Advertisement for orthosearch.org.uk
Results 1 - 20 of 111
Results per page:
Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_1 | Pages 111 - 111
1 Jan 2013
Young P Bell S Mahendra A
Full Access

Background. The surgical management of musculoskeletal tumours is a challenging problem, particularly in pelvic and diaphyseal tumour resection where accurate determination of bony transection points is extremely important to optimise oncologic, functional and reconstructive options. The use of computer assisted navigation in these cases could improve surgical precision. Materials and methods. We resected musculoskeletal tumours in fifteen patients using commercially available computer navigation software (Orthomap 3D). Results. Of the eight pelvic tumours, three underwent biological reconstruction with extra corporeal irradiation, three endoprosthetic replacement (EPR) and two required no bony reconstruction. Four diaphyseal tumours had biological reconstruction. Two patients with proximal femoral sarcoma underwent extra-articular resection and EPR. One soft tissue sarcoma of the adductor compartment involving the femur was resected with EPR. Histological examination of the resected specimens revealed tumour free margins in all cases. Post-operative radiographs and CT show resection and reconstruction as planned in all cases. Several learning points were identified related to juvenile bony anatomy and intra-operative registration. Discussion. The use of computer navigation in musculoskeletal oncology allows integration of local anatomy and tumour extent to identify resection margins accurately. Furthermore, it can aid in reconstruction following tumour resection. Our experience thus far has been encouraging


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_28 | Pages 29 - 29
1 Aug 2013
Rambani R Viant W Ward J Mohsen A
Full Access

Surgical training has been greatly affected by the challenges of reduced training opportunities, shortened working hours, and financial pressures. There is an increased need for the use of training system in developing psychomotor skills of the surgical trainee for fracture fixation. The training system was developed to simulate dynamic hip screw fixation. 12 orthopaedic senior house officers performed dynamic hip screw fixation before and after the training on training system. The results were assessed based on the scoring system that included the amount of time taken, accuracy of guide wire placement and the number of exposures requested to complete the procedure. The result shows a significant improvement in amount of time taken, accuracy of fixation and the number of exposures after the training on simulator system. This was statistically significant using paired student t-test (p-value <0.05).

Computer navigated training system appears to be a good training tool for young orthopaedic trainees The system has the potential to be used in various other orthopaedic procedures for learning of technical skills aimed at ensuring a smooth escalation in task complexity leading to the better performance of procedures in the operating theatre.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_1 | Pages 15 - 15
1 Jan 2016
Carcangiu A D'arrigo C Bonifazi AM De Sanctis S Alonzo R Setini A Ferretti A
Full Access

Background. Limb length discrepancy after total hip replacement is one of the possible complications of suboptimal positioning of the implant and cause of patients dissatisfaction. Computer assisted navigation become affirmed in last years for total hip replacement surgery and it is also used for the evaluation of the intra-operative limb length discrepancy. The purpose of this study is to verify the reliability of a navigation system with a dedicated software in intraoperative evaluation of limb lengthening and offset as compared with manual technique. Methods. Forty patients who underwent a Total Hip Arthroplasty in our institution were entrolled in this study. Twenty patients were evaluated with pre operative manual planning (group A) and treated with hand positioning of femoral stem. Twenty Patient were evaluated with preoperative manual planning and treated with Computer assisted navigation of Stem (group B). Mean operating time and blood loss were analyzed. Radiological and clinical follow up was made at 1, 3, 6 and 12 months postoperative to assess any mismatch of implant, complications and clinical results that was measured with Harris Hip Score. Results. In the evaluation of the limb length and offset in group A there wasn't significance difference between pre and postoperative measurements obtained with manual planning. Also in group B there wasn't a significance difference between the measurement obtained intraoperative with computer assisted navigation and the one obtainedafter surgery and preoperative with manual planning. In any case we noted a limb length discrepancy in this series. No statistically significance difference was noted between the two groups in relations to the others parameters investigated. Conclusions. Based on our study the computer navigation system is a simple and reliable for the evaluation of limb length discrepancy and offset in total hip replacement. This Navigation system can offer to the surgeon a valid intraoperative information that can reduce possible errors in stem positioning and can reduce rate of length discrepancy


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_5 | Pages 144 - 144
1 Apr 2019
Prasad KSRK Kumar R Sharma A Karras K
Full Access

