Advertisement for orthosearch.org.uk
Results 1 - 20 of 105
Results per page:
Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXVIII | Pages 28 - 28
1 Sep 2012
Whitehead D MacDonald SJ Bourne RB McCalden RW
Full Access

Purpose. The mobile-bearing total knee arthroplasty was designed to increase the contact area with the polyethylene bearing, through the functional range of motion, and subsequently decrease the wear rate previously seen in fixed-bearing implants. In the literature there is no clear clinical advantage between the different designs in the short to mid-term follow-up. The purpose of this study was to compare the results between a cruciate retaining mobile-bearing design (SAL II, Sulzer) and two cruciate retaining fixed-bearing designs (AMK, Depuy, and the Genesis II, Smith and Nephew). Method. Ninety patients were randomised to receive either the mobile-bearing or one of the two fixed-bearing designs between 2000 and 2002. Patients were evaluated preoperatively and postoperatively using the WOMAC and the SF-12, both of which are validated scores. One patient was withdrawn due to dementia before three months and eleven patients died. Two patients were revised due to infection (both had received the SAL II). One patient was revised for aseptic loosening and one patient was revised for pain (both had received the Genesis II). Of the 74 patients (77 knees) that remain, they were last seen on average 6.4 years (2–10) after their surgery. Their average age at the surgery was 69.2 years (52–81). Results. There was no statistically significant difference between the change scores (postoperative score minus preoperative score) for each of the outcome measures between the mobile-bearing and the two fixed-bearing designs. Conclusion. In conclusion, after mid-term follow-up there is no clinical difference between a cruciate retaining mobile-bearing design and two cruciate retaining fixed-bearing designs


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_3 | Pages 87 - 87
23 Feb 2023
Orsi A Wakelin E Plaskos C McMahon S Coffey S
Full Access

Inverse Kinematic Alignment (iKA) and Gap Balancing (GB) aim to achieve a balanced TKA via component alignment. However, iKA aims to recreate the native joint line versus resecting the tibia perpendicular to the mechanical axis. This study aims to compare how two alignment methods impact 1) gap balance and laxity throughout flexion and 2) the coronal plane alignment of the knee (CPAK). Two surgeons performed 75 robotic assisted iKA TKA's using a cruciate retaining implant. An anatomic tibial resection restored the native joint line. A digital joint tensioner measured laxity throughout flexion prior to femoral resection. Femoral component position was adjusted using predictive planning to optimize balance. After femoral resection, final joint laxity was collected. Planned GB (pGB) was simulated for all cases posthoc using a neutral tibial resection and adjusting femoral position to optimize balance. Differences in ML balance, laxity, and CPAK were compared between planned iKA (piKA) and pGB. ML balance and laxity were also compared between piKA and final (fiKA). piKA and pGB had similar ML balance and laxity, with mean differences <0.4mm. piKA more closely replicated native MPTA (Native=86.9±2.8°, piKA=87.8±1.8°, pGB=90±0°) and native LDFA (Native=87.5±2.7°, piKA=88.9±3°, pGB=90.8±3.5°). piKA planned for a more native CPAK distribution, with the most common types being II (22.7%), I (20%), III (18.7%), IV (18.7%) and V (18.7%). Most pGB knees were type V (28.4%), VII (37.8%), and III (16.2). fiKA and piKA had similar ML balance and laxity, however fiKA was more variable in midflexion and flexion (p<0.01). Although ML balance and laxity were similar between piKA and pGB, piKA better restored native joint line and CPAK type. The bulk of pGB knees were moved into types V, VII, and III due to the neutral tibial cut. Surgeons should be cognizant of how these differing alignment strategies affect knee phenotype


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_10 | Pages 108 - 108
1 Jun 2018
Thornhill T
Full Access

Both gap balancing and measured resection for TKA will work and these techniques are often combined in TKA. The only difference is really the workflow. The essential difference in gap balancing is that you determine femoral component rotation by cutting the distal femur and the proximal tibia, and then using a spacer to determine femoral rotation. I prefer measured resection because I am, for most cases, a cruciate retaining surgeon. It is not ideal to determine femoral rotation based upon a gap balancing if you retain the cruciate. It is also important to maintain the joint line, especially in cruciate retention, in order to reproduce more normal kinematics and balance the knee throughout the range of flexion and extension. It is my opinion that the soft tissue balancing is easier to do with measured resection and the workflow is easier. The sequence of cuts and soft tissue balance is different if one is a gap balancing surgeon. This is more conducive for people who are cruciate substituters, but more difficult in a varus cruciate retaining knee. In that situation, if you determine femoral rotation by gap balancing with the tibia before you have cleared the posterior medial osteophytes in the varus knee, and remove the last bit of meniscus, you could artificially over rotate the femoral component causing posteromedial laxity. The major difference is that cutting the posterior cruciate will open the flexion space and allow the surgeon easier access to the posteromedial corner of the knee before the posterior femoral cut is made. It is also important to remember that in most cases cruciate substitution surgeons will make the flexion space 2 mm smaller than the extension space to compensate for the flexion space opening when the posterior cruciate is cut. The extensor mechanism plays an important role in flexion balance and should only be tested once the patella is prepared and the patella is back in the trochlear groove. I prefer gap balancing in most revision knees as I am virtually always substituting for the posterior cruciate in that case. My technique for measured resection is to assess the character of the knee prior to surgery. Is it varus? Is it valgus? Does it hyperextend? Does it have a flexion contracture? Would the knee be considered tight or loose? I cut the distal femur first, based upon measured resection. I use anatomic landmarks to determine femoral rotation. My most consistent landmark is the transtrochlear line, which is not always from the top of the notch to the bottom of the trochlea. I will use the medial epicondyle and the posterior reference in a varus knee, but not in a valgus knee. The tibial cut, also by measured resection, is easier once the femur has been prepared. The patellar cut is also a measured resection. Having done a preliminary soft tissue balance based upon the deformity, I will then use trial components to finish the soft tissue balance. In summary, both techniques can be used successfully in a cruciate substituting knee, but measured resection, in my opinion, is preferable especially in varus arthritis when the posterior cruciate is retained


