Advertisement for orthosearch.org.uk
Results 1 - 16 of 16
Results per page:
Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_4 | Pages 78 - 78
1 Apr 2018
Caron M Janssen M Peeters L Surtel D Koole L van Rhijn L Welting T Emans P
Full Access

INTRODUCTION. The generation of cartilage from progenitor cells for the purpose of cartilage repair is often hampered by unwanted ossification of the generated tissue due to endochondral ossification. Our in vitro data show that celecoxib is able to suppress the hypertrophic differentiation phase of endochondral ossification in differentiating human bone marrow stem cells via inhibition of prostaglandin signalling. Continuing on our earlier studies our goal is to further improve the engineering of hyaline cartilage for the treatment of cartilage defects, by determining if celecoxib released from poly(D,L-lactic acid)microspheres is able to prevent unwanted ossification in an in vivo model for the subperiosteal cartilage generation. METHODS. A 2% (m/v) low melting agarose was injected between the bone and periosteum at the upper medial side of the tibia of both legs of New Zealand white rabbits (DEC 2012–151). The agarose was left unloaded or (n=8) or loaded (n=7) with celecoxib-loaded PGLA microspheres (poly(D,L-lactic acid) microspheres were loaded with 20% (w/w) Celecoxib (Pfizer)). Fourteen days post-injection, rabbits were euthanised. The developed subperiosteal cartilage tissue was analysed for weight, GAG and DNA content. In addition, RT-qPCR and (immuno)histochemistry were performed for key markers of different phases of endochondral ossification. RESULTS. The Functional release of celecoxib from poly(D,L-lactic acid) microspheres was confirmed in vitro by decreased prostaglandin E2 levels in cell culture. The subperiosteal cartilage tissue from the celecoxib group was significantly higher in weight and DNA content as compared to the control condition. GAG content was not significantly different between groups. No significant differences in chondrogenic marker expression (COL2A1, SOX9, ACAN and PTHrP) were detected, but levels of hypertrophic markers COL10A1, RUNX2 and ALPL were significantly decreased. COL1A1 expression was not significantly different between groups. DISCUSSION. In summary, subperiosteal generation of cartilage was successful when an agarose bio-gel was injected subperiosteally. Supplementation of the agarose gel with celecoxib-loaded microspheres favourably changed the weight of the generated cartilage tissue, combined with significantly lower expression levels of indicators of chondrocyte hypertrophy, while leaving chondrogenic differentiation capacity unaltered. These data hold the promise that local supplementation of celecoxib during in vivo cartilage regeneration protects the tissue from adverse hypertrophic differentiation


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_3 | Pages 18 - 18
1 Apr 2018
Caron M Janssen M Peeters L Surtel D van Rhijn L Emans P Welting T
Full Access

INTRODUCTION

The generation of cartilage from progenitor cells for the purpose of cartilage repair is often hampered by unwanted hypertrophic differentiation of the generated tissue due to endochondral ossification. Continuing on our earlier studies, our goal is to further improve the engineering of hyaline cartilage for the treatment of a cartilage defect in our in vivo model for subperiosteal generation of cartilage, by tuning the differentiation status of the generated cartilage and prevent hypertrophic differentiation. As a healthy cartilage matrix contains high amounts of aggrecan we hypothesise that aggrecan supplementation of the bio-gel used in the generation of the subperiosteal cartilage, mimics the composition of the extracellular matrix environment of cartilage with potential beneficial properties for the engineered cartilage.

METHODS

A 2% (m/v) low melting agarose was injected between the bone and periosteum at the upper medial side of the tibia of both legs of New Zealand white rabbits (DEC 2012–151). The agarose was left unloaded (n=7) or supplemented (n=7) with 2% (w/v) bovine aggrecan (Sigma-Aldrich). After 14 days, rabbits were euthanised. Generated subperiosteal cartilage tissue was analysed for weight, GAG and DNA content. In addition, RT-qPCR and (immuno)histochemistry was performed for key markers of different phases of endochondral ossification.


In osteoarthritis, chondrocytes acquire a hypertrophic phenotype that contributes to matrix degradation. Inflammation is proposed as trigger for the shift to a hypertrophic phenotype. Using in vitro culture of human chondrocytes and cartilage explants we could not find evidence for a role of inflammatory signalling activation. We found, however, that tissue repair macrophages may contribute to the onset of hypertrophy (doi: 10.1177/19476035211021907) Intra-articularly injected triamcinolone acetonide to inhibit inflammation in a murine model of collagenase-induced osteoarthritis, increased synovial macrophage numbers and osteophytosis, confirming the role of macrophages in chondrocyte hypertrophy occurring in osteophyte formation (doi: 10.1111/bph.15780). In search of targets to inhibit chondrocyte hypertrophy, we combined existing microarray data of different cartilage layers of murine growth plate and murine articular cartilage after induction of collagenase-induced osteoarthritis. We identified common differentially expressed genes and selected those known to be associated to inflammation. This revealed EPHA2, a tyrosine kinase receptor, as a new target. Using in silico, in vitro and in vivo models we demonstrated that inhibition of EPHA2 might be a promising treatment for osteoarthritis. Recently, single cell RNA-seq. has revealed detailed information about different populations of chondrocytes in articular cartilage during osteoarthritis. We re-analysed a published scRNA-seq data set of healthy and osteoarthritic cartilage to obtain the differentially expressed genes in the population of hypertrophic chondrocytes compared to the other chondrocytes, applied pathway analyses and then used drug databases to search for upstream inhibitors of these pathways. This drug repurposing approach led to the selection of 6 drugs that were screened and tested using several in vitro models with human chondrocytes and cartilage explants. In this lecture I will present this sequence of studies to highlight different approaches and models that can be used in the quest for a disease modifying drug for osteoarthritis