Background. Stress fractures at tracker after computer navigated total knee replacement are rare. Periprosthetic fracture after Minimally Invasive Plate Osteosynthesis (MIPO) of stress fracture through femoral tracker is unique in orthopaedic literature. We are reporting this unique presentation of periprosthetic fractures after MIPO for stress fracture involving femoral pin site track in computer assisted total knee arthroplasty, treated by reconstruction nail (PFNA). Methods. A 75-year old female, who had computer navigated right total knee replacement, was admitted 6 weeks later with increasing pain over distal thigh for 3 weeks without trauma. Prior to onset of pain, she achieved a range of movements of 0–105 degrees. Perioperative radiographs did not suggest obvious osteoporosis, pre-existent benign or malignant lesion, or fracture. Radiographs demonstrated transverse fracture of distal third of femur through pin site track. We fixed the fracture with 11-hole combihole locking plate by MIPO technique. Eight weeks later, she was readmitted with periprosthetic fracture through screw hole at the tip of MIPO Plate and treated by Reconstruction Nail (PFNA), removal of locking screws and refixation of intermediate segment with unicortical locking screws. Then she was protected with plaster cylinder for 4 weeks and hinged brace for 2 months. Results. Retrograde nail for navigation pin site stress fracture entails intraarticular approach with attendant risks including scatches to prosthesis and joint infection. So we opted to fix by MIPO technique. Periprosthetic fracture at the top of MIPO merits fixation with antegrade nail in conjunction with conversion of screws in the proximal part of the plate to unicortical locking screws. Overlap of at least 3cms offers biomechanical superiority. She made an uneventful recovery and was started on osteoporosis treatment, pending DEXA scan. Conclusion. Reconstruction Nail (PFNA), refixation of intermediate segment with unicortical locking screws constitutes a logical management option for the unique periprosthetic fracture after MIPO of stress fracture involving femoral pin site track in computer assisted total knee replacement


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XL | Pages 105 - 105
1 Sep 2012
Manzotti A Confalonieri N
Full Access

Introduction. Post traumatic arthritis of the knee can be a conseguence of distal femur fracture and retained hardware can complicate any further surgical option including arthroplasty. Both staged surgical procedures to remove before the hardware or simultaneous procedure of arthroplasty and removal of hardware have been indicated with an increased risk of complications. Aim of this study is to present a consecutive series of TKA following distal femur fracture using a computer assisted technique without the removal of retained hardware assessing both the efficacy of navigation in managing these complex cases as “routinary” primary arthroplasties. Material and Methods. A consecutive series of 16 patients treated with a computer assisted TKR following femoral fracture and with retained hardware were included in the study (group A). The interval between the fracture and operation averaged 5.8 years (range 1–12 years), the retained hardwares was an intramedullary nail in 6 cases, distal lateral plates in 7 cases and screws in 4 cases. All patients in group A were matched with a patient who had undergone to a computer assisted TKR using the same implant and software because of atraumatic knee arthritis in the same period (group B). Patients were matched in terms of age, gender, pre-operative range of motion, pre-operative arthritis severity according to Albaack classification, type and grade of deformity and implant features (cruciate retaining or sacrificing). There were 10 male and 6 female for each group, the mean pre-operative age was 64.3 years (range: 54–72) for the group A and 65.4 years (range: 53–74) for the group B. The mean pre-operative flexion was 85.5 degrees (range: 65–115) and 88.1 degrees (range: 70–115) for the post traumatic group and the matched group respectively. Results. There were no statistical significant differences in surgical time, hospital staying, intra/post operative complications. Likewise at a mean follow-up of 47 months no statistically significant difference was seen for the Knee Society, Functional, GIUM and WOMAC scores between the 2 groups. Implant alignment was similar between the 2 groups with similar radiological parameters. Conclusions. The results of this study demonstrated that knee arthritis following distal femoral fracture can be safely managed using computer assisted TKA without any need of hardware removal and obvious costs savings. The Authors achieved both same results and same complication rate of similar uncomplicated primary TKR


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_34 | Pages 550 - 550
1 Dec 2013
Tang Q Zhou Y
Full Access

Objective:. Periacetabular spherical osteotomy for the treatment of dysplastic hip is effective but technically demanding. To help surgeons perform this difficult procedure reliably and safely, a computer assisted navigation technique has been developed and evaluated. Methods:. Computed tomographic scans of 5 cadaveric pelvises were obtained and three-dimensional models were generated. The osteotomy was planned preoperatively. The pelvises were registered using an optimized algorithm. Periacetabular spherical osteotomy was performed at one side of each pelvis with navigation and at another side without navigation. The deviation of the real osteotomized surface from the planned surface was measured. Results:. The computer assisted navigation system supported preoperative planning and provided real time display of the surgical procedure. The deviation of the real osteotomized surface from the planned surface was 1.59 ± 0.18 mm in the group with navigation, while 4.81 ± 1.67 mm in the group without navigation. The difference of the deviations has statistical significance (p < 0.003). Conclusion:. A computer assisted navigation technique is able to help increase accuracy and safety of periacetabular spherical osteotomy, and thus facilitate performing this difficult procedure