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_17 | Pages 70 - 70
1 Nov 2016
Tria A
Full Access

Bicruciate ligament retaining total knee arthroplasty preserves all of the ligaments of the knee while still addressing the ligament balance and the flexion-extension gaps. The concept of cruciate ligament preservation is not new and both Townley and Cartier designed prostheses in the late 1980s that did preserve all of the ligaments. Their results were quite acceptable for that time in knee replacement surgery but the posterior stabilised and cruciate retaining designs controlled most of the market. The surgical technique for cruciate ligament preservation was more difficult, and without clear clinical benefit, most surgeons gravitated towards the cruciate retaining and posterior stabilised designs. In the late 1990s, evaluation of the total knee arthroplasty began to assess knee kinematics in addition to pain and functional outcomes. At the same time, studies on the unicondylar knee arthroplasty demonstrated impressive scores in motion and patient satisfaction with preservation of all of the ligamentous structures of the knee. Over the past two years, new designs that preserve all of the ligaments of the knee have returned to the market. The instruments have been improved and the prostheses have been changed to respect the kinematics of the knee. Fifteen to twenty percent of all total knee replacement patients are not completely satisfied with the surgery and the authors believe that complete ligament preservation may address this complaint


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_3 | Pages 42 - 42
1 Feb 2017
Masini M Bhowmik-Stoker M Hitt K
Full Access

Introduction. Revision for instability has supplanted revision for aseptic loosening and revision for osteolysis since the advent of improved polyethylene inserts with changes in both sterilization techniques and cross-linking. Having the ability to judiciously choose a higher level of constraint may be beneficial in complex primary total knee arthroplasty (TKA) scenarios which can not be balanced through traditional surgical methods. The purpose of this work was to investigate short term outcomes and survivorship in cases where a greater stabilizing insert was used with a posterior stabalizing (PS) femur to address instability in flexion or extension. Methods. Two high volume TKA centers retrospectively reviewed cases in which a greater stabilizer insert was used with a primary PS knee system. The studied insert had +/− 2 degrees of varus-valgus coronal restraint as opposed the standard with no coronal constraint. The study inserts had 7 degrees of transverse plane rotational freedom. The inserts were used when extension balance was not achieved despite the usual soft tissue releases and a thicker insert resulted in a flexion contracture statically during the procedure. This situation typically occurred in the following patient groups: valgus knees with medial collateral (MCL) stretching, iatrogenic MCL injury, varus knees with lateral ligament complex stretching, the “double-varus” knee, and patients with a previous high tibial osteotomy. Intra-operatively patients were taken through a range of motion and trial implants were then placed. A cruciate retaining trial insert was then used to assess stability so that a true assessment could be made of ligament balance. Bone cuts were checked before ligament release. The usual releases were then performed to achieve balance including subperiosteal releases medially and laterally and pie-crusting when indicated. Repeat trial reductions were then performed once the final implants were cemented in place again using the cruciate retaining insert. If the soft tissue releases did not achieve balance and a thicker insert resulted in a flexion contracture then the greater stabilizer insert was selected over the PS insert. Knee Society Score and plain radiographs were collected at pre-op, 2 year and 5 year follow-up. Results. One hundred seventy two cases with 2 year minimum follow-up and 41 cases with 5 year minimum follow up were assessed. All patients had good to excellent Knee Society Scores with good range of motion and pain relief. There were no aseptic revisions of the TKA's over this period. Specifically, there were no revisions for loosening, osteolysis, instability, or post breakage. Conclusions. A more stabilized tibial post insert which provides valgus-varus constraint but permits rotational freedom may provide needed stability in select primary situations without predisposing to early post failure or implant loosening or lysis


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_1 | Pages 56 - 56
1 Feb 2021
Catani F Illuminati A Ensini A Zambianchi F Bazzan G
Full Access

Introduction. Robotics have been applied to total knee arthroplasty (TKA) to improve surgical precision in component placement and joint function restoration. The purpose of this study was to evaluate prosthetic component alignment in robotic arm-assisted (RA)-TKA performed with functional alignment and intraoperative fine-tuning, aiming for symmetric medial and lateral gaps in flexion/extension. It was hypothesized that functionally aligned RA-TKA the femoral and tibial cuts would be performed in line with the preoperative joint line orientation. Methods. Between September 2018 and January 2020, 81 RA cruciate retaining (CR) and posterior stabilized (PS) TKAs were performed at a single center. Preoperative radiographs were obtained, and measures were performed according to Paley's. Preoperatively, cuts were planned based on radiographic epiphyseal anatomies and respecting ±3° boundaries from neutral coronal alignment. Intraoperatively, the tibial and femoral cuts were modified based on the individual soft tissue-guided fine-tuning, aiming for symmetric medial and lateral gaps in flexion/extension. Robotic data were recorded. Results. A total of 56 RA-TKAs performed on varus knees were taken into account. On average, the tibial component was placed at 1.9° varus (SD 0.7) and 3.3° (SD 1.0) in the coronal and sagittal planes, respectively. The average femoral component alignment, based on the soft tissue tensioning with spoons, resulted as follows: 0.7° varus (SD 1.7) in the coronal plane and 1.8° (SD 2.1) of external rotation relative to surgical transepicondylar axis in the transverse plane. A statistically significant linear direct relationship was demonstrated between radiographic epiphyseal femoral and tibial coronal alignment and femoral (r=0.3, p<0.05) and tibial (r=0.3, p<0.01) coronal cuts, resepctively. Conclusion. Functionally aligned RA-TKA performed in varus knees, aiming for ligaments’ preservation and balanced flexion/extension gaps, provided joint line respecting femoral and tibial cuts on the coronal plane


