Introduction.
Aims. Several short- and mid-term studies have shown minimal liner wear of highly cross-linked polyethylene (HXLPE) in total hip arthroplasty (THA), but the safety of using thinner
Isolated liner exchange with highly crosslinked polyethylene (HXLPE) is an option to address polyethylene wear and osteolysis after total hip arthroplasty (THA). The liner can be fixed with either the original locking mechanism or cemented into the acetabular cup. Whether the method used for fixation of
Aims. Highly cross-linked polyethylene (HXLPE) has greatly improved the durability of total hip arthroplasty (THA) in young patients because of its improved wear characteristics. Few studies have followed this population into the second decade, and therefore the purpose of this investigation was to evaluate the clinical outcome for THA patients 50 years of age and younger at a minimum of 15 years postoperatively. The second purpose was to evaluate the radiological findings secondary to wear or mechanical failure of the implant. Methods. Between October 1999 and December 2005, 105 THAs were performed in 95 patients (53 female, 42 male) aged 50 years and younger (mean 42 years (20 to 50)). There were 87 patients (96 hips) that were followed for a minimum of 15 years (mean 17.3 years (15 to 21)) for analysis. Posterior approach was used with cementless fixation with a median head size of 28 mm.
Aims. Contemporary outcomes of primary total hip arthroplasties (THAs) with highly cross-linked polyethylene (HXLPE) liners in patients with inflammatory arthritis have not been well studied. This study examined the implant survivorship, complications, radiological results, and clinical outcomes of THA in patients with inflammatory arthritis. Methods. We identified 418 hips (350 patients) with a primary diagnosis of inflammatory arthritis who underwent primary THA with
Oxidized zirconium (Oxinium) and highly cross-linked polyethylene (HXLPE) were developed with the purpose of minimizing wear, and subsequent osteolysis, in Total Hip Arthroplasty (THA). However, few articles have been published on long-term results of Oxinium on highly cross-linked polyethylene. The purpose of this investigation is to report minimum 10-year
Highly cross-linked polyethylene (HXLPE) has decreased wear and revision rates in total hip replacement (THR) at a long-term. However, the effect of
Aims. We aimed to evaluate the long-term outcome of highly cross-linked polyethylene (HXLPE) cemented acetabular components and assess whether any radiolucent lines (RLLs) which arose were progressive. Methods. We retrospectively reviewed 170 patients who underwent 187 total hip arthroplasties at two hospitals with a minimum follow-up of ten years. All interventions were performed using the same combination of
Aims. The purpose of this study was to compare the long-term results
of primary total hip arthroplasty (THA) in young patients using
either a conventional (CPE) or a highly cross-linked (HXLPE) polyethylene
liner in terms of functional outcome, incidence of osteolysis, radiological
wear and rate of revision. Methods. We included all patients between the ages of 45 and 65 years
who, between January 2000 and December 2001, had undergone a primary
THA for osteoarthritis at our hospital using a CPE or
Aims. The aim of this study was to evaluate the performance of first-generation annealed highly cross-linked polyethylene (HXLPE) in cementless total hip arthroplasty (THA). Methods. We retrospectively evaluated 29 patients (35 hips) who underwent THA between December 2000 and February 2002. The survival rate was estimated using the Kaplan-Meier method. Hip joint function was evaluated using the Japanese Orthopaedic Association (JOA) score. Two-dimensional polyethylene wear was estimated using Martell’s Hip Analysis Suite. We calculated the wear rates between years 1 and 5, 5 and 10, 10 and 15, and 15 and final follow-up. Results. The mean follow-up period was 19.1 years (SD 0.6; 17.3 to 20.1). The 19-year overall survival rate with the end point of all-cause revision was 97.0% (95% confidence interval (CI) 91 to 100). The mean JOA score improved from 43.2 (SD 10.6; 30 to 76) before surgery to 90.2 (SD 6.4; 76 to 98) at the final follow-up (p < 0.001). There was no osteolysis or loosening of the acetabular or femoral components. The overall steady-state wear rate was 0.013 mm/year (SD 0.012). There was no hip with a steady-state wear rate of > 0.1 mm/year. There was no significant difference in wear rates for each period. We found no significant correlation between the wear rate and age, body weight, BMI, or cup inclination. Conclusion. First-generation annealed
Ceramic-on-ceramic (CoC) articulations in total hip arthroplasty (THA) have low wear, but the unique risk of fracture. After revision for CoC fracture, ceramic third bodies can lead to runaway wear of cobalt chrome (CoCr) causing extremely elevated blood cobalt. We present five cases of ceramic liner fractures revised to a CoCr head associated with the rapid development of severe cobalt toxicity. We identified 5 cases of fractured CoC THA treated with revision to CoCr on highly cross-linked polyethylene (HXLPE) – three to conventional bearings and two to modular dual mobility bearings (CoCr acetabular liner, CoCr femoral head, and HXLPE). Mean follow up was 2.5 years after CoCr/
The last two decades have seen remarkable technological advances in total hip arthroplasty (THA) implant design. Porous ingrowth surfaces and highly crosslinked polyethylene (HXLPE) have been expected to dramatically improve implant survivorship. The purpose of the present study was to evaluate survival of contemporary cementless acetabular components following primary THA. 16,421 primary THAs performed for osteoarthritis between 2000 and 2019 were identified from our institutional total joint registry. Patients received one of 12 contemporary cementless acetabular designs with
Aims. The increased in vivo resistance to wear of
highly crosslinked polyethylene (HXLPE) in total hip arthroplasty
(THA) has led to an increased use of larger articulations which
have been shown to reduce the incidence of early dislocation. To
date, there are few reports of the wear of larger articulations
using second generation
