Advertisement for orthosearch.org.uk
Results 1 - 8 of 8
Results per page:
Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_11 | Pages 286 - 286
1 Jul 2014
Lee J Jeong C
Full Access

Summary Statement. The implantation of scaffold-free CTE from suspension culture into growth-plate defects resulted in a significant reduction in growth arrest of the rabbit tibia. Introduction. In childhood and adolescence, the growth plate injury can cause partial premature arrest of growth plate, which can make problems such as leg length discrepancy and angular deformity. Bone bridge resection and variable implantation materials such as fat, bone wax, silastic and craniopalst has been investigated. However, those procedures may show limitations including the control of bone growth and long term safety of implant materials in vivo. As an alternative, homogeneous or heterogeneous cartilage cells and stem cell transplants have been tried. In this method, scaffold for cell transplantation is needed. But, so far the most suitable scaffold has not been established. Recently, some authors generated a cartilage tissue equivalent (CTE) using a suspension culture with biophysical properties similar to native hyaline cartilage. Therefore we are able to transplant the CTE without scaffold to the physeal defect. The purpose of this study was to investigated the effects of a transplantation of a vitro-generated scaffold-free tissue-engineered cartilage tissue equivalent (CTE) using a suspension chondrocyte culture in a rabbit growth arrest model. Material and Method. Cartilage tissue equivalent culture. The CTE was generated by the suspension culture of chondrocytes (2 × 10. 7. /well/1 mL) which was isolated from articular cartilage of 5 weeks New Zealand white rabbit on a 24-well plate (2.4 cm. 2. /well) treated with poly HEMA (nunc, Roskide, Denmark) for up to 8 and 16 weeks. (2)Partial growth arrest animal model. An experimental model for growth arrest was created by excising the growth plate at the proximal medial side of tibia with the 4 mm in diameter and 4 mm in depth from 6-week-old New Zealand white rabbits. Two experimental groups were set to evaluate CTE implantation; group I, no implantation as controls; group II, implantation of CTE. (3) Evaluation of effect of the transplantation of CTE. Serial plain radiographs were performed at one week. The medial proximal tibial angle (MPTA) was measured for assessing the degree of angular deformity. Histologic examination using HE stain, Alcian bule and immunohistochemistry was done at 4 and 8 weeks after surgery. Results. Radiographic results: In group I, all damaged growth plates were arrested and angular deformities appeared 4 weeks later. In groups II, angular deformities were much less than in the control group. Histologic result: In group I, bone bridge formation was shown at the damaged growth plate at 4 weeks after surgery. In group II, regeneration of growth plates was recognised at 4 and 8 week after surgery. However, the thickness of regenerated growth plate at 8 weeks specimen was thinner than that of 4 weeks specimen. Discussion and Conclusion. The implantation of scaffold-free CTE from suspension culture into growth-plate defects resulted in a significant reduction in growth arrest of the rabbit tibia


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_4 | Pages 96 - 96
1 Mar 2021
Abood A Rahbek O Moeller-Madsen B Kold S
Full Access

The use of retrograde femoral intramedullary nails in children for deformity correction is controversial. It is unknown if the injury to the central part of the growth plate results in premature bony union, leading to limb deformities or discrepancies. The aim of this study was to assess physeal healing and bone growth after insertion of a retrograde femoral nail thorough the centre of the physis in a skeletally immature experimental porcine model. Eleven immature pigs were included in the study. One leg was randomised for operation with a retrograde femoral nail (diameter 10.7 mm), whilst the non-operated contralateral remained as control. All nails were inserted centrally in coronal and sagittal plane under fluoroscopic guidance, and the nails spanned the physis. The nails were removed at 8 weeks. Both femora in all animals underwent MRI at baseline (pre-operatively), 8 weeks (after nail removal) and 16 weeks (before euthanasia). Femoral bone length was measured at 5 sites (anterior, posterior, central, lateral and medial) using 3d T1-weighted MRI. Growth was calculated after 8 weeks (growth with nail) and 16 weeks (growth without nail). Physeal cross-sectional area and percentage violated by the nail was determined on MRI. Operated side was compared to non-operated. Corresponding 95% confidence intervals were calculated. No differences in axial growth were observed between operated and non-operated sides. Mean growth difference was 0,61 mm [−0,78;2,01] whilst the nail was inserted into the bone and 0,72 mm [−1,04;1,65] after nail removal. No signs of angular bone deformities were found when comparing operated side to non-operated side. No premature bony healing at the physis occurred. Histology confirmed fibrous healing. Mean physeal violation was 5.72% [5.51; 5.93] by the femoral nail. The insertion of a retrograde femoral nail through the centre of an open physis might be a safe procedure with no subsequent growth arrest. However, experiments assessing the long term physeal healing and growth are needed


