soft-tissue balance during TKA. A.R.T. permits accurate cutting and recutting of the distal femur in 1 mm increments. We asked what effects do severe pre-operative deformities have on post-operative alignment and surgery time in comparison to knees with only mild deformities when using this system. Methods. This was a retrospective cohort study of 128 consecutive A.R.T. TKA's performed by a single surgeon (mean age: 71 y/o [range 53–93], BMI: 31.1 [20–44.3], 48 males). Patients were stratified into three groups according to their pre-operative coronal plane deformity: Neutral or mild deformity <10° (baseline group); Severe varus ≥10°; and Severe valgus ≥10°; and according to the degree of flexion contracture: Neutral or mild flexion from −5°
Introduction. The large diameter mobile polyethylene liner of the dual mobility implant provides increased resistance to hip dislocation. However, a problem specific to the dual mobility system is intra-prosthetic dislocation (IPD), secondary to loss of the retentive rim, causing the inner head to dissociate from the polyethylene liner. We hypothesized that impingement of the polyethylene liner with the surrounding soft-tissue inhibits liner motion, thereby facilitating load transfer from the femoral neck to the liner and leading to loss of retentive rim over time. This mechanism of soft-tissue impingement with the liner was evaluated via cadaver experiments, and retrievals were used to assess polyethylene rim damage. Methods. Total hip arthroplasty was performed on 10 cadaver hips using 3D printed dual mobility components. A metal wire was sutured to the posterior surface (underside) of the iliopsoas, and metal wires were embedded into grooves on the outer surface of the liner and inner head to identify these structures under fluoroscopy. Tension was applied to the iliopsoas to move the femur from maximum
Introduction. Post cam is useful to realize the intrinsic stability of a posterior-stabilized (PS) knee prosthesis replaced for a case with the severe degeneration. Some retrieval studies reveal the ultrahigh molecular weight polyethylene (UHMWPE) deformation or severe failure of the tibial post of PS knee. Strength of the tibial post of available design is obviously insufficient to prevent the severe deformation. The large size post might, however, shorten the range of knee motion. Therefore, minimally required size of the post should be clarified for polyethylene inserts. In the present study, we performed finite element (FE) analysis assumed the mechanical conditions of a tibial post in a PS knee and aimed to design criterion of a post of polyethylene insert of a knee prosthesis. Method. The shape of three commercially available knee prostheses, product A, B, and C was referred as PS knee prosthesis. The contour of the metallic femoral component and the UHMWPE insert were digitized by a computed tomography apparatus. Three dimensional finite elements were generated by modeling software (Simpleware, Ltd. UK) as four-node tetrahedral elements. In FE analysis, we used LS-DYNA ver.971 (Livemore Software Technology Corp. USA) as the software and Endeaver Pro-4500 (EPSON Corp. Japan) as the hardware. These bottoms of the tibial insert were fully constrained. The value of 30MPa was defined as yield stress of UHMWPE. 500N posterior load was applied to each femoral component at 10 degree
Introduction. Post cam structure, which is the main structure of posterior-stabilized design (PS), is useful to realize the intrinsic stability of a knee prosthesis replaced for a case with the severe degeneration. A large size post might, however, shorten the range of knee motion. On the other hand, retrieval studies sometimes reveal the ultrahigh molecular weight polyethylene (UHMWPE) deformation or severe failure of the tibial post of PS knee. Strength of a tibial post of available design is obviously insufficient to prevent the severe deformation. Therefore, minimally required size of the post should be clarified for polyethylene inserts. In the present study, we performed finite element (FE) analysis assumed the mechanical conditions of a tibial post in a PS knee and aimed to design criterion of a post of polyethylene insert of a knee prosthesis. Method. The shape of one commercially available knee prosthesis was referred as a posterior-stabilized knee prosthesis. The contour of the metallic femoral component was traced and digitized by hand. The contour of the UHMWPE insert was digitized by a micro computed tomography apparatus. Three dimensional finite elements were generated by a modeling software (Simpleware, Ltd. UK) as total 83000 four-noded tetrahedral elements. The bottom of the tibial insert was fully constrained. Load on femoral component was assumed to realize the tibial post impingement under several kinds of knee motions. Posterior load 100 N or 500N at the 10 degree