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_1 | Pages 126 - 126
2 Jan 2024
Schmidt S Klampfleuthner F Diederichs S
Full Access

The signaling molecule prostaglandin E2 (PGE2), synthesized by cyclooxygenase-2 (COX-2), is immunoregulatory and reported to be essential for skeletal stem cell function. Nonsteroidal anti-inflammatory drugs (NSAIDs) are widely used in osteoarthritis (OA) analgesia, but cohort studies suggested that long-term use may accelerate pathology. Interestingly, OA chondrocytes secrete high amounts of PGE2. Mesenchymal stromal cell (MSC) chondrogenesis is an in vitro OA model that phenocopies PGE2 secretion along with a hypertrophic OA-like cell morphology. Our aim was to investigate cause and effects of PGE2 secretion in MSC-based cartilage neogenesis and hypertrophy and identify molecular mechanisms responsible for adverse effects in OA analgesia. Human bone marrow-derived MSCs were cultured in chondrogenic medium with TGFβ (10ng/mL) and treated with PGE2 (1µM), celecoxib (COX-2 inhibitor; 0.5µM), AH23848/AH6809 (PGE2 receptor antagonists; 10µM), or DMSO as a control (n=3–4). Assessment criteria were proteoglycan deposition (histology), chondrocyte/hypertrophy marker expression (qPCR), and ALP activity. PGE2 secretion was measured (ELISA) after TGFβ withdrawal (from day 21, n=2) or WNT inhibition (2µM IWP-2 from day 14; n=3). Strong decrease in PGE2 secretion upon TGFβ deprivation or WNT inhibition identified both pathways as PGE2 drivers. Homogeneous proteoglycan deposition and COL2A1 expression analysis showed that MSC chondrogenesis was not compromised by any treatment. Importantly, hypertrophy markers (COL10A1, ALPL, SPP1, IBSP) were significantly reduced by PGE2 treatment, but increased by all inhibitors. Additionally, PGE2 significantly decreased ALP activity (2.9-fold), whereas the inhibitors caused a significant increase (1.3-fold, 1.7-fold, 1.8-fold). This identified PGE2 as an important inhibitor of chondrocyte hypertrophy. Although TGFβ and WNT are known pro-arthritic signaling pathways, they appear to induce a PGE2-mediated antihypertrophic effect that can counteract pathological cell changes in chondrocytes. Hampering this rescue mechanism via COX inhibition using NSAIDs thus risks acceleration of OA progression, indicating the need of OA analgesia adjustment


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_4 | Pages 16 - 16
1 Mar 2021
Geurts J Nasi S Walker U Hägle T
Full Access

Mitochondrial dysfunction has been demonstrated in aging and osteoarthritic tissues. We investigated knee joints of prematurely aging mitochondrial DNA mutator mice (PolgD275A) to evaluate a relationship between mitochondrial dysfunction and osteoarthritis. Cartilage damage was evaluated using OARSI histopathology grading and osteoclast numbers were quantified by tartrate-resistant acid phosphatase staining in wild type, heterozygous and homozygous PolgD275A mice. Subchondral cortical plate and epiphyseal trabecular bone structures were determined by micro-computed tomography. Apoptosis in cartilage and subchondral bone tissues was studied using an indirect TUNEL method. Homozygous mutants displayed osteopenia of the epiphyseal trabecular bone and subchondral cortical plate in comparison to wild type and heterozygous mutants. Subchondral osteopenia was associated with a strong increase of osteoclast numbers (0.88±0.30/mm bone perimeter) compared to heterozygous (0.25±0.03/mm) and wild type mice (0.12±0.04/mm). Wild type mice as well as hetero- and homozygous mutants displayed low-grade cartilage degeneration due to loss of cartilage proteoglycans. In contrast, chondrocyte hypertrophy was more abundant in the homozygous mice. There were no differences in chondrocyte apoptosis rates between groups. Prematurely ageing mtDNA mutator mice with or without further mechanic or metabolic stimuli might serve as a valuable model for further experimental studies on aging-induced osteoporotic OA phenotype