Bone & Joint Research
Vol. 3, Issue 11 | Pages 310 - 316
1 Nov 2014
Tomaszewski R Bohosiewicz J Gap A Bursig H Wysocka A

Objectives. The aim of this experimental study on New Zealand’s white rabbits was to investigate the transplantation of autogenous growth plate cells in order to treat the injured growth plate. They were assessed in terms of measurements of radiological tibial varus and histological characteristics. . Methods. An experimental model of plate growth medial partial resection of the tibia in 14 New Zealand white rabbits was created. During this surgical procedure the plate growth cells were collected and cultured. While the second surgery was being performed, the autologous cultured growth plate cells were grafted at the right tibia, whereas the left tibia was used as a control group. . Results. Histological examinations showed that the grafted right tibia presented the regular shape of the plate growth with hypertrophic maturation, chondrocyte columniation and endochondral calcification. Radiological study shows that the mean tibial deformity at the left angle was 20.29° (6.25 to 33) and 7.21° (5 to 10) in the right angle. . Conclusion. This study has demonstrated that grafting of autogenous cultured growth plate cells into a defect of the medial aspect of the proximal tibial physis can prevent bone bridge formation, growth arrest and the development of varus deformity. Cite this article: Bone Joint Res 2014;3:310–16


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_11 | Pages 298 - 298
1 Jul 2014
Llombart-Blanco R Llombart-Ais R Barrios C Beguiristain J
Full Access

Summary Statement. Bilaretal epiphysiodesis of he neurocentral cartilages causes shortening of the sagittal length of the pedicles and a subsequent spinal stenosis at the operated segments, resembling that found in patients with achrondroplasia. Introduction. The introduction of pedicle screws in the immature spine may have implications for the growth of the vertebra. The effect of blocking the growth of neurocentral cartilage (NC) is not yet fully defined. Block hypothetically leads to a bilateral symmetrical alteration of the vertebral growth. Using an experimental animal model, our goal is to analyze if a bilateral epiphysiodesis of the NC using pedicle screws is able to induce narrowing of the spinal canal in the thoracolumbar spine. Experimental animals and Methods. A total of 24 domestic pigs were operated on by bilateral blocking of the NC using pedicle screws. The animals were divided into 4 groups depending on the level of blockage: A, low thoracic levels; B, thoracolumbar transitional hinge; C, upper lumbar spine; and D, blocking of the caudal lumbar level below L5 segment. Different morphological, morphometric and standard radiological parameters were analyzed at the thoracic and lumbar vertebrae of the animals. The deviation from the physiological parameters was established by comparing all parameters obtained in the NC-blocked animals with those acquired in 14 pigs without NC blocking. These animals were considered as the control group. Results. None of the animals that underwent NC epiphysiodesis showed asymmetrical spinal growth inducing deformities in the coronal plane. There was neither rotation nor wedging of the vertebral bodies. Whatever the level involved, NC epiphysiodesis caused shortening of the sagittal length of the pedicles and a subsequent decreasing of the antero-posterior diameter of the spinal canal. These features resulted in a frank spinal stenosis at the operated levels. However, the transverse diameter of the spinal canal was conserved in the coronal plane. In the sagittal plane, blocking of the neurocentral cartilage conditioned a lumbar hyperlordosis with compensatory kyphosis of the upper level to the operated vertebra. Conclusions. Symmetrical growth arresting of neurocentral cartilages induces a narrow spinal canal by decreasing the sagittal diameter similar to that observed in patients with achondroplasia. The most affected structure was the development of the vertebral pedicles