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_28 | Pages 116 - 116
1 Aug 2013
Confalonieri N Manzotti A Aldè S
Full Access

INTRODUCTION. Despite clear clinical advantages Unicompartimetal Knee Replacement (UKR) still remain a high demanding and less forgiving surgical procedure. Different Authors in literature pointed out how in coronal tibial malalignment beyond 3° as well as tibial slope beyond 7° increase the rate of aseptic failure. Likewise, overcorrection in the coronal plain is a well recognised cause of failure because of an overweighting on the controlateral compartment. Furthermore it has been shown how in UKR surgery even using short narrow intramedullary guide this can cause errors in both coronal planes. Computer assisted surgery has been proposed to improve implant positioning in joint replacement surgery with no need of intramedullary guide. Likewise more recently Patient Specific Instrumentation (PSI) has been suggested as a new technology capable of new advantages such as shorter surgical times and lower blood losses maintaining at least the same accuracy. Aim of this prospective study is to present comparing 2 groups of UKRs using either a computer assisted technique or a CT based PSI. MATERIALS AND METHODS. Since January 2010 54 patients undergoing UKR because of medial compartment arthritis were prospectively enrolled in the study. Before surgery patients were alternatively assigned to either computer-assisted alignment (group A) or PSI group (group B). In the group A (27 knees) the implant (Sigma, Depuy Orthopaedics Inc, Warsaw, Indiana, USA) was positioned using a CT-free computer assisted alignment system specifically created for UKR surgery (OrthoKey, Delaware, USA USA). In group B (27knees) the implant (GMK uni, Medacta, Castel San Pietro, Switzerland) was performed using a CT-Based PSI technology (MyKnee, Medacta, Castel San Pietro, Switzerland). In both the groups all the implants were cemented and using always a fixed metal backed tibial component. The duration of surgery and all the complications according to Kim classification were documented in all cases. Six months after surgery each patient had long-leg standing anterior-posterior radiographs and lateral radiographs of the knee. The radiographs were assessed to determine the Frontal Femoral Component angle (FFC), the Frontal Tibial Component angle (FTC), the Hip-Knee-Ankle angle (HKA) and the sagittal orientation (slope) of both tibial and femoral component. The number and percentage of outliners for each parameter was determined. In addition the percentage of patients from each group with all 5 parameters within the desired range was calculated. Furthermore at the latest follow-up the 2 groups were clinically assessed using KSS and Functional score. RESULTS. At the last assessments there were no differences in the clinical outcome. The mean surgical time was longer in the navigated group of a mean of 5.9 minutes without any statistical differences in complications. The mechanical axis, tibial slope the FTC angle were significantly better aligned in the navigated group. A statistically significant higher number of outliners was seen in the PSI group. The number of implants with all 5 radiological parameters aligned within the desired range was statistically higher in the navigated group. All the implants in the navigated group were correctly aligned in all the planned parameters. DISCUSSION. To our knowledge this is the first prospective study in literature assessing navigation compared to PSI technique in UKR surgery. Despite a slight not significant longer surgical time in the navigated group, at a short follow-up the results could not demonstrate any clinical diffences between the 2 technologies However according to their results the Authors indicate navigation as more helpful in UKR surgery compared to PSI technology in terms of accuracy


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_8 | Pages 2 - 2
1 May 2016
Gill P Christenson J
Full Access

Introduction. Total hip arthroplasty has become an increasingly common procedure. Improper cup position contributes to bearing surface wear, pelvic osteolysis, dislocations, and revision surgery. The incidence of cup malposition outside of the safe zone (40° ± 10° abduction and 15° ± 10° anteversion) using traditional techniques has been reported to be as high as 50%. Our hypothesis is that computer assisted navigation will improve cup placement in total hip arthroplasty compared with traditional techniques. Methods. This study retrospectively evaluated the position of 425 consecutive cups placed during primary total hip arthroplasty performed over a two-year period, from 8/1/2012 to 8/1/2014. All cups were placed with a direct-anterior muscle-sparing approach with computer-assisted imageless navigation by a single surgeon. Real-time intraoperative “screen shots” were taken of cup placement. Standard antero-posterior postoperative radiographs of the pelvis were taken within 6 weeks of surgery in the operating surgeon's office using the same standardized protocol for each patient. The radiographs were evaluated by two separate investigators for final abduction and anteversion utilizing the same method as other studies. Statistics were descriptive in nature. Results. Intraoperative navigation screenshots from 425 hips showed that 100% were within the safe zone for abduction and anteversion. Postoperative radiographic review showed that 97% were within the safe zone for abduction (Mean 41 degrees, Range 29–54 degrees), 96% were within the safe zone for anteversion (Mean 16 degrees, Range 4–38 degrees) and 94% were within the safe zone for both abduction and anteversion. Conclusion. In our series, computer assisted navigation improved cup placement in total hip arthroplasty compared with traditional techniques as reported in current literature. Cup position in our study, was within the safe zone for abduction and version at a comparable rate to similar studies examining THA's performed with navigation