Osteoarthritis (OA) is a debilitating joint disease that severely affects elderly populations. At present there are no effective treatments for OA and mechanisms of disease progression are poorly understood. Previous work has identified that neuronal-Interleukin-16 (nIL-16) was significantly up-regulated in cartilage during the later stages of OA. Preliminary investigations identified co-localisation of nIL-16 with the Transient Receptor Potential cation ion-channel sub-Family-V-member-4 (TRPV4) in the primary cilium and the pericellular matrix of human OA chondrocytes. Perturbation of both TRPV4 and cilia are strongly associated with OA. We hypothesised that nIL-16 and TRPV4 work in tandem in a pathway that leads to chondrocyte hypertrophy and calcification that is seen in late OA and contributes to the loss of joint integrity. This makes it a promising target for development of a gene therapy to combat the disease. With the aim of elucidating the mechanism involved, nIl-16 knock-out cell lines generated using the Clustered Regularly Interspaced Short Palindromic Repeat (CRISPR)/Cas9 system will be used to knock out nIl-16 PDZ domains to investigate whether this is the mechanism in which nIL-16 functions to anchor TRPV4 to the membrane of chondrocytes at the primary cilium. This work will be carried out using an immortalized hTERT mesenchymal stromal cell (MSC) cell line and effects on terminal MSC chondrogenesis, where hypertrophy mimics the process of calcification seen in OA, will be used to define functional effects of the knockout. Cell lines will be made using the RALA peptide (Phion Therapeutics), a bioinspired nanoparticle, for delivery the CRISPR/Cas9 system


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_3 | Pages 69 - 69
1 Apr 2018
Dreher S Richter W
Full Access

Introduction. Cell-based therapy is needed to overcome the lacking intrinsic ability of cartilage to heal. Generating cartilage tissue from human bone marrow-derived stromal cells (MSC) is limited by up-regulation of COL10, ALP and other hypertrophy markers in vitro and calcifying cartilage at heterotopic sites in vivo. MSC hypertrophic differentiation reflects endochondral ossification, unable to maintain a stable hyaline stage, as observed by redifferentiation of articular chondrocytes (AC). Several transcription factors (TF), are held responsible for hypertrophic development. SOX9, the master regulator of chondrogenesis is also, alongside MEF2C, regulating hypertrophic chondrocyte maturation and COL10 expression. RUNX2/3 are terminal markers driving chondrocyte hypertrophy, and skeletogenesis. However, so far regulation of these key fate determining TFs has not been studied thoroughly on mRNA and protein level through chondrogenesis of human MSC. To fill this gap in knowledge, we aim to uncover regulation of SOX9, RUNX2/3, MEF2C and other TFs related to hypertrophy during MSC chondrogenesis in vitro and in comparison to the gold standard AC redifferentiation. Methods. Expression of SOX9, RUNX2/3 and MEF2C was compared before and during 6-week chondrogenic re-/differentiation of human MSC and AC on mRNA level via qRT-PCR and protein level via Western-Blotting. Chondrogenesis was evaluated by histology at d42 and expression of chondrogenic markers like COL2. Hypertrophic development was characterized by ALP activity and expression of hypertrophic markers like COL10. Results. Hypertrophic development, characterized by upregulation of COL10, high COL10/COL2 ratios and ALP activity, was confirmed in MSC and absent in AC. MSC started into differentiation with less SOX9 before induction, while higher RUNX2/3 was observed compared to AC. During MSC chondrogenesis SOX9 and MEF2C steadily increased on mRNA and protein level. Surprisingly, although RUNX2 mRNA level increased in MSC over 42 days, RUNX2 protein remained undetectable. During AC redifferentiation, SOX9 levels remained high on mRNA and protein level while RUNX2/3 and MEF2C remained low. Conclusion. After expansion and before applying chondrogenic stimuli, a chondrogenic priming with more SOX9 and lower RUNX2/3 was found in AC. In contrast osteochondral priming with higher RUNX2/3 and lower SOX9 levels was observed in MSC which could set the stage for endochondral development, leading to hypertrophy. Dynamic regulation of RUNX2/3 and MEF2C at lower SOX9 background levels separated MSC from AC differentiation over 42 days. Adjusting transcription factor levels in MSC could be essential for creating a protocol leading to diminished hypertrophy of MSC during chondrogenesis


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_16 | Pages 33 - 33
1 Oct 2016
Roberts S Salter D Ralston S
Full Access

TRIM32 is a candidate gene at the 9q33.1 genetic susceptibility locus for hip osteoarthritis (OA). Increased cartilage degradation typical of OA has previously been demonstrated in Trim32 knockout mice. Our aim is to investigate the role of TRIM32 in human and murine articular tissue. TRIM32 expression in human articular cartilage was examined by immunostaining. TRIM32 expression was compared in femoral head chondrocytes from patients with and without primary hip OA (n=6/group) and examined by Western blotting. Aggrecanolysis by femoral head explants from Trim32 knockout (T32KO) and wild-type (WT) mice was compared following stimulation with IL1α or retinoic acid (RA) and was assessed by DMMB assay (n=4/group). Expression of chondrocyte phenotype markers was measured by qPCR and compared between articular chondrocytes from WT and T32KO mice following catabolic (IL1α/TNFα) or anabolic (Oncostatin-M (OSM)/IGF1) stimulation. TRIM32 expression was demonstrated in human articular cartilage; TRIM32 expression by chondrocytes was reduced in patients with hip OA