Abstract
Restoring the overall mechanical alignment to neutral has been the gold standard since the 1970s and remains the current standard of knee arthroplasty today. Recently, there has been renewed interest in alternative alignment goals that place implants in a more “physiologic” position with the hope of improving clinical outcomes. Anywhere from 10 – 20% of patients are dissatisfied after knee replacement surgery and while the cause is multifactorial, some believe that it is related to changing native alignment and an oblique joint line (the concept of constitutional varus) to a single target of mechanical neutral alignment. In addition, recent studies have challenged the long held belief that total knee placed outside the classic “safe zone” of +/− 3 degrees increases the risk of mechanical failure which theoretically supports investigating alternative, more patient specific, alignment targets.
From a biomechanical, implant retrieval, and clinical outcomes perspective, mechanical alignment should remain the gold standard for TKA. Varus tibias regardless of overall alignment pattern show increased polyethylene wear and varus loading increases the risk of posteromedial collapse. While recently questioned, the evidence states that alignment does matter. When you combine contemporary knee designs placed in varus with an overweight population (which is the majority of TKA patients) the failure rate increases exponentially when compared to neutral alignment. A recent meta-analysis on mechanical alignment and survivorship clearly demonstrated reduced survivorship for varus-aligned total knees.
The only way to justify the biomechanical risks associated with placing components in an alternative alignment target is a significant clinical outcome benefit but the evidence is lacking. A randomised control trial comparing mechanical alignment (MA) and kinematic alignment (KA) found a significant improvement in clinical outcomes and knee function in KA patients at 2 year follow-up. In contrast, Young et al. recently published a randomised control trial comparing PSI KA and computer assisted mechanical TKA and found no difference in any clinical outcome measure. Why were the clinical outcomes scores in the MA patients so different: One potential explanation is that different surgical techniques were used. In the Dosset study, the femur was cut at 5 degrees valgus in all patients and femoral component rotation was always set at 3 degrees externally rotated to the posterior condylar axis. We know from several studies that this method leads to inaccuracies in both coronal plane and axial plane in some patients. Young et al. used computer assisted navigation to align his distal femur cut with the mechanical axis and adjusted femoral component rotation to the transepicondylar axis. The results suggest that a well performed mechanical aligned total knee replacement has excellent clinical performance equal to that of kinematic alignment without any of the long term risks of implant failure. Most contemporary TKA implants are designed to be loaded perpendicular to the polyethylene surface and placing them in shear without extensive biomechanical testing to support this alignment target may put patients at long term risk for an unproven benefit. Have we not learned our lesson?