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_15 | Pages 29 - 29
1 Aug 2017
Sculco P
Full Access

Restoring the overall mechanical alignment to neutral has been the gold standard since the 1970s and remains the current standard of knee arthroplasty today. Recently, there has been renewed interest in alternative alignment goals that place implants in a more “physiologic” position with the hope of improving clinical outcomes. Anywhere from 10 – 20% of patients are dissatisfied after knee replacement surgery and while the cause is multifactorial, some believe that it is related to changing native alignment and an oblique joint line (the concept of constitutional varus) to a single target of mechanical neutral alignment. In addition, recent studies have challenged the long held belief that total knee placed outside the classic “safe zone” of +/− 3 degrees increases the risk of mechanical failure which theoretically supports investigating alternative, more patient specific, alignment targets. From a biomechanical, implant retrieval, and clinical outcomes perspective, mechanical alignment should remain the gold standard for TKA. Varus tibias regardless of overall alignment pattern show increased polyethylene wear and varus loading increases the risk of posteromedial collapse. While recently questioned, the evidence states that alignment does matter. When you combine contemporary knee designs placed in varus with an overweight population (which is the majority of TKA patients) the failure rate increases exponentially when compared to neutral alignment. A recent meta-analysis on mechanical alignment and survivorship clearly demonstrated reduced survivorship for varus-aligned total knees. The only way to justify the biomechanical risks associated with placing components in an alternative alignment target is a significant clinical outcome benefit but the evidence is lacking. A randomised control trial comparing mechanical alignment (MA) and kinematic alignment (KA) found a significant improvement in clinical outcomes and knee function in KA patients at 2 year follow-up. In contrast, Young et al. recently published a randomised control trial comparing PSI KA and computer assisted mechanical TKA and found no difference in any clinical outcome measure. Why were the clinical outcomes scores in the MA patients so different: One potential explanation is that different surgical techniques were used. In the Dosset study, the femur was cut at 5 degrees valgus in all patients and femoral component rotation was always set at 3 degrees externally rotated to the posterior condylar axis. We know from several studies that this method leads to inaccuracies in both coronal plane and axial plane in some patients. Young et al. used computer assisted navigation to align his distal femur cut with the mechanical axis and adjusted femoral component rotation to the transepicondylar axis. The results suggest that a well performed mechanical aligned total knee replacement has excellent clinical performance equal to that of kinematic alignment without any of the long term risks of implant failure. Most contemporary TKA implants are designed to be loaded perpendicular to the polyethylene surface and placing them in shear without extensive biomechanical testing to support this alignment target may put patients at long term risk for an unproven benefit. Have we not learned our lesson?


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_8 | Pages 85 - 85
1 May 2016
Kasparek M Dominkus M Fiala R
Full Access

INTRODUCTION. Total knee replacement is mostly done with alignment rods in order to achieve a proper Varus / Valgus alignement. Other techniques are computer assisted navigation or MRI based preoperative planning. iASSIST™ is a computer assisted stereotaxic surgical instrument system to assist the surgeon in the positioning of the orthopaedic implant system components intra-operatively. It is imageless and the communication between the PC and the “Pod's” does not require any direct camera view, it is a bluethooth comunication system. This study presents preliminary results utilizing iASSIST™. The aim of this study was to test and compare radiographic alignment, functional outcomes, and perioperative morbidity of the iASSIST™ Knee system versus conventional total knee arthroplasty. METHODS. In a prospective randomized trial we investigated 60 patients with osteoarthritis of the knee joint. Each surgical procedure was conducted by highly experienced surgeons. In both groups the implant Legacy LPS-Flex Fixed Bearing Knee was used (Zimmer®, Warsaw, Indiana). The groups were equally divided and randomized by hazard. For clinical evaluation, the Short Form-36 and Knee Society Score were obtained. For the radiological assessment mediCAD® Classic, a digital measurement system, was used. The aim of the study was the comparison of results after 3 months. Results. 2 patients refused any further participation, and 5 cases required a switch to a conventional alignement technique intraoperatively due to technical problems. Average BMI and average age did not differ in both groups. Surgical time in the iASSIST™ group amounted to 100 minutes, in the conventional group to 76 min. Postoperative functional outcomes were statistically insignificant, showing slight improvements of the Combined Knee Society Score, Knee Society Knee Score, and Knee Society Function Score favouring the iASSIST method, and slight improvements of knee flexion. Short Form-36 physical scales slightly favoured the conventional method but not significantly. The mean deviation from neutral mechanical axis was 1.68°±1.9° within the iASSIST group, and 2.73°±2.1° within the conventional TKA group. Conclusion. IASSIST™ is a valuable computer navigation system. The 5 technical troubles were due to the learning curve. The clinical results after 3 months did not differ significantly, the radiological assessment showed a tendency of improved alignement in the iASSIST™ group