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_10 | Pages 99 - 99
1 May 2016
van de Groes S Kreemers-Van De Hei K Koeter S Verdonschot N
Full Access

Introduction. Special high-flexion prosthetic designs show a small increase in postoperative flexion compared to standard designs and some papers show increased anterior knee pain with these prosthesis. However, no randomised controlled trails have been published which investigate difference in postoperative complaints of anterior knee pain. To assess difference in passive and active postoperative flexion and anterior knee pain we performed a randomized clinical trial including the two extremes of knee arthroplasty designs, being a high flex posterior stabilized rotating platform prosthesis versus a traditional cruciate retaining fixed bearing prosthesis. We hypothesised that the HF-PS design would allow more flexion, due to increased femoral rollback with less anterior knee pain than the CR design. We specifically assessed the following hypotheses:. Patients have increased flexion after HF-PS TKA compared to CR TKA, both passive and active. Patients show an increased femoral rollback in the HF-PS TKA as compared to the CR TKA. Patients receiving a HF-PS TKA design report reduced anterior knee pain relative to those receiving the CR TKA. Methods. In total 47 patients were randomly allocated to a standard cruciate retaining fixed bearing design (CR) in 23 patients and to a high-flexion posterior stabilized mobile bearing design (HF-PS) in 24 patients. Preoperative and one year postoperative we investigated active and passive maximal flexion. Furthermore, we used the VAS pain score at rest and during exercise and the Feller score to investigate anterior knee pain. A lateral roentgen photograph was used to measure femoral rollback during maximal flexion. Results. The HF-PS did show a significantly higher passive postoperative flexion; 120.8° (SD 10.3°) vs. 112.0° (SD 9.5°) for the CR group (p=0.004). The active postoperative flexion, VAS-pain score and Feller score did not show significant differences between both groups. Sub analysis with the HF-PS group showed a higher VAS-pain for the patients achieving ≥130° of flexion; 30.5 (SD 32.2) vs. 12.2 (SD 12.5) (p=0.16). The rollback was significantly lower in the CR group compared to the HF-PS group; 4.4 (SD 3.0) vs. 8.4 (SD 2.1). Conclusion. The present study showed a significant higher passive flexion in the Posterior Stabilised-High Flexion mobile bearing compared to a Cruciate Retaining fixed bearing prosthesis. However, this difference disappeared when comparing active flexion. The difference in passive flexion was probably related to a significantly lower rollback causing impingement in the CR prosthesis. No difference in anterior knee pain was found between both groups. However, a suggestion is raised that achieving high-flexion might lead to more patellofemoral complaints/anterior knee pain


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_1 | Pages 51 - 51
1 Feb 2021
Smith L Cates H Freeman M Nachtrab J Komistek R
Full Access

Background. While posterior cruciate retaining (PCR) implants are a more common total knee arthroplasty (TKA) design, newer bi-cruciate retaining (BCR) TKAs are now being considered as an option for many patients, especially those that are younger. While PCR TKAs remove the ACL, the BCR TKA designs keep both cruciate ligaments intact, as it is believed that the resection of the ACL greatly affects the overall kinematic patterns of TKA designs. Various fluoroscopic studies have focused on determination of kinematics but haven't defined differentiators that affect motion patterns. This research study assesses the importance of the cruciate ligaments and femoral geometry for Bi-Cruciate Retaining (BCR) and Posterior Cruciate Retaining (PCR) TKAs having the same femoral component, compared to the normal knee. Methods. The in vivo 3D kinematics were determined for 40 subjects having a PCR TKA, 10 having a BCR TKA, and 10 having a normal knee, in a retrospective study. All TKA subjects had the same femoral component. All subjects performed a deep knee bend under fluoroscopic surveillance. The kinematics were determined during early flexion (ACL dominant), mid flexion (ACL/PCL transition) and deep flexion (PCL dominant). Results. During the first 30 degrees of flexion, the ACL played an important role, as subjects having a BCR TKA experienced kinematic patterns more similar to the normal knee. During mid flexion, both TKAs experienced random kinematic patterns, which could be due to the ACL and PCL being less active or resected in PCR TKA. In deeper flexion, both TKAs experienced kinematic patterns similar to the normal knee, thus supporting the assumption that the PCL played a dominant role [Fig. 1, Fig. 2]. All three groups generally experienced progressive axial rotation throughout flexion [Fig. 3]. On average, subjects having a PCR TKA experienced 112.3° of flexion, which was greater than the BCR subjects. Conclusions. Both the BCR TKA and normal groups experienced similar kinematic patterns, but the femoral geometrical differences from the anatomical condition may have influenced decreased motion compared to the normal knee. Both TKAs experienced similar kinematic patterns in deeper flexion, with the PCR TKA experiencing excellent weight-bearing flexion. Results from this study suggest that the cruciate ligaments can play a role in kinematics, but femoral geometry working with the ligaments may be an option to consider


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_1 | Pages 20 - 20
1 Feb 2021
Mills K Heesterbeek P Van Hellemondt G Wymenga A Benard M Defoort K
Full Access

