Abstract
Objectives
Restoring more natural kinematics is crucial for the success of knee TKA. The relative size of the tibia to the femur may differ in each patient and requires the possibility to combine different tibia sizes for a given femur size. Therefore, TKA systems need to be designed to allow for different size combinations. In literature some report higher revision rates when the femoral size is greater than the tibia, while others find no impact of the size mismatch on the clinical outcome. The tibio-femoral kinematics resulting from different size combinations has not been analyzed yet. The Columbus Deep Dish implant (Aesculap, Tuttlingen, Germany) is designed to allow a full size compatibility. Therefore we hypothesized that the kinematics would not be affected by the different size combinations. The goal of this study was to investigate the impact on kinematics of different tibio-femoral size combinations with the Columbus Deep Dish implant.
Methods
6 fresh frozen cadavers were tested in a force controlled well established knee rig after implantation of a cruciate retaining, fixed bearing Columbus Deep Dish TKA (Aesculap, Tuttlingen, Germany). Femoro-tibial kinematics were recorded while performing a loaded squat from 30° to 130°. Specifically developed and manufactured inlays allowed simulating different tibia sizes on each bone/tibial implant. For each cadaver, a total of 4 different tibia sizes were tested (1 original size, 3 simulated different sizes). Tibio-femoral internal/external rotation and antero-posterior translation of the medial and of the lateral condyles were computed for all size combinations. The kinematics obtained with the simulated sizes were compared to the kinematics obtained with the original inlay. For each flexion angle from 30° to 130°, the difference between the rotation (resp. translation) obtained with the original inlay was subtracted from the rotation obtained with the simulated tibia size. The mean value and standard deviation of the differences were computed.
Results
Each knee showed a singular kinematic pattern. This pattern remained the same for all size combinations. However the amplitude in rotation and translation varied: The mean difference reached −0,1 ±1,2° in internal/external rotation and 1,3 ± 3,3mm in translation. There was no significant difference between the used size combinations: among all knees no size combination consistently resulted in a significantly different kinematic.
Conclusion
We can conclude that with a TKA system designed to allow full size compatibility the patient specific kinematic pattern is preserved when sizing up or down the tibia component with respect to the femur.
For any figures or tables, please contact authors directly.