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_15 | Pages 187 - 187
1 Mar 2013
Hafez M
Full Access

Computer assisted orthopaedic surgery (CAOS) is an emerging and expanding filed. There are some old classification systems that are too comprehensive to cover all new CAOS tools and hybrid devises that are currently present and others that are expected to appear in the near future. Based on our experience and on the literature review, we grouped CAOS devises on the basis of their functionality and clinical use into 6 categories, which are then sub-grouped on technical basis. In future, new devices can be added under new categories or subcategories. This grouping scheme is meant to provide a simple guide on orthopaedic systems rather than a comprehensive classification for all computer assisted systems in surgical practice. For example, the number and diversity of tasks of surgical robots is enormous, up to 159 surgical robots with different mechanisms and functions reported in the literature. These can be classified according to their tasks, mechanism of actions, degree of freedom and level of activity but for the purpose of simplicity we subcategorised the orthopaedic robots to only industrial, hand-held and bone-mounted. Table 1 shows the classification system with the 6 categories and other subcategories


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_6 | Pages 48 - 48
1 Mar 2017
Tei K Minoda M Shimizu T Matsuda S Matsumoto T Kurosaka M Kuroda R
Full Access

Introduction. Recently, tibial insert design of cruciate-substituting (CS) polyethylene insert is employed and widely used. However, in vivo kinematics of using CS polyethylene insert is still unclear. In this study, it is hypothesized that CS polyethylene insert leads to stability of femoro-tibial joint as well as posterior-stabilized (PS) polyethylene insert, even if PCL is sacrificed after TKA. The purpose of this study is an investigation of in vivo kinematics of femoro-tibial joint with use of CS polyethylene insert before and after PCL resction using computer assisted navigation system and tensor device intra-operatively in TKA. Materials and Methods. Sixty-one consecutive patients who had knees of osteoarthritis with varus deformity were investigated in this study. All TKAs (Triathlon, Stryker) were performed using computer assisted navigation system. During surgery, using a tensor device, after bony cut of femur and tibia, joint gaps were assessed in 0 and 90 degrees in flexion. Then, CS polyethylene tibial trial insert were inserted after trial implantation of femoral and tibial components, before and after resection of PCL, respectively. The kinematic parameters of the soft-tissue balance, and amount of coronal and sagittal relative movement between femur and tibia were obtained by interpreting kinematics, which display tables throughout the range of motion (ROM) in the navigation system. In each ROM (30, 45, 60, 90, max degrees), the data were analyzed with a ANOVA test, and mean values were compared by the multiple comparison test (Turkey HSD test) (p< 0.05). Results. Joint gap assessment revealed significant enlargement in both of extension and 90 degrees in flexion after PCL resection compared with before resection. In kinematic analyses in navigation system, regarding to amount of sagittal movement of tibia, there were significances between before and after PCL resection in 60 and 90 degrees in flexion, 1.2mm difference in 60 degrees, and 2.3mm difference in 90 degrees in flexion. There were no significance between before and after PCL resection in the other degrees in flexion. Regarding to the other analyses, varus/ valgus and rotation, there were no differences between before and after resection of PCL. In addition, concerning ROM, maximum extension angle is significantly lower, and maximum flexion angle is significantly higher after than before PCL resection. Discussion. These results demonstrated that CS polyethylene insert might have a stability of femoro-tibial joint nearly after PCL resection as well as before PCL resection. The main design feature of Triathlon CS insert is single radius and rotary arc, in addition, the posterior lip is same as that of Triathlon CR, which can be the factor to avoid paradoxical anterior movement and to permit internal and external rotation between femoral and tibial component. Due to the design features and benefits, there is a high possibility that use of CS insert without PCL can lead same stability as PCL remained, and improvement of ROM. Based on these backgrounds, it is suggested that CS insert may have an additional choice of PCL resection in case of tight gap of flexion in TKA


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_28 | Pages 105 - 105
1 Aug 2013
Khakha R Norris M Kheiran A Chauhan S
Full Access