Introduction. A bicruciate retaining (BCR) TKA is thought to maintain a closer resemblance to the native knee kinematics compared to a posterior cruciate retaining (CR) TKA. With BCR TKAs retainment of the anterior cruciate ligament (ACL) facilitates proprioception and balance which is thought to lead to more natural knee kinematics and increased functional outcome. The aim of this study was to quantify and compare the kinematics of a BCR and CR TKA during functional tests. Materials and Methods. In this patient-blinded randomized controlled trial, a total of 40 patients with knee osteoarthritis were included, 18 of them received a BCR TKA (Vanguard XP, Zimmer-Biomet) and 22 received a CR TKA (Vanguard CR, Zimmer-Biomet). Fluoroscopic analysis was done 1 year post-operatively. The main outcome was posterior femoral rollback (i.e. translation of the femorotibial contact point (CP)) of the BCR and CR TKA during a step-up test. Secondary, the kinematics during a lunge test were quantified as anterior-posterior (AP) translation of the femorotibial CP. Independent student t-tests (or non-parametric equivalent) were used to analyze the effect of BCR versus CR TKA on these measures, to correct for the multiple testing problem post-hoc Bonferroni-Holm corrections were applied. Results. The mean AP CP for the BCR implant was not significantly different from the CR implant in the medial compartment (Figure 1, left). However, laterally the BCR implant shows a more posterior CP during late extension i.e. from 30° flexion to 0° extension (Figure 1, right). Figure 2 shows the AP CP during the final extension phase (30° flexion to 0° extension) of the step-up task for both implants on the tibia plateau. While the CR TKA remains mostly stable throughout this phase, the BCR TKA shows tibial internal rotation from 30° to 10° and tibial external rotation in the final extension phase: a kinematic pattern comparable to the natural knee's screw home mechanism. The lateral AP CP of the BCR TKA is more posterior compared to the CR TKA during the whole lunge task (Figure 3, right) the medial CP is more anterior in the 0–30° flexion (Figure 3, left). The main differences between the implants during the lunge task are observable in the early flexion phase, which is in line with ACL function. Conclusion. These preliminary results suggest that the kinematics of the BCR implant reproduces the natural screw-home mechanism in early flexion/late extension. The difference between the BCR and CR implants is mostly visible in the flexion phase in which the ACL is effective, which is in congruency with the absence of the ACL in CR TKAs. For any figures or tables, please contact the authors directly


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_10 | Pages 23 - 23
1 May 2016
Schwarzkopf R Cross M Huges D Laster S Lenz N
Full Access

Introduction. Achieving proper ligament tension in knee flexion within cruciate retaining (CR) total knee arthroplasty (TKA) has long been associated with clinical success. The distal femoral joint line (DFJL) is routinely used as a variable to assist in achieving proper flexion-extension gap balancing. No prior study has observed the possible effects of properly restoring the DFJL may have on ligament tension in flexion. The purpose of this computational analysis was to determine what effect the DFJL may have on ligament strains and tibiofemoral kinematics of CR knee designs in flexion. Methods. A computational analysis was performed utilizing a musculoskeletal modeling system with ligaments modeled as non-linear elastic. Tibiofemoral kinematics, contact points estimated from the femoral condyle low points, and ligament strain, change in length relative to the unloaded length, were measured at 90° knee flexion during a deep knee bend activity. Two different knee implants, a High Flexion CR (HFCR) and a Guided Motion CR (GMCR) design were used. Simulations were completed for changes in superior-inferior (SI) positioning of the femoral implant relative to the femur bone, in 2mm increments to simulate over and under resection of the DFJL. Results. The medial condyle of the femoral implant was 0.67mm and 0.47mm more posterior relative to the tibia per 1mm elevation of the DFJL for the HFCR and GMCR designs respectively. The lateral condyle was 0.80mm and 1.06mm more posterior relative to the tibia per 1mm elevation of the DFJL for the HFCR and GMCR designs, respectively. The strain in the LCL and MCL changed less than 0.0005mm/mm per 1mm change in DFJL indicating that those structures were not affected. The PCL bundles and the ITB were affected by changes in DFJL with strain increasing 0.005 and 0.004mm/mm in the AL PCL bundle respectively for HFCR and GMCR, strain increasing 0.006mm/mm in the PM PCL for both HFCR and GMCR, and ITB strain decreasing 0.006 and 0.004mm/mm respectively for the HFCR and GMCR per 1mm elevation of the DFJL. Discussion. Our findings suggest that DFJL affects ligament tension at 90° knee flexion and therefore flexion balance for cruciate retaining implants. The effect on ligament tension results from changes in the position of the femur bone and its ligament attachments with respect to the tibia, which is dependent on the implant geometry. DFJL places greater strain on the PCL because the conformity of the medial condyle prevents the femoral implant from sitting more posterior by the full amount of the DFJL elevation, which would be necessary to maintain the same AP position of the of the femur bone relative to the tibia and avoid increasing PCL strain. These results indicate that elevating the DFJL to address a tight extension space in a CR knee while the flexion space is well balanced could result in increased flexion tension especially when the flexion-extension mismatch is large, so to achieve balanced flexion and extension the amount of DFJL elevation may need to be reduced and the tibial resection may also need to be increased


Orthopaedic Proceedings
Vol. 97-B, Issue SUPP_1 | Pages 80 - 80
1 Feb 2015
Berend K
Full Access

