Abstract
Tibial component loosening is an important failure mode in unicompartmental knee arthroplasty (UKA) which may be due to the 6–8 mm of bone resection required or the limited surface area. To address component loosening and fixation, a new Early Intervention (EI) design is proposed which reverses the traditional material scheme between femoral and tibial components. That is, the EI design consists of a plastic inlay component for the distal femur and a thin metal plate for the proximal tibia. With this reversed materials scheme, the EI design requires minimal tibial bone resection compared to traditional UKA to preserve the dense and stiff bone in the proximal tibia. This study investigated, by means of finite element (FE) simulations, the potential advantages of a thin metal tibial component compared with traditional UKA tibial components, such as an all-plastic inlay or a metal-backed onlay. We hypothesized that an EI component would produce comparable stress, strain, and strain energy density characteristics to an intact knee and more favorable values than UKA components. Indeed, the finite element results showed that an EI design reduced stresses, strains and strain energy density in the underlying support bone compared to an all-plastic UKA component. Analyzed parameters were similar for an EI and a metal-backed onlay, but the EI component had the advantage of minimal resection of the stiffest bone.