Introduction. Computer assisted total knee replacement (CATKR) has been shown to give reproducible and accurate alignment of the mechanical axis. The benefits of the reproducible technique has been demonstrated in literature but there is little evidence of benefits in training junior surgeons in a clinical setting. We show our experience of CATKR performed by junior staff under supervision by the senior author, looking at component alignment and patient reported outcome measures. Objectives. Assess radiological and clinical outcomes of Computer Assisted Total Knee Replacements performed by trainees. Methods. Pre-operative Knee Society Scores (KSS) were recorded and all patients underwent CATKR by a trainee who was supervised by the senior author. The Stryker navigation system was used and a Triatholon Total Knee replacement was implanted. Post-operatively patients had long leg Maquet views to assess component alignment and Post-operative Knee Society Scores at a minimum of 5 years were recorded. Results. Pre-operatively the KSS score was 45.6 (24–59) and function 54 (42–65) with post operative scores for KSS 80.0 (55–94) and function 81 (55–100). Post-operatively the average mechanical tibio-femoral angle for the CATKR group was 1.88 degrees varus, the tibial component angle was 90.63 degrees and the femoral component angle was 89.88 degrees. Conclusions. This is the first study of its kind, looking at the medium term outcome of computer assisted total knee replacements performed by trainee surgeons. Our study demonstrates that satisfactory patient outcomes can be achieved by trainee surgeons undertaking Computer Assisted TKR. Despite the learning curve associated with component positioning, trainees were able to achieve satisfactory alignment using the navigation system


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_29 | Pages 27 - 27
1 Aug 2013
Nwokeyi K Mokete L Mohideen M van der Jagt D
Full Access

The advantages of computer navigated total knee replacement are well documented in the literature, however, increased surgical time and cost issues remain the major deterrent for the wide use of this technology. Placement of cutting jigs under computer guidance forms a major aspect of computer assisted knee replacement surgery. The use of a motorized mini-robotic cutting jig allows for a more precise and time efficient execution of the femoral cuts under computer guidance. We present a preliminary report on our experience using standard computer assisted surgery (CAS) jigs and mini robotic motorized jigs in computer navigated knee replacement. Methods:. We compared our experience using standard jigs and mini-robotic jigs in knee replacement. A cohort of patients involved in a study comparing navigated and standard total knee replacements received TKA using a Bi-Cruciate Stabilised Knee System. A pilot cohort of patients received total knee replacement using standard computer navigation by the pi galileo system without the mini-robots while awaiting acquisition of the mini robot system. We compared our experience using the same pi galileo system with mini robotic cutting jigs to the cohort without the mini-robotic cutting guides. Results:. Reduction in surgical time was statistically significant when using the motorized mini robotic jigs. Blood loss was identical in both cohorts, and cut precision was better in the cohort with the motorized mini robotic jigs. Conclusion:. The use of the mini robot in navigated knee replacements allows for shorter surgical time, as well as more accurate and precise positioning of the cutting jigs. We believe this is a useful technological addition to navigated knee replacement and deserves further attention and research


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XLI | Pages 155 - 155
1 Sep 2012
Widmer B Conrad L Scholes C Oussedik S Coolican M Parker D
Full Access

Computer assisted surgical navigation has played an increasingly central role in total knee arthroplasty (TKA). Given the recognized importance of subtle component position changes in knee function, navigation has emerged as a promising tool for reducing the occurrence of significant malalignment. The ability of this technology to reliably measure multiple parameters intraoperatively allows analysis to possibly identify a correlation between intraoperative computer assisted surgical navigation data and functional outcomes of patients undergoing elective total knee arthroplasty. Intraoperative navigation data was collected for 121 patients undergoing cemented, posterior stabilized TKA. Three forward stepwise regression analyses were performed to associate intraoperative coronal alignment correction, tibiofemoral external rotation, and alignment under varus and valgus stress with one year outcomes, including range of motion, Oxford and SF-36 scores. The amount of alignment correction and the maximum flexion achieved intraoperatively were significantly correlated (p <0.05, R-sq = 13%) with clinically measured maximum flexion at one year. Maximum flexion achieved intraoperatively, external tibiofemoral rotation and maximum varus under stress were also significantly associated (p < 0.05, R-sq = 31%) with the physical component of the SF-36 outcome score. Analyses of computer navigation in TKA to date have primarily focused on precision of sagittal plane correction. Alternatively we have identified four intraoperative parameters that correlate with functional outcome at one year. Correct intraoperative interpretation of navigation data may allow surgeons to make subtle changes in real time to produce superior short-term outcomes for patients


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_10 | Pages 76 - 76
1 May 2016
Tei K Kihara S Shimizu T Matsumoto T Kurosaka M Kuroda R
Full Access