The goals of total knee arthroplasty (TKA) are to relieve pain, restore function, and provide a stable joint. In regard to types of implants, the workhorses are posterior cruciate retaining (CR), posterior stabilised (PS), and posterior stabilised constrained (PSC) designs. However, the continuum of constraint now ranges from standard cruciate retaining (CR-S) to CR lipped (CR-L), to anterior stabilised (CR-AS), to posterior stabilised, to a PS “plus” that fits with a PS femoral component but provides a small degree of varus-valgus constraint, to a PSC or constrained condylar type of device, to a rotating hinge. As the degree of deformity, bone loss, contracture, ligamentous instability and osteopenia increases, so does the demand for prosthetic constraint. When deformity is minimal and the posterior cruciate ligament (PCL) is intact and functional, a CR-S device is appropriate. For moderate deformity with deficiency or compromise of the PCL, a CR-AS or posterior stabilised device is warranted. In severe cases, with attenuation or absence of either of the collateral ligaments, a constrained condylar device, with options of stems, wedges and augments, is advisable. In salvage situations, when both collaterals are compromised, a rotating hinge should be utilised. Prerequisites for use of a CR-S device are an intact PCL, balanced medial and lateral collateral ligaments, and equal flexion and extension gaps. With a CR-L bearing, a slight posterior lip is incorporated into the sagittal profile of the component to provide a small amount of extra stability in the articulation. It is important for the surgeon to be aware of the design features of the implant system he or she is using. For example, in a system where the CR-S bearing has 3 degrees of posterior slope and the CR-L bearing has no slope, the thickness of a CR-L bearing posteriorly is approximately 2mm greater than the CR-S. A CR-L bearing is indicated for to provide stability where the flexion gap is just slightly looser than the extension gap and the PCL is intact. If the patient's knee is somewhat lax in flexion and stable in extension, a CR-L bearing may help to stabilise both the flexion and extension gaps yet still allow the knee to obtain full extension, whereas if a CR-S bearing in the next thicker size is used to stabilise the flexion gap, a flexion contracture may result. CR-AS bearings are indicated when the flexion and extension gaps are balanced, but the PCL is deficient, and the surgeon does not want to change to a PS design, which requires additional bony resection of intercondylar notch. The PCL is one of the strongest ligaments in the knee, and affords inherent stability to the TKA. In flexion, the PCL not only affords AP stability, but also imparts flexion gap stability, acting as a lateral stabiliser of the medial compartment and a medial stabiliser of the lateral compartment. The PCL has a crucial role with respect to femoral rollback, which imparts added efficiency to the extensor mechanism. PCL retention is a more biologically preserving operative intervention than PS-TKA


Purpose. The purpose of this study was to compare intercompartmental loads and the proportion of knees with unbalanced loads after tensiometer-assisted balancing (TAB) between cruciate retaining (CR) and posterior stabilized (PS) total knee arthroplasty (TKA). Materials and Methods. Forty-five CR and 45 PS TKAs using a single prosthesis were prospectively evaluated. The intercompartmental loads in 10°, 45°, and 90° of knee flexion after TAB were evaluated; the proportions of load imbalance (medial load – lateral load >15 lbs) in each flexion angle after TAB were investigated. The sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) of TAB were calculated, with the sensor-balanced loads considered the reference standard. Results. The average loads of the medial compartment in CR TKA were greater than the adequate load (55 lbs) in every knee flexion angle; those of PS TKA were <55 lbs. The proportions of the load imbalance were >50% in every knee flexion angle in both CR and PS TKA (CR >64.4% and PS >57.8%), and there was no difference between the groups (p > 0.515). The sensitivity, specificity, PPV, and NPV of TAB were 91.7%, 66.7%, 57.9% and 94.1%, respectively, in CR, and 100%, 62.5%, 40 %, and 100%, respectively, in PS TKA. Conclusions. The appropriate load balancing from the tensiometer seemed to be difficult in both CR and PS TKA. The intraoperative load sensor had a role in accurate load balancing to overcome the poor PPV of the tensiometer in both types of TKA


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_8 | Pages 84 - 84
1 May 2014
Berend K
Full Access

The goals of total knee arthroplasty (TKA) are to relieve pain, restore function, and provide a stable joint. In regard to types of implants, the workhorses are posterior cruciate retaining (CR), posterior stabilised (PS), and posterior stabilised constrained (PSC) designs. However, the continuum of constraint now ranges from standard cruciate retaining (CR-S) to CR lipped (CR-L), to anterior stabilised (CR-AS), to posterior stabilised, to a PS “plus” that fits with a PS femoral component but provides a small degree of varus-valgus constraint, to a PSC or constrained condylar type of device, to a rotating hinge. As the degree of deformity, bone loss, contracture, ligamentous instability and osteopenia increases, so does the demand for prosthetic constraint. When deformity is minimal and the posterior cruciate ligament (PCL) is intact and functional, a CR-S device is appropriate. For moderate deformity with deficiency or compromise of the PCL, a CR-AS or posterior stabilised device is warranted. In severe cases, with attenuation or absence of either of the collateral ligaments, a constrained condylar device, with options of stems, wedges and augments, is advisable. In salvage situations, when both collaterals are compromised, a rotating hinge should be utilised. Prerequisites for use of a CR-S device are an intact PCL, balanced medial and lateral collateral ligaments, and equal flexion and extension gaps. With a CR-L bearing, a slight posterior lip is incorporated into the sagittal profile of the component to provide a small amount of extra stability in the articulation. It is important for the surgeon to be aware of the design features of the implant system he or she is using. For example, in a system where the CR-S bearing has 3 degrees of posterior slope and the CR-L bearing has no slope, the thickness of a CR-L bearing posteriorly is approximately 2mm greater than the CR-S. A CR-L bearing is indicated for to provide stability where the flexion gap is just slightly looser than the extension gap and the PCL is intact. If the patient's knee is somewhat lax in flexion and stable in extension, a CR-L bearing may help to stabilise both the flexion and extension gaps yet still allow the knee to obtain full extension, whereas if a CR-S bearing in the next thicker size is used to stabilise the flexion gap, a flexion contracture may result. CR-AS bearings are required less frequently. They are indicated when the flexion and extension gaps are balanced, but the PCL is deficient, and the surgeon does not want to change to a PS design, which requires additional bony resection of intercondylar notch. The PCL is one of the strongest ligaments in the knee, and affords inherent stability to the TKA. In flexion, the PCL not only affords AP stability, but also imparts flexion gap stability, acting as a lateral stabiliser of the medial compartment and a medial stabiliser of the lateral compartment. The PCL has a crucial role with respect to femoral rollback, which imparts added efficiency to the extensor mechanism. PCL retention is a more biologically preserving operative intervention than PS-TKA