Introduction. Coronal misalignment of the lower limbs is closely related to the onset and progression of osteoarthritis. In cases of severe genu varus or valgus, evaluating this alignment can assist in choosing specific surgical strategies. Furthermore, restoring satisfactory alignment after total knee replacement promotes longevity of the implant and better functional results. Knee coronal alignment is typically evaluated with the Hip-Knee-Ankle (HKA) angle. It is generally measured on standing AP long-leg radiographs (LLR). However, patient positioning influences the accuracy of this 2D measurement. A new 3D method to measure coronal lower limb alignment using low-dose EOS images has recently been developed and validated. The goal of this study was to evaluate the relevance of this technique when determining knee coronal alignment in a referral population, and more specifically to evaluate how the HKA angle measured with this 3D method differs from conventional 2D methods. Materials and methods. 70 patients (140 lower extremities) were studied for 2D and 3D lower limb alignment measurements. Each patient received AP monoplane and biplane acquisition of their entire lower extremities on the EOS system according the classical protocols for LLR. For each patient, the HKA angle was measured on this AP X-ray with a 2D viewer. The biplane acquisition was used to perform stereoradiographic 3D modeling. Valgus angulation was considered positive, varus angulation negative. Student's T-test was used to determine if there was a bias in the HKA angle measurement between these two methods and to assess the effect of flexion/
Introduction. The assessment of leg length is essential for planning the correction of deformities and for the compensation of length discrepancy, especially after hip or knee arthroplasty. CT scan measures the “anatomical” lengths but does not evaluate the “functional” length experienced by the patients in standing position. Functional length integrates frontal orientation, flexion or
Introduction. Aseptic loosening is one of the highest causes for revision in total knee arthroplasty (TKA). With growing interest in anatomically aligned (AA) TKA, it is important to understand if this surgical technique affects cemented tibial fixation any differently than mechanical alignment (MA). Previous studies have shown that lipid/marrow infiltration (LMI) during implantation may significantly reduce fixation of tibial implants to bone analogs [1]. This study aims to investigate the effect of surgical alignment on fixation failure load after physiological loading. Methods. Alignment specific physiological loading was determined using telemetric tibial implant data from Orthoload [2] and applying it to a validated finite element lower limb model developed by the University of Denver [3]. Two high demand activities were selected for the loading section of this study: step down (SD) and deep knee bend (DKB). Using the lower limb model, hip and ankle external boundary conditions were applied to the ATTUNE. ®. knee system for both MA and AA techniques. The 6 degree of freedom kinetics and kinematics for each activity were then extracted from the model for each alignment type. Mechanical alignment (MA) was considered to be neutral alignment (0° Hip Knee Ankle Angle (HKA), 0° Joint Line (JL)) and AA was chosen to be 3° varus HKA, 5° JL. It is important not to exceed the limits of safety when using AA as such it is noted that DePuy Synthes recommends staying within 3º varus HKA and 3º JL. The use of 5º JL was used in this study to account for surgical variation [Depuy-Synthes surgical technique DSUS/JRC/0617/2179]. Following a similar method described by Maag et al [1] ATTUNE tibial implants were cemented into a bone analog with 2 mL of bone marrow in the distal cavity and an additional reservoir of lipid adjacent to the posterior edge of the implant. Tibial implant constructs were then subjected to intra-operative ROM/stability evaluation, followed by a
Introduction. Limb-length discrepancy (LLD) is a common postoperative complication after total hip arthroplasty (THA). This study focuses on the correlation between patients’ perception of LLD after THA and the anatomical and functional leg length, pelvic and knee alignments and foot height. Previous publications have explored this topic in patients without significant spinal pathology or previous spine or lower extremity surgery. The objective of this work is to verify if the results are the same in case of stiff or fused spine. Methods. 170 patients with stiff spine (less than 10° L1-S1 lordosis variation between standing and sitting) were evaluated minimum 1 year after unilateral primary THA implantation using EOS® images in standing position (46/170 had previous lumbar fusion). We excluded cases with previous lower limbs surgery or frontal and sagittal spinal imbalance. 3D measures were performed to evaluate femoral and tibial length, femoral offset, pelvic obliquity, hip-knee-ankle angle (HKA), knee flexion/