Introduction. Recently, tibial insert design of cruciate-substituting (CS) polyethylene insert is employed. However, in vivo kinematics of using CS polyethylene insert is still unclear. In this study, it is hypothesized that CS polyethylene insert leads to stability of femolo-tibial joint as well as posterior-stabilized (PS) polyethylene insert, even if PCL is sacrificed after TKA. The purpose of this study is an investigation of in vivo kinematics of femolo-tibial joint with use of CS polyethylene insert before and after PCL resction using computer assisted navigation system intra-operatively in TKA. Materials and Methods. Twenty-four consecutive patients who had knees of osteoarthritis with varus deformity were investigated in this study. All TKAs (Triathlon, Stryker) were performed using computer assisted navigation system. In all patients, difference between extension and flexion gap was under 3mm after bony cut of femur and tibia. During surgery, CS polyethylene tibial trial insert were inserted after trial implantation of femoral and tibial components, before and after resection of PCL, respectively. The kinematic parameters of the soft-tissue balance, and amount of coronal (valgus/varus), sagittal (anterior/posterior) and rotational relative movement between femur and tibia were obtained by interpreting kinematics, which display tables throughout the range of motion (ROM) (Figure1). During record of kinematics, the surgeon gently lifted the experimental thigh three times, flexing the hip and knee. In each ROM (30, 45, 60, 90, max degrees), the data were analyzed with paired t-test, and an ANOVA test, and mean values were compared by the multiple comparison test (Turkey HSD test) (p < 0.05). Results. In coronal (valgus/varus) movement, there are no difference between before and after resection of PCL in all ROM. Regarding to amount of sagittal movement of tibia, tibia was slightly shifted approximately 0.75mm posteriorly in 60 degrees of flexion (p=0.013). There are no significance between before and after PCL resection in the other ROM. In addition, concerning ROM, maximum extension angle is significantly lower, and maximum flexion angle is significantly higher after than before PCL resection. Discussion. These results demonstrated that CS polyethylene insert might have a stability of femoro-tibial joint nearly after PCL resection as well as before PCL resection. The main design feature of Triathlon CS insert is single radius and rotary arc, in addition, the posterior lip is same as that of Triathlon CR, which can be the factor to avoid paradoxical anterior movement and to permit internal and external rotation between femoral and tibial component. This study was localized at point of certain situation that difference between extension and flexion gap is under 3mm after bony cut of femur and tibia during surgery. Due to the design features and benefits, there is a high possibility that use of CS insert without PCL can lead same stability as PCL remained, and improvement of ROM. Based on these backgrounds, it is suggested that CS insert may have an additional choice of PCL resection in case of tight gap of flexion in TKA


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_II | Pages 6 - 6
1 Feb 2012
Rosell P Plaweski S Cazal J Merloz P
Full Access

Poor outcome in ACL reconstruction is often related to tunnel position. This study investigates the use of surgical navigation to improve outcome. Improving accuracy of tunnel position will lead to improved outcome. In a prospective randomised controlled trial 60 ACL plasties with quadruple-loop semi-tendinosus and gracilis tendon were randomised to either standard instrumentation or computer assisted guides to position the tibial and femoral tunnels. The results were evaluated on clinical outcome based on IKDC laxity measurements and radiologic assessment of anterior drawer at 150 and 200N as well as radiological assessment of the tunnel positions. No complications were observed in either group. IKDC laxity was level A in 22 knees in the conventional group (average 1.5 mm (0-6) at 200N) compared with 26 navigated knees (average laxity 1.3mm (0-5)). Laxity was less than 2 mm in 96.7% of the navigated group (83% in conventional group). The variability of laxity in the navigated group was significantly less than the conventional group, with the standard deviation of the navigated group being smaller than the conventional group standard deviation (p = 0.0003 at 150N and 0.0005 at 200N TELOS). A significant difference (p=0.03) was found between the groups in the ATB value characterising the sagittal position of the tibial tunnel (negative ATB values imply graft impingement in extension). In the conventional group mean ATB was -1.2 (-5-+4) while it was 0.4 (0 - 3) in Group II. There were no negative ATB values in the Navigated Group. The use of computer assisted navigation creates a more consistently accurate tibial tunnel position than using conventional techniques. It is suggested that this should reduce impingement and improve graft longevity


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_15 | Pages 188 - 188
1 Mar 2013
Hafez M Mounir A
Full Access