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_2 | Pages 69 - 69
1 Jan 2016
Iwamoto K Tomita T Yamazaki T Futai K Tamaki M Miyamoto T Sugamoto K
Full Access

Introduction. Posterior cruciate ligament (PCL) preservation in total knee arthroplasty (TKA) is adovocated on the grounds that it provides better restoration of knee joint kinematics as opposed to PCL sacrifice. Mobile-bearing (MB) total knee prostheses have been in the market for a long time, but the PFC-Sigma Rotating Platform (RP) prosthesis (DePuy Orthopaedics, Inc, Warsaw, Ind) has been introduced in the market since 2000. Since, little is known about the in vivo kinematics of MB prostheses especially with cruciate retaining (CR). The objective of this study is to investigate the in vivo kinematics of MB RP-CR total knee arthroplasty during weight-bearing deep knee bending motion. Patients and methods. We investigated the in vivo knee kinematics of 20 knees (17 patients) implanted with PFC-Sigma RP-CR. All TKAs were judged clinically successful (Hospital for Special Surgery scores >90), with no ligamentous laxity or pain. Mean patient age at the time of operation was 78.0 ± 6.0 years. Mean period between operation and surveillance was 15.0 ± 9.0 months. Under fluoroscopic surveillance, each patient did a wight-bearing deep knee bending motion. Femorotibial motion was analyzed using 2D/3D registration technique, which uses computer-assisted design (CAD) models to reproduce the spatial position of the femoral, tibial components from single-view fluoroscopic images. We evaluated the range of motion, axial rotation, and antero-posterior (AP) translation of the nearest point between the femoral and tibial component. Results. Between the femoral and tibial components, the mean minimum flexion angle was on average 2.1±5.5 °. The mean maximum flexion angle was 118.0±9.9 °. The average range of motion was 115.8±12.8°. The femoral component relative to the tibial component demonstrated 5.5±3.7° external rotation for 0–120 degrees flexion. At full extension, the medial nearest point was −2.4±2.7 mm, and the lateral nearest point was −8.4±3.4 mm. The medial nearest point moved 1.3 mm anteriorly from full extension to 90° of knee flexion, and then moved 1.5mm posteriorly until maximum flexion. On the other hand, the lateral nearest point moved 0.4mm posteriorly from full extension to 90° of knee flexion, and then moved 3.6mm posteriorly until maximum flexion. At maximum flexion, the medial nearest point moved posteriorly to a final position of −2.6±3.3 mm and the lateral nearest point moved posteriorly to a final position of −12.5±3.6 mm [Fig.1]. From the results of bilateral contact positions at each flexion angle, patterns of kinematic pathways were determined. The kinematic pathway pattern was externally rotated due to a central pivot pattern from extension to 90° knee flexion. Subsequently from 90 to 120°, bilateral condyles moved backward. Discussion and conclusion. In this study, we have evaluated the in vivo kinematics of MB prostheses with cruciate retaining motion during deep knee bending motion under weight-bearing condition. The results in this study demonstrated that the kinematic pathway pattern was externally rotated due to a central pivot pattern from extension to 90° knee flexion. Subsequently from 90 to 120°, bilateral condyles moved backward. This indicated that PCL functions


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXV | Pages 259 - 259
1 Jun 2012
Yildirim G Walker P Conditt M Horowitz S Madrid I
Full Access

Introduction. The MAKO Surgical Rio Robotic Arm utilizes the pre-op CT images to plan positioning of the uni-condylar and patella-femoral components in order to achieve the most desirable kinematics for the knee joint. We hypothesize that the anatomic matching surfaces and the cruciate retaining design of the Restoris knee will best replicate normal knee kinematics. We tested the healthy cadaveric knee versus the MAKO knee and the most common TKR designs in order to evaluate and compare the kinematic properties. Methods. Six healthy male left knees were dissected to leave only the knee capsule and the quadriceps tendon intact. The femur and the tibia were cut 20cm from the joint line and potted with cement into a metal housing. The knee was attached to a crouching machine capable of moving the knee joint though its normal human kinematics from extension to maximum flexion, validated in previous studies. Forces applied to the quadriceps tendon allowed the knee to flex and extend physiologically, and springs attached to the posterior were substituted as the hamstrings at a rate of half the force exerted by the quadriceps as shown in the literature. Three dimensional visual targets attached to the bones were tracked by computer software capable of recreating the positions of the bones in any given flexion angle. A cruciate retaining and posterior stabilized TKR design were chosen to represent the TKRs most commonly available in the market today. The intact knee, MAKO implanted knee, CR and PS TKR designs were tested in sequence on the same specimens. The computer software analyzed the normal distance between the bone surfaces and plotted the locations of contact which could then be quantitatively compared for each given scenario [Fig. 1]. Results. Our results showed that the MAKO knee kinematics resembled the normal knee kinematics throughout the knee flexion range. The TKR designs altered the kinematics of the knee where the internal rotation of the tibia was no longer observed with the increasing flexion angle, while the femoral roll back in high flexion was only replicated by the post of the PS design and not by the CR design. Conclusions. Anatomic restoration of the joint surfaces and retention of the cruciate ligaments maintained normal kinematics, which is expected to be an advantage in obtaining improved clinical results


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_22 | Pages 85 - 85
1 May 2013
Berend K
Full Access