Aims. The aims of this prospective study were to determine the effect of osteophyte excision on deformity correction and soft- tissue gap balance in varus knees undergoing total knee arthroplasty (TKA). Patients and Methods. Limb deformity in coronal (varus) and sagittal (flexion) planes, medial and lateral gap distances in maximum knee extension and 90° knee flexion and maximum knee flexion were recorded before and after excision of medial femoral and tibial osteophytes using computer navigation in 164 patients who underwent 221 computer-assisted, cemented, cruciate- substituting TKAs. Results. Mean varus and flexion deformities of 4.5°±3° (0.5° to 30° varus) and 4.9°±5.9° (−15°
The patterns of nerve and associated skeletal injury were reviewed in 84 patients referred to the brachial plexus service who had damage predominantly to the infraclavicular brachial plexus and its branches. Patients fell into four categories: 1. Anterior glenohumeral dislocation (46 cases); 2. ‘Occult’ shoulder dislocation or scapular fracture (17 cases); 3. Humeral neck fracture (11 cases); 4. Arm
Peri-prosthetic fractures above a TKA are becoming increasingly more common, and typically occur at the junction of the anterior flange of the femoral component and the osteopenic metaphyseal distal femur. In the vast majority of cases, the TKA is well fixed and has been functioning well prior to fracture. For fractures above well-fixed components, internal fixation is preferred. Fixation options include retrograde nailing or lateral plating. Nails are typically considered in arthroplasties that allow intercondylar access (“open box PS” or CR implants) and have sufficient length of the distal fragment to allow multiple locking screws to be used. This situation is rare, as most distal fragments are quite short. If a nail is chosen, use of a long nail is preferred, since it allows the additional fixation and alignment that diaphyseal fill affords. Short nails should be discouraged since they can “toggle” in the meta-diaphysis and do not engage the diaphysis to improve coronal alignment. Plates can be used with any implant type and any length of distal fragment. The challenge with either fixation strategy is obtaining stable fixation of the distal fragment while maintaining length, alignment, and rotation. Fixation opportunities in the distal fragment can be limited due to obstacles caused by femoral component lugs, boxes, stems, cement mantles, and areas of stress shielding or osteolysis. Modern lateral locked plates can be inserted in a biologically friendly submuscular extra-periosteal fashion. The goal of fixation is to obtain as many long locked screws in the distal fragment as possible. High union rates have been reported with modern locked plating and nailing techniques, however, biplanar fluoroscopic vigilance is required to prevent malalignments, typically valgus, distraction, and distal fragment
The extent of soft-tissue release and the exact structures that need to be released to correct deformity and balance the knee has been a controversial subject in primary total knee arthroplasty. Asian patients often present late and consequently may have profound deformities due to significant bone loss and contractures on the concave side, and stretching of the collateral ligament on the convex side. Extra-articular deformities may aggravate the situation further and make correction of these deformities and restoration of ‘balance’ more arduous. These considerations do not apply if a hinged prosthesis is used, as may be warranted in an elderly, low-demand patient. However, in active, younger patients, it may be best to avoid use of excess constraint by balancing the soft-tissues and using the least constrained implant. Releasing collateral ligaments during TKA has unintended consequences such as the creation of significant mediolateral instability and a flexion gap which exceeds the extension gap; both of these may require a constrained prosthesis to achieve stability. We will show that soft-tissue balance can be achieved even in cases of severe varus, valgus, flexion and
