Relative motion at the modular head-neck junction of hip prostheses can lead to severe surface damage through mechanically-assisted corrosion. One factor affecting the mechanical performance of modular junctions is the frictional resistance of the mating surfaces to relative motion. Low friction increasing forces normal to the head-neck interface, leading to a lower threshold for slipping during weight-bearing. Conversely, a high friction coefficient is expected to limit interface stresses but may also allow uncoupling of the interface in service. This study was performed to examine this trade-off using finite element models of the modular head-neck junction A finite element model (FEM) of the trunnion/ head assembly of a total hip prosthesis was initially created and experimentally validated. CAD models of a stem trunnion (taper size: 12/14mm) and a prosthetic femoral head (diameter: 28mm) were discretized into elements for finite element analysis (FEA). The trunnion (Ti6Al4V) was modelled with a hexahedral mesh (33,648 elements) and the femoral head (CoCrMo) with a tetrahedral mesh (51,182 elements). A friction-based sliding contact interface was defined between the mating surfaces. The model was loaded in 2 stages: (i) an assembly load of 4000N applied along the trunnion axis, and (ii) 500N applied along the trunnion axis in combination with a torque of 10Nm. A linear static solution was set up using Siemens NX-Nastran solver. Multiple simulations were executed by modulating the frictional coefficient at the taper-bore interface from 0.05 to 0.15 in increments of 0.01, the coefficient of 0.1 serving as the control case (Swaminathan and Gilbert, 2012).Introduction
Methods
Current implant designs and materials provide a high grade of quality and safety, but aseptic implant loosening is still the main reason for total hip revision. Highly cross-linked polyethylene (HX-PE) is used successfully in total hip replacements (THR) since several years. The good wear properties lead to a reduction of wear debris and may contribute to a longer survival time of the THRs. Furthermore, thin HX-PE liner allows the use of larger femoral heads associated with a decreased risk of dislocation and an improved range of motion. However, the cross-linking process is associated with a loss of mechanical properties of the polyethylene material which compromise the use of thin HX-PE liner in terms of high stress situations. The aim of the present study was the experimental wear analysis of HX-PE liner under steep acetabular cup position. Furthermore, a finite element analysis (FEA) was performed in order to calculate the stress within the HX-PE material in case of steep cup position under physiological loading. Experimental wear testing was performed for 5 Mio load cycles, using highly cross-linked polyethylene (HX-PE) acetabular liner combined with 44 mm ceramic femoral heads at a standard position of the acetabular cup (30° inclination) according to ISO 14242 as well as at 60° cup inclination. The wall thickness of the HX-PE liner was 3.8 mm. A hip wear simulator, according to ISO 14242 (EndoLab GmbH, Rosenheim, Germany), was used and wear was determined gravimetrically. Moreover, finite element models of the THR system at standard and steep cup position was created by Abaqus/CAE (Dessault Systemes Providence, USA). Using the finite element software Abaqus (Dessault Systemes Providence, USA) the total hip implants were physiologically loaded with maximum force of the gait cycle (3.0 kN). Thereby, the stresses within the HX-PE material were analysed. The average gravimetrical wear rates of the HX-PE liners at standard implant position (30°) and 60° cup inclination showed small wear amounts of 3.15 ± 0.32 mg and 1.92 ± 1.00 mg per million cycles, respectively. The FEA revealed a clear increase of stresses at the HX-PE liner with respect to steep cup position (von Mises stress of 8.78 MPa) compared to ISO standard implant position (von Mises stress of 5.70 MPa). The wear simulator tests could not demonstrate significant differences of gravimetrical wear amount of HX-PE liners under steep hip cup position compared to standard implant position. The small contact surface between the femoral head and the SX-PE liner during the wear testing may lead to the low wear rate of the misaligned acetabluar cup. Moreover, the FEA showed that the effect of a misaligned acetabular cup on the stresses within the polyethylene liner can be critical. Although an increase of wear could not be detected a steeper acetabular cup position using thin HX-PE liners should be avoided due to higher stresses preventing implant failure in clinical application.