The goals of total knee arthroplasty (TKA) are to relieve pain, restore function, and provide a stable joint. In regard to types of implants, the workhorses are posterior cruciate retaining (CR), posterior stabilised (PS), and posterior stabilised constrained (PSC) designs. However, the continuum of constraint now ranges from standard cruciate retaining (CR-S) to CR lipped (CR-L), to anterior stabilised (CR-AS), to posterior stabilised, to a PS “plus” that fits with a PS femoral component but provides a small degree of varus-valgus constraint, to a PSC or constrained condylar type of device, to a rotating hinge. As the degree of deformity, bone loss, contracture, ligamentous instability and osteopenia increases, so does the demand for prosthetic constraint. When deformity is minimal and the posterior cruciate ligament (PCL) is intact and functional, a CR-S device is appropriate. For moderate deformity with deficiency or compromise of the PCL, a CR-AS or posterior stabilised device is warranted. In severe cases, with attenuation or absence of either of the collateral ligaments, a constrained condylar device, with options of stems, wedges and augments, is advisable. In salvage situations, when both collaterals are compromised, a rotating hinge should be utilised. Prerequisites for use of a CR-S device are an intact PCL, balanced medial and lateral collateral ligaments, and equal flexion and extension gaps. With a CR-L bearing, a slight posterior lip is incorporated into the sagittal profile of the component to provide a small amount of extra stability in the articulation. It is important for the surgeon to be aware of the design features of the implant system he or she is using. For example, in a system where the CR-S bearing has 3° of posterior slope and the CR-L bearing has no slope, the thickness of a CR-L bearing posteriorly is approximately 2 mm greater than the CR-S. A CR-L bearing is indicated for to provide stability where the flexion gap is just slightly looser than the extension gap and the PCL is intact. If the patient's knee is somewhat lax in flexion and stable in extension, a CR-L bearing may help to stabilize both the flexion and extension gaps yet still allow the knee to obtain full extension, whereas if a CR-S bearing in the next thicker size is used to stabilise the flexion gap, a flexion contracture may result. CR-AS bearings are required less frequently. They are indicated when the flexion and extension gaps are balanced, but the PCL is deficient, and the surgeon does not want to change to a PS design, which requires additional bony resection of intercondylar notch. The PCL is one of the strongest ligaments in the knee, and affords inherent stability to the TKA. In flexion, the PCL not only affords AP stability, but also imparts flexion gap stability, acting as a lateral stabilizer of the medial compartment and a medial stabiliser of the lateral compartment. The PCL has a crucial role with respect to femoral rollback, which imparts added efficiency to the extensor mechanism. PCL retention is a more biologically preserving operative intervention than PS-TKA


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_6 | Pages 49 - 49
1 Jul 2020
Gascoyne T Parashin S Teeter M Bohm E Laende E Dunbar MJ Turgeon T
Full Access

The purpose of this study was to examine the influence of weight-bearing on the measurement of in vivo wear of total knee replacements using model-based RSA at 1 and 2 years following surgery. Model-based RSA radiographs were collected for 106 patients who underwent primary TKR at a single institution. Supine RSA radiographs were obtained post-operatively and at 6-, 12-, and 24-months. Standing (weight-bearing) RSA radiographs were obtained at 12-months (n=45) and 24-months (n=48). All patients received the same knee design with a fixed, conventional PE insert of either a cruciate retaining or posterior stabilized design. Ethics approval for this study was obtained. In order to assess in vivo wear, a highly accurate 3-dimensional virtual model of each in vivo TKA was developed. Coordinate data from RSA radiographs (mbRSA v3.41, RSACore) were applied to digital implant models to reconstruct each patient's replaced knee joint in a virtual environment (Geomagic Studio, 3D Systems). Wear was assessed volumetrically (digital model overlap) on medial and lateral condyles separately, across each follow-up. Annual rate of wear was calculated for each patient as the slope of the linear best fit between wear and time-point. The influence of weight-bearing was assessed as the difference in annual wear rate between standing and supine exams. Age, BMI, and Oxford-12 knee improvement were measured against wear rates to determine correlations. Weight bearing wear measurement was most consistent and prevalent in the medial condyle with 35% negative wear rates for the lateral condyle. For the medial condyle, standing exams revealed higher mean wear rates at 1 and 2 years, supine, 16.3 mm3/yr (SD: 27.8) and 11.2 mm3/yr (SD: 18.5) versus standing, 51.3 mm3/yr (SD: 55.9) and 32.7 mm3/yr (SD: 31.7). The addition of weight-bearing increased the measured volume of wear for 78% of patients at 1 year (Avg: 32.4 mm3/yr) and 71% of patients at 2 years (Avg: 48.9 mm3/yr). There were no significant (95% CI) correlations between patient demographics and wear rates. Volumetric, weight-bearing wear measurement of TKR using model-based RSA determined an average of 33 mm3/yr at 2 years post-surgery for a modern, non-cross-linked polyethylene bearing. This value is comparable to wear rates obtained from retrieved TKRs. Weight-bearing exams produced better wear data with fewer negative wear rates and reduced variance. Limitations of this study include: supine patient imaging performed at post-op, no knee flexion performed, unknown patient activity level, and inability to distinguish wear from plastic creep or deformation under load. Strengths of this study include: large sample size of a single TKR system, linear regression of wear measurements and no requirement for implanted RSA beads with this method. Based on these results, in vivo volumetric wear of total knee replacement polyethylene can be reliably measured using model-based RSA and weight-bearing examinations in the short- to mid–term. Further work is needed to validate the accuracy of the measurements in vivo


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_2 | Pages 104 - 104
1 Feb 2020
Dupraz I Thorwaechter C Grupp T Woiczinski M Jansson V Mueller P Steinbrueck A
Full Access