Introduction. This community Arthroplasty Register is an individual initiative to document arthroplasty procedures performed from 2007 to date in a sample area in Cairo, Egypt. Currently, there is no published study or official documentation of the indications for arthroplasty, types of implants or the rate of total hip and knee arthroplasty (THA & TKA). Although the population of Egypt reached 80,394,000, the unofficial estimate of the rate of joint replacement is less than 10,000 per year. This rate is less than 10% of what is currently done in UK, a country with similar or even less population than Egypt. This indicates the unmet need for TKA in Egypt, where the knee OA is prevailing and there is a call for documentation and a registry. Methods. The registry sheet is 3 pages; pre-, intra- and post-operative. It is available in printed format and online as demonstrated below . www.knee-hip.com. During the registry period, there were 282 cases collected prospectively and 206 collected retrospectively. This initial analysis included only prospectively collected data of 157 TKA and 125 THA. Results. For THA, the mean age was 48 years ranging from (19–86). Female to male ratio was 1.15:1. The rate of uncemented THA was 84.8%, Cemented was 10.2% and hybrid THA was 5%. We have observed significant growth in the uncemented type of fixation. The rate of primary was 54.4 % (complex primary 26.4%), Conventional THA techniques were done for 56.15%, while computer assisted surgery was used in 43.85% of cases. For TKA, there was 71.33% primary and 19.7% complex primary, 8.97% revision arthroplasty. A female to male ratio was 2.92:1. The main indication for TKA was OA in 87.26%. Preoperative radiographic evaluation showed that 47% had severe varus and 15% had significant bone defect. Conventional TKA techniques were done for 73.2%, while computer assisted surgery was sued in 26.8 % of cases


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXV | Pages 107 - 107
1 Jun 2012
Kailathuvalapil JT Sasidharan B
Full Access

Introduction. Proper alignment of the components and soft tissue balance are the two factors that determine the long term outcome of total knee arthroplasty (TKA). On the femoral side a distal cut made perpendicular to the MA will restore the MA of the leg. Different methods are commonly used to resect the femur perpendicular to its MA. In uncomplicated cases, most surgeons routinely use a fixed valgus cut angle (VCA) of 5° or 6°. Various studies have questioned the use of fixed valgus angle resection to restore the mechanical axis. The purpose of this prospective study is to analyze the variability in the valgus angle following computer assisted TKA. Materials and methods. Twenty-three patients who underwent computer assisted TKA in our institution in 2009 were involved in the study. A total of 40 knees were available for analysis. All the knees underwent a CT scanogram postoperatively. Each scanogram was analyzed using the Amrita medvision(r) software. The angle subtended between the mechanical axis and the distal femoral anatomic axis is the valgus angle. Two independent observers calculated all the values and the interobserver reliability was calculated. Results. The average age of the patients was 65.6 years. The kappa coefficient of agreement was 0.8, which shows good interobserver reliability. The average angle formed by the femoral component with the mechanical axis was 91.6. 0. and the average valgus angle calculated was 7.41. 0. 14 knees out of 40 (35%) were lying within the range of 4 - 7 degrees. In 25 knees (65%) valgus angle was more than 7 degrees. In one case the valgus angle was less than 4 degrees. Conclusions. Fixed valgus angle resection is not reliable in restoring mechanical axis in total knee arthroplasty. In the absence of facilities for surgical navigation, a pre operative planning with long leg films is extremely important to achieve long-term success


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXI | Pages 148 - 148
1 May 2012
R. J S. KG S. K R. BS
Full Access

Introduction. Pedicle screw fixation is considered gold standard as it provides stable and adequate fixation of all the three columns of spine. Mal-placement of screws in dorso-lumbar region, using fluoroscopic control only, varies from 15% to 30 %. The aim of this study was to determine whether accuracy of pedicle screw placement can be improved using CT based navigation technique. Material & methods. 15 patients with fracture of D12 in 4 patients, L1 in 6 patients, L2 in 4 patients, and L4 in 1 patient underwent pedicle screw fixation using CT based navigation. Each fracture was fixed with 4 pedicle screws, 2 each in one level above and one level below the fractured vertebrae. A total of 60 pedicle screws was inserted. A pre-operative 1mm slice planning CT scan was taken from two levels above to two levels below the fractured vertebrae. It was loaded into the workstation and pre-operative planning was made of screw trajectory and screw size i.e. thickness and length, according to the dimensions of the pedicle and vertebral body. Screws were then inserted using opto-electronic navigation system. Screw placement was analysed in all patients using post-operative CT scan and graded according to the Laine's system. Results. The average time for matching was 10.8 minutes and average time for screw insertion was 4.3 minutes (range 2-8 minutes). One screw in right sided pedicle of L2 perforated the lateral cortex (1.66%). There was no neuro-vascular complication. Conclusion. The incidence of a misplaced screw in the present study is only 1.66% which is much less than reported with conventional technique, reflecting enhanced accuracy with computer assisted navigation. Thus computer assisted navigation is a potent tool in the hands of a spine surgeon in improving the accuracy of pedicle screw placement