Background. Surgical reconstruction of the anterior cruciate ligament is a common practice to treat the disability or chronic instability of the knee. Several factors associated with success or failure of the ACL reconstruction, including surgical technique and graft material and graft tension. We aimed to show how we can optimize the graft properties and achieve better post surgical outcomes during ACL reconstruction using 3-dimensional computational
Experimental knee simulators for component evaluation or An existing finite element model of the KKS was modified to extend the capability, and improve the fidelity, of the computational model beyond the experimental setup. An actuator to allow anterior-posterior (A-P) motion of the hip was included and used to prescribe relative hip-ankle A-P kinematics during the simulations. The quadriceps muscle, which in the experimental simulator consisted of a single quadriceps bundle with a point-to-point line of action, was divided into four heads of the quadriceps with physiological muscle paths. The hamstrings muscle, which was not present in the experiment, was represented by point-to-point actuators in four bundles. A flexible control system was developed which allowed control of the quadriceps and hamstrings actuators to match a knee flexion profile, similar to actuation of the experimental KKS, but also allowed control of the compressive tibiofemoral (TF) joint force, medial-lateral (M-L) load distribution, internal-external (I-E) torque and A-P load at the joint. A series of sensors, measuring all six load components on the medial and lateral compartments of the tibial insert, as well as knee flexion angle, were incorporated into the simulation. Instantaneous measurements from the sensors were fed to a control system, implemented within an Abaqus/Explicit user subroutine (Figure 1). The controller was used to drive actuators in the FE model to match target
The wear particles released from the polyethylene (PE) tibial insert of modular total knee replacements (TKRs) have been shown to cause wear particle induced osteolysis, which may necessitate revision surgery [1]. Wear occurs at the backside surface of the PE insert of modular TKRs, resulting from the relative movement between the PE insert and the tibial tray [2]. Wear particles generated from the backside surface of the PE insert have been shown to be smaller in size than those originating from the articular surface [1], and may therefore have increased biological activity and osteolytic potential [3-4]. The ability to predict backside micromotion and contact pressure by
Introduction. Metallic resurfacing systems have been widely used until pseudotumors and ALTR have been clinically found and related to excessive wear of these metal-on-metal hip systems. Hence, surgeons widely abandoned the use of resurfacing systems. Meanwhile, there is a ceramic on ceramic (CoC) resurfacing system (Embody, London, UK) made of zirconia toughened alumina (BIOLOX. ®. delta, CeramTec, Plochingen, Germany) in a clinical safety study. Even though conventional CoC hip systems are known for their excellent wear behavior, it has to be ensured that intraoperative and in-vivo deformations of the ceramic acetabular cup do not infringe the proper functionality of the system. The method of determining the minimum clearance of such a system will be presented here. Materials and Methods. Combined experimental and numerical results were used to determine the deformation of the ceramic shell. In a cadaver lab, the resulting deformations after impaction of generic metal shells have been measured, see e.g. [1] for the method of measurement. The maximum deformation has been chosen for further calculation. Additionally, the stiffness of both generic metal and ceramic shells has been measured using ISO 7206–12. The deformation of the ceramic shells were then calculated by the equation. where u. c. and u. m. are the deformations of the ceramic and the metal shell, respectively, and K. m. and K. c. are the respective stiffnesses. Additionally, in a
Introduction. In total hip arthroplasty, press-fit anchorage is one of the most common fixation methods for acetabular cups and mostly ensures sufficient primary stability. Nevertheless, implants may fail due to aseptic loosening over time, especially when the surrounding bone is affected by stress-shielding. The use of acetabular cups made of isoelastic materials might help to avoid stress-shielding and osteolysis. The aim of the present numerical study was to determine whether a modular acetabular cup with a shell made of polyetheretherketone (PEEK) may be an alternative to conventional titanium shells (Ti6Al4V). For this purpose, a 3D finite element analysis was performed, in which the implantation of modular acetabular cups into an artificial bone stock using shells made of either PEEK or Ti6Al4V, was simulated with respect to stresses and deformations within the implants. Methods. The implantation of a modular cup, consisting of a shell made of PEEK or Ti6Al4V and an insert made of either ceramic or polyethylene (PE), into a bone cavity made of polyurethane foam (20 pcf), was analysed by 3D
Introduction. As population grows older, and patients receive primary joint replacements at younger age, more and more patients receive a total hip prosthesis nowadays. Ten-year failure rates of revision hip replacements are estimated at 25.6%. The acetabular component is involved in over 58% of those failures. From the second revision on, the pelvic bone stock is significantly reduced and any standard device proves inadequate in the long term [Villanueva et al. 2008]. To deal with these challenges, a custom approach could prove valuable [Deboer et al. 2007]. Materials and methods. A new and innovative CT-based methodology allows creating a biomechanically justified and defect-filling personalized implant for acetabular revision surgery [Figure 1]. Bone defects are filled with patient-specific porous structures, while thin porous layers at the implant-bone interface facilitate long-term fixation. Pre-operative planning of screw positions and lengths according to patient-specific bone quality allow for optimal fixation and accurate transfer to surgery using jigs. Implant cup orientation is anatomically analyzed for required inclination and anteversion angles. The implant is patient-specifically analyzed for mechanical integrity and interaction with the bone based upon fully individualized muscle modeling and
