Introduction. The success of knee replacement surgery depends, in part, on restoration of the correct alignment of the leg with respect to the load-bearing vector passing from the hip to the ankle (the mechanical axis). Conventional thinking is that the correct angle of resection of the distal femur (Valgus Cut Angle, VCA) depends on femoral length or femoral offset, though
Aims. The aims of this retrospective study were to determine the incidence of extra-articular deformities (EADs), and determine their effect on postoperative alignment in knees undergoing mobile-bearing, medial unicompartmental knee arthroplasty (UKA). Patients and Methods. Limb mechanical alignment (hip-knee-ankle angle), coronal bowing of the femoral shaft and proximal tibia vara or medial proximal tibial angle (MPTA) were measured on standing, full-length hip-to-ankle radiographs of 162 patients who underwent 200 mobile-bearing, medial UKAs. Results. Incidence of EAD was 7.5% for coronal
Summary sentence. The bowing of the femur defines a curvature plane to which the proximal and distal femoral anatomic landmarks have a predictable interrelationship. This plane can be a helpful adjunct for computer navigation to define the pre-operative, non-diseased anatomy of the femur and more particularly the rotational alignment of the femoral component in total knee arthroplasty (TKA). Background and aims. There is very limited knowledge with regards to the sagittal curvature -or bowing- of the femur. It was our aim (1) to determine the most accurate assessment technique to define the
Traditional instrumentation relies on rigid IM rods to determine the distal femoral resection which influences size and orientation of the femoral component. Anterior
Computer navigation has been advocated as a means to improve limb and component alignment and reduce the number of outliers after total knee arthroplasty (TKA). We aimed to determine the alignment outcomes of 1500 consecutive computer-assisted TKAs performed by a single surgeon, using the same implant, with a minimum 1 year follow-up, and to analyze the outliers. Based on radiographic analysis, 112 limbs (7.5%) in 109 patients with mechanical axis malalignment of > 3° were identified and analyzed. The indication for TKA was osteoarthritis in 107 patients and rheumatoid arthritis in 2 patients. Fifty-eight patients (53%) had undergone simultaneous bilateral TKA and 13 patients (12%) had a BMI >30. Preoperative varus deformity was seen in 100 limbs and valgus deformity in 12 limbs. Thirty limbs (27%) had an extra-articular deformity (2 post HTO limbs, 3 malunited fractures, 1 stress fracture, 21 severe
Background Computer navigation is increasingly being recognized as a valuable tool in restoring the mechanical axis post TKR. Its use is as yet not universal due to the costs involved, its availability and the fact that it can be cumbersome and time consuming to use. Additionally it requires the insertion of Schanz pins in the femur as well as the tibia which can be a matter of concern as regards stress fracture and infection. However, it is able to reliably locate the center of the femoral head which is an elusive landmark in the standard method. The center of the ankle involves registration for the medial and lateral malleoli which are subcutaneous and easily palpable. We decided to navigate only the distal femoral cut with a specialized navigation unit called Articular Surface Mounted navigation which does not require the insertion of additional pins through the femur or the tibia. We purposely did not use navigation for the rest of the bony cuts as all the other landmarks i.e. femoral epicondyles, tibial malleoli, and tuberosity etc are all easily palpable. This dramatically reduced the surgical time and increased its user friendliness. We are presenting our results. Aim. To analyse the radiographic results obtained with selective femoral navigation and compare with. standard navigational results from the literature. Non-navigated Knees form personal series. Materials and Methods. We have utilized the ASM navigation for distal femoral cut in 112 knees and obtained long X-rays (scanograms) and routine knee X-rays (AP, Lateral and skyline) to study the mechanical axis and component positioning. We measured the mechanical axis deviation, femoral and tibial angle on AP and lateral films and patellar tilt or subluxation on post-operative X-rays by a digital imaging programme called Image–J. (As suggested by the Knee Society roentgenographic Score). We have compared our results with other navigated series from literature and our own series of non-navigated knees. (113 knees) We also noted the surgical time to perform the operation and the occurrence of any complications. Results. Selective femoral navigation is able to restore the mechanical axis as reliably as other methods of navigation and more reliably than non-navigated knees. On an average, it adds less than 10 minutes to surgical time. Femoral angle, tibial angle patellar tilt and subluxation are similar in both navigated and non-navigated series. Navigation use was not associated with any increased complications and no complication could be ascribed to its use. Selective femoral navigation reduced the outliers in mechanical axis restoration when compared with standard femoral intrameduallry instrumentation. Discussion. Selective distal femoral navigation is a reliable tool in restoring mechanical axis post TKR. It is particularly valuable in knees that have pronounced
Double-level lengthening, bone transport, and bifocal compression-distraction are commonly undertaken using Ilizarov or other fixators. We performed double-level fixator-assisted nailing, mainly for the correction of deformity and lengthening in the same segment, using a straight intramedullary nail to reduce the time in a fixator. A total of 23 patients underwent this surgery, involving 27 segments (23 femora and four tibiae), over a period of ten years. The most common indication was polio in ten segments and rickets in eight; 20 nails were inserted retrograde and seven antegrade. A total of 15 lengthenings were performed in 11 femora and four tibiae, and 12 double-level corrections of deformity without lengthening were performed in the femur. The mean follow-up was 4.9 years (1.1 to 11.4). Four patients with polio had tibial lengthening with arthrodesis of the ankle. We compared the length of time in a fixator and the external fixation index (EFI) with a control group of 27 patients (27 segments) who had double-level procedures with external fixation. The groups were matched for the gain in length, age, and level of difficulty score.Aims
Patients and Methods
Femoral lengthening using the Intramedullary Skeletal Kinetic Distractor is a new technique. However, with intramedullary distraction the surgeon has less control over the lengthening process. Therefore, 33 femora lengthened with this device were assessed to evaluate the effect of operative variables under the surgeon’s control on the course of lengthening. The desired lengthening was achieved in 32 of 33 limbs. Problems encountered included difficulty in achieving length in eight femora (24%) and uncontrolled lengthening in seven (21%). Uncontrolled lengthening was more likely if the osteotomy was placed with less than 80 mm of the thick portion of the nail in the distal fragment (p = 0.052), and a failure to lengthen was more likely if there was over 125 mm in the distal fragment (p = 0.008). The latter problem was reduced with over-reaming by 2.5 mm to 3 mm. Previous intramedullary nailing also predisposed to uncontrolled lengthening (p = 0.042), and these patients required less reaming. Using the Intramedullary Skeletal Kinetic Distractor, good outcomes were obtained; problems were minimised by optimising the position of the osteotomy and the amount of over-reaming performed.