Objectives. Restoring more natural kinematics is crucial for the success of knee TKA. The relative size of the tibia to the femur may differ in each patient and requires the possibility to combine different tibia sizes for a given femur size. Therefore, TKA systems need to be designed to allow for different size combinations. In literature some report higher revision rates when the femoral size is greater than the tibia, while others find no impact of the size mismatch on the clinical outcome. The tibio-femoral kinematics resulting from different size combinations has not been analyzed yet. The Columbus Deep Dish implant (Aesculap, Tuttlingen, Germany) is designed to allow a full size compatibility. Therefore we hypothesized that the kinematics would not be affected by the different size combinations. The goal of this study was to investigate the impact on kinematics of different tibio-femoral size combinations with the Columbus Deep Dish implant. Methods. 6 fresh frozen cadavers were tested in a force controlled well established knee rig after implantation of a cruciate retaining, fixed bearing Columbus Deep Dish TKA (Aesculap, Tuttlingen, Germany). Femoro-tibial kinematics were recorded while performing a loaded squat from 30° to 130°. Specifically developed and manufactured inlays allowed simulating different tibia sizes on each bone/tibial implant. For each cadaver, a total of 4 different tibia sizes were tested (1 original size, 3 simulated different sizes). Tibio-femoral internal/external rotation and antero-posterior translation of the medial and of the lateral condyles were computed for all size combinations. The kinematics obtained with the simulated sizes were compared to the kinematics obtained with the original inlay. For each flexion angle from 30° to 130°, the difference between the rotation (resp. translation) obtained with the original inlay was subtracted from the rotation obtained with the simulated tibia size. The mean value and standard deviation of the differences were computed. Results. Each knee showed a singular kinematic pattern. This pattern remained the same for all size combinations. However the amplitude in rotation and translation varied: The mean difference reached −0,1 ±1,2° in internal/external rotation and 1,3 ± 3,3mm in translation. There was no significant difference between the used size combinations: among all knees no size combination consistently resulted in a significantly different kinematic. Conclusion. We can conclude that with a TKA system designed to allow full size compatibility the patient specific kinematic pattern is preserved when sizing up or down the tibia component with respect to the femur. For any figures or tables, please contact authors directly


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XL | Pages 216 - 216
1 Sep 2012
Weisenburger J Garvin K Haider H
Full Access

The addition of vitamin E has been shown to improve wear performance in highly crosslinked (HXL) ultra high molecular weight polyethylene (UHMWPE) total knee replacements (TKR) [1]. We set-out to verify if a new type of vitamin E stabilized HXL UHMWPE would substantially improve wear performance, and we present our new results together with our previous ones to tell a fuller story. This paper therefore reports in vitro wear of tibial bearings of both conventional and HXL UHMWPE (with vitamin E) for a total of 16 specimens covering both ends of the TKR size spectrum, very large and very small. Different designs, sizes and four material types/processes of UHMWPE were tested. In material type 1, tested previously, the polyethylene was machined from isostatic molded GUR1020 bar stock, crosslinked with 10 Mrad, and then doped with vitamin E. From this material, 4 samples of large posterior stabilized (LPS1) TKRs were tested. Material type 2 was HXL where vitamin E was blended into the polyethylene (GUR1020) at the powder stage and the final irradiation was to 9 Mrad. From this material, 2 large cruciate retaining (LCR2) samples and 2 small cruciate retaining (SCR2) samples were tested. The above sample groups from both material types 1 and 2 were compared in the same simulator testing to corresponding identical design, size and sample numbers of conventional UHMWPE not highly crosslinked and with no vitamin E (material types 3 & 4 respectively). Each test was run on a significantly upgraded (in house) 4-station Instron-Stanmore force-controlled knee simulator. The machine simulated flexion with anatomically realistic joint reaction forces and torques between tibia and femur, and included a spring-based system to simulate soft-tissue restraining forces and torques. The force-control waveforms of the walking cycle specified in ISO-14243-1 were applied for 5 million cycles (Mc) at 1Hz, with bovine serum lubrication with 20g/l protein concentration at 37°C). The tibial bearing inserts were weighed at various intervals standardized between all tests. No gross delamination or fracture of the tibial inserts was observed in any tests, but all inserts showed measurable wear. The vitamin E stabilized material exhibited an 85% reduction in wear for the LPS1 designs (p < 0.05, ANOVA) compared to its corresponding conventional poly control material. The LCR2 and SCR2 designs with the new vitamin E material exhibited wear reductions of 61% and 77%, respectively when compared to their corresponding conventional bearings (p < 0.05, ANOVA). The vitamin E highly crosslinked UHMWPE tibial bearings significantly reduced overall wear when compared to conventional tibial bearings of the same design. Such level of wear reduction should translate to worthy clinical significance in preventing osteolysis. Highly crosslinked UHMWPE stabilized with vitamin E appears to be promising for use as a bearing surface in TKR, from at least two different technologies/processes


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_3 | Pages 14 - 14
1 Apr 2019
Azhar MS Ahmed S Gogi N Walsh G Chakrabarty G
Full Access

Background of study. Total Knee Replacement (TKR) is one of the commonest elective arthroplasty operations. Crepe dressings are used following TKR by most surgeons as it may provide comfort and hemostasis through external pressure however, may reduce early range of motion (ROM). Avoiding crepe dressings after TKR saves operating time, avoids bulky dressings (which may reduce ROM) and allows interventions such as cryotherapy in the early post-operative period. There are no published studies comparing the use of crepe dressing after TKR with an impermeable dressing alone. Materials and Methods. We did a retrospective study, analysing patients who had a TKR with the use of crepe dressings compared with patients who had an impermeable dressing alone. All patients had cruciate retaining PFC Implants through the medial para-patellar approach. We compared ROM (at initial physio contact and on discharge), rate of wound leakage, opioid requirements and duration of inpatient stay. Results. Data from 40 patients with similar demographics was analysed; 20 in each group. There was no significant difference in; the ROM at initial physiotherapy contact and at discharge (P< 0.01), rate of wound leakage, opioid use and pain score during inpatient stay. The duration of inpatient stay was shorter in patients in whom a crepe dressing was not used. Conclusion. Avoiding the use of Crepe dressings after TKR does not improve early ROM, pain scores, opioid use or wound leakage in the immediate post-operative period. The duration of inpatient stay was shorter without a crepe dressing. Therefore, both practices can be safely used in clinical practice