In recent years 3D preoperative planning has become increasingly popular with orthopaedic surgeons. One technique that has shown to be successful in transferring this preoperative plan to the operating room is based on surgical templates that guide various surgical instruments. Such a patient-specific template is designed using both the 3D reconstructed anatomy and the preoperative plan and is then typically produced via additive manufacturing technology. The combination of a preoperative plan and a surgical template has the potential to result in a more accurate procedure than an unguided one, when the following three criteria are met: the template needs to achieve a stable fit on the surgical field, it needs to fit in a unique position, and the surgeon needs to be able to determine the correct, planned position during the surgery. When the template fails one of these conditions, it can be used incorrectly. Consequently the process could result in an inaccurate outcome. This research focuses on modelling the stability of a surgical template on bone. The relationship between the contact surface of the template and the resulting stability is investigated with a focus on methods to quantify the template stability. The model calculates a quality score on the designed contact surface, which reflects the likelihood of positioning the template on the bone in a stable position. The model used in this study has been experimentally validated to verify its ability to provide a reliable indication of the template stability. This was analysed using finite element analysis where multiple templates and support models with different contact surface shapes were created. The application of forces and moments in varying directions was simulated. Stability is then defined as the ability of a template to resist an applied force or moment. The displacements of the templates were computed and analysed. The results show a minimal displacement of less than 0.01 mm and a maximal displacement larger than 10 mm. The former is considered to be a very stable template design; the latter to be very unstable and hence, would result in an insecure contact. The geometry of the contact surface had a clear influence on the template stability. Overall, the coverage of curvature variations improved the stability of the template. The displacements of the different
In biomechanical
Tibial component loosening is an important failure mode in unicompartmental knee arthroplasty (UKA) which may be due to the 6–8 mm of bone resection required or the limited surface area. To address component loosening and fixation, a new Early Intervention (EI) design is proposed which reverses the traditional material scheme between femoral and tibial components. That is, the EI design consists of a plastic inlay component for the distal femur and a thin metal plate for the proximal tibia. With this reversed materials scheme, the EI design requires minimal tibial bone resection compared to traditional UKA to preserve the dense and stiff bone in the proximal tibia. This study investigated, by means of
The interface condition between the prosthesis and the bone tissue must play important roles during dynamic loading transfer through the knee joint. In this study, the three- dimensional impact
Introduction. Pre-clinical testing of orthopaedic devices could be improved by comparing performance with established implants with known clinical histories. Corail and Summit (DePuy Synthes, Warsaw) are femoral stems with proven survivorship of 95.1% and 98.1% at 10 years [1], which makes them good candidates as benchmarks when evaluating new stem designs. Hence, the aim of this study was to establish benchmark data relating to the primary stability of Corail and Summit stems. Methods.
Introduction. Stress shielding is one of the major concerns of load bearing implants (e.g. hip prostheses). Stiff implants cause stress shielding, which is thought to contribute to bone resorption1. On the contrary, low-stiffness implants generate high interfacial stresses that have been related to pain and interfacial micro-movements². Different attempts have been made to reduce these problems by optimizing either the stem design3 or using functionally graded implants (FGI) where the stem's mechanical properties are optimized4. In this way, new additive manufacturing technologies allow fabricating porous materials with well-controlled mesostructure, which allows tailoring their mechanical properties. In this work,
Introduction. The influence of the bone mineral density (BMD) on the mechanical behavior of bones can be examined using computer tomography (CT) data and
Introduction. After arthroplasty, stress shielding and high shear stresses at the bone-implant interface are common problems of load bearing implants (e.g. hip prostheses). Stiff implants cause stress shielding, which is thought to contribute to bone resorption. 1. High shear stresses, originated by low-stiffness implants, have been related to pain and interfacial micro-movements², prohibiting adequate implant initial fixation. A non-homogeneous distribution of mechanical properties within the implant could reduce the stress shielding and interfacial shear stresses. 3. Such an implant is called “functionally graded implant” (FGI). FGI require porous materials with well-controlled micro-architecture, which can now be obtained with new additive manufacturing technologies (e.g. Electron Beam Melting).