INTRODUCTION. Tibiofemoral contact at the base of the articular surface spine in posterior-stabilized total knee arthroplasty (TKA) implants can lead to spine fracture [1]. Revision TKA implants also have an articular surface spine to provide sufficient constraint when soft tissues are compromised. While some revision TKA designs have metal reinforcement in the articular surface spine, others rely solely on a polyethylene spine. This study used finite element analysis (FEA) to study the effect of metal reinforcement on stresses in the spine when subjected to posteriorly directed loading. METHODS. Two clinically successful Zimmer Biomet revision TKA designs were selected; NexGen LCCK with metal reinforcement and all-poly Vanguard SSK. The largest sizes were selected. FEA models consisted of the polyethylene articular surface and a CoCr femoral component; LCCK also included a CoCr metal reinforcement in the spine. A 7° and 0° tibial slope, as well as 3° and 0.7° femoral
Introduction. Aseptic loosening of total knee replacements is a leading cause for revision. It is known that micromotion has an influence on the loosening of cemented implants though it is not yet well understood what the effect of repeated physiological loading has on the micromotion between implants and cement mantle. This study aims to investigate effect of physiological loading on the stability of tibial implants previously subjected to simulated intra-operative lipid/marrow infiltration. Methods. Three commercially available fixed bearing tibial implant designs were investigated in this study: ATTUNE. ®. , PFC SIGMA. ®. CoCr, ATTUNE. ®. S+. The implant designs were first prepared using a LMI implantation process. Following the method described by Maag et al tibial implants were cemented in a bone analog with 2 mL of bone marrow in the distal cavity and an additional reservoir of lipid adjacent to the posterior edge of the implant. The samples were subjected to intra- operative range of motion (ROM)/stability evaluation using an AMTI VIVO simulator, then a
INTRODUCTION. Porous metal bone fillers are frequently used to manage bony defects encountered in revision total knee arthroplasty (rTKA). Compared to structural graft, porous metal bone fillers have shown significantly lower loosening and failure rates potentially due to osseointegration and increased material strength [1]. The strength of porous metal bone fillers used in lower extremities is frequently assessed using compression/shear/torsion test methods, adapted from spine standards. However, these basic methods may lack clinical relevance, and do not provide any insight on the relationship between patient activity and anticipated prosthesis performance. The goal of this study was to evaluate the response of bone fillers under different activities of daily living, in order to define physiologically relevant worst case biomechanics for component evaluation. METHODS. A bone filler tibial augment is shown in Figure 1. A test construct for tibial augments (half-block each for medial and lateral sides) is shown in Figure 2, along with compatible rTKA components. An additional void in the bone was filled using bone cement. Loading was applied through the tibiofemoral contact patches created on polyethylene tibial insert. Loading was used for two activities of daily living; walking and deep knee bend [2–3]. During walking, the tibiofemoral contact patch on the anterior tibial post gets loaded due to femoral
Total knee arthroplasty has been the main treatment method among advanced osteoarthritis (OA) patients. The main post-operative evaluation considers the level of pain, stability and range of motion (ROM). The knee flexion level is one of the most important categories in the total knee arthroplasty patient's satisfaction in Asian countries due to consistent habits of floor-sitting, squating, kneeling and cross legged sitting. In this study, we discovered that the posterior capsular release enabled the further flexion angles by 14 degrees compared to the average ROM without posterior release group. Our objective was to increase the ROM using the conventional total knee arthroplasty by the posterior capsular release. Posterior capsular release is being used in order to manage the flexion contraction. Although the high flexion method extends the contact area during flexion by extending the posterior condyle by 2mm, the main problem has been the early femoral loosening. We searched for the method to get the deep knee flexion with the conventional knee prosthesis. 122 OA patients with less than preoperative 130 flexion that underwent conventional TKAs using Nexgen from January, 2014 to September, 2016 were reviewed. Posterior femoral osteophytes were removed as much as possible, but 74 cases were performed posterior capsular release, while 48 cases were not performed. After checking postoperative ROM after 6 months of operation, we compared 74 knees with a posterior capsular release and 48 knees without posterior capsular release. As a result, the average ROM in the posterior capsular release group was 132 degrees, but the average ROM without posterior release group is 118 degrees. No postoperative