Highly crosslinked polyethylene (HXLPE) has been used with great clinical success in total hip arthroplasty (THA) since its debut in the late 1990's. However, reports regarding this bearing couple in its second decade of service are still scant. The aim of this study was to 1. Determine the long term clinical and radiological results and 2. Investigate what factors affect wear rates using a metal-on-HXLPE bearing articulation. 55 THA's using a single brand of
We report the five-year outcome of a randomised
controlled trial which used radiostereometric analysis (RSA) to assess
the influence of surface oxidised zirconium (OxZr, Oxinium) on polyethylene
wear in vivo. A total of 120 patients, 85 women and 35 men with a mean age
of 70 years (59 to 80) who were scheduled for primary cemented total
hip arthroplasty were randomly allocated to four study groups. Patients
were blinded to their group assignment and received either a conventional
polyethylene (CPE) or a highly cross-linked (HXL) acetabular component
of identical design. On the femoral side patients received a 28
mm head made of either cobalt-chromium (CoCr) or OxZr. . The proximal head penetration (wear) was measured with repeated
RSA examinations over five years. Clinical outcome was measured
using the Harris hip score. . There was no difference in polyethylene wear between the two
head materials when used with either of the two types of acetabular
component (p = 0.3 to 0.6). When comparing the two types of polyethylene
there was a significant difference in favour of
Introduction. Patients under the age of 50 who undergo a total hip arthroplasty (THA) are at high risk for wear-related complications due to their higher activity level. Previous studies have shown that highly crosslinked polyethylene (HXLPE) is more durable with no evidence of loosening compared to conventional polyethylene due to its improved wear characteristics. Unfortunately, there are few studies with long term follow-up of
Introduction. THA for patient's 50 years and younger is a procedure at high risk for complications and failure because of the high level of activity of this population. Highly cross linked polyethylene (HXLPE) has greatly improved the durability of the implant because of the improved wear characteristics. Few studies have followed this population into the second decade and therefore the purpose of this investigation was to evaluate the clinical outcome for the patients 5o years of age and younger at a minimum of 15 years. The second purpose was to evaluate the radiographic findings secondary to wear or mechanical failure of the implant. Methods. Between October 1999 and December 2005, 105 THAs were performed in 95 patients (53 female, 42 male) age 50 years and younger (mean 42 years; range 20–50). Ten patients (10 hips) were lost to follow-up or deceased. The remaining 95 hips and 85 patients were followed for a minimum of 15 years (mean of 16.8, range 15–20.5) for analysis.
Introduction. Cementation of a new liner into an existing well-fixed acetabular component is common during revision total hip arthroplasties (THAs) for many indications, but most commonly for lack of a modern compatible crosslinked polyethylene liner. However, little is known about the long-term durability of this strategy. The purpose of this study was to evaluate the long-term implant survivorship, risk of complications, clinical outcomes, and radiographic results of cementing a new highly cross-linked polyethylene (HXLPE) liner into a well-fixed acetabular component. Methods. We retrospectively identified 326 revision THAs where a non-constrained
Aims. The aim of this study was to determine whether there is a difference
in the rate of wear between acetabular components positioned within
and outside the ‘safe zones’ of anteversion and inclination angle. Patients and Methods. We reviewed 100 hips in 94 patients who had undergone primary
total hip arthroplasty (THA) at least ten years previously. Patients
all had the same type of acetabular component with a bearing couple
which consisted of a 28 mm cobalt-chromium head on a highly crosslinked
polyethylene (HXLPE) liner. A supine radiostereometric analysis
(RSA) examination was carried out which acquired anteroposterior
(AP) and lateral paired images. Acetabular component anteversion
and inclination angles were measured as well as total femoral head
penetration, which was divided by the length of implantation to
determine the rate of polyethylene wear. Results. The mean anteversion angle was 19.4° (-15.2° to 48°, . sd. 11.4°),
the mean inclination angle 43.4° (27.3° to 60.5°, . sd. 6.6°),
and the mean wear rate 0.055 mm/year (. sd. 0.060). Exactly
half of the hips were positioned inside the ‘safe zone’. There was
no difference (median difference, 0.012 mm/year; p = 0.091) in the
rate of wear between acetabular components located within or outside
the ‘safe zone’. When compared to acetabular components located
inside the ‘safe zone’, the wear rate was no different for acetabular
components that only achieved the target anteversion angle (median
difference, 0.012 mm/year; p = 0.138), target inclination angle
(median difference, 0.013 mm/year; p = 0.354), or neither target
(median difference, 0.012 mm/year; p = 0.322). Conclusion. Placing the acetabular component within or outside the ‘safe
zone’ did not alter the wear rate of
Limited implant survival due to aseptic cup loosening is most commonly responsible for revision total hip arthroplasty (THA). Advances in implant designs and materials have been crucial in addressing those challenges. Vitamin E-infused highly cross-linked polyethylene (VEPE) promises strong wear resistance, high oxidative stability, and superior mechanical strength. Although VEPE monoblock cups have shown good mid-term performance and excellent wear patterns, long-term results remain unclear. This study evaluated migration and wear patterns and clinical and radiological outcomes at a minimum of ten years’ follow-up. This prospective observational study investigated 101 cases of primary THA over a mean duration of 129 months (120 to 149). At last follow-up, 57 cases with complete clinical and radiological outcomes were evaluated. In all cases, the acetabular component comprised an uncemented titanium particle-coated VEPE monoblock cup. Patients were assessed clinically and radiologically using the Harris Hip Score, visual analogue scale (pain and satisfaction), and an anteroposterior radiograph. Cup migration and polyethylene wear were measured using Einzel-Bild-Röntgen-Analyze software. All complications and associated treatments were documented until final follow-up.Aims
Methods