The Bone & Joint Journal
Vol. 97-B, Issue 6 | Pages 862 - 868
1 Jun 2015
Corominas-Frances L Sanpera I Saus-Sarrias C Tejada-Gavela S Sanpera-Iglesias J Frontera-Juan G

Rebound growth after hemiepiphysiodesis may be a normal event, but little is known about its causes, incidence or factors related to its intensity. The aim of this study was to evaluate rebound growth under controlled experimental conditions.

A total of 22 six-week-old rabbits underwent a medial proximal tibial hemiepiphysiodesis using a two-hole plate and screws. Temporal growth plate arrest was maintained for three weeks, and animals were killed at intervals ranging between three days and three weeks after removal of the device. The radiological angulation of the proximal tibia was studied at weekly intervals during and after hemiepiphysiodesis. A histological study of the retrieved proximal physis of the tibia was performed.

The mean angulation achieved at three weeks was 34.7° (standard deviation (sd) 3.4), and this remained unchanged for the study period of up to two weeks. By three weeks after removal of the implant the mean angulation had dropped to 28.2° (sd 1.8) (p < 0.001). Histologically, widening of the medial side was noted during the first two weeks. By three weeks this widening had substantially disappeared and the normal columnar structure was virtually re-established.

In our rabbit model, rebound was an event of variable incidence and intensity and, when present, did not appear immediately after restoration of growth, but took some time to appear.

Cite this article: Bone Joint J 2015;97-B:862–8.


Bone & Joint Research
Vol. 5, Issue 1 | Pages 1 - 10
1 Jan 2016
Burghardt RD Manzotti A Bhave A Paley D Herzenberg JE

Objectives

The purpose of this study was to compare the results and complications of tibial lengthening over an intramedullary nail with treatment using the traditional Ilizarov method.

Methods

In this matched case study, 16 adult patients underwent 19 tibial lengthening over nails (LON) procedures. For the matched case group, 17 patients who underwent 19 Ilizarov tibial lengthenings were retrospectively matched to the LON group.


Bone & Joint Research
Vol. 5, Issue 7 | Pages 301 - 306
1 Jul 2016
Madhuri V Santhanam M Rajagopal K Sugumar LK Balaji V

Objectives

To determine the pattern of mutations of the WISP3 gene in clinically identified progressive pseudorheumatoid dysplasia (PPD) in an Indian population.

Patients and Methods

A total of 15 patients with clinical features of PPD were enrolled in this study. Genomic DNA was isolated and polymerase chain reaction performed to amplify the WISP3 gene. Screening for mutations was done by conformation-sensitive gel electrophoresis, beginning with the fifth exon and subsequently proceeding to the remaining exons. Sanger sequencing was performed for both forward and reverse strands to confirm the mutations.


Bone & Joint Research
Vol. 3, Issue 3 | Pages 51 - 59
1 Mar 2014
Kim HJ Braun HJ Dragoo JL

Background

Resveratrol is a polyphenolic compound commonly found in the skins of red grapes. Sirtuin 1 (SIRT1) is a human gene that is activated by resveratrol and has been shown to promote longevity and boost mitochondrial metabolism. We examined the effect of resveratrol on normal and osteoarthritic (OA) human chondrocytes.

Methods

Normal and OA chondrocytes were incubated with various concentrations of resveratrol (1 µM, 10 µM, 25 µM and 50 µM) and cultured for 24, 48 or 72 hours or for six weeks. Cell proliferation, gene expression, and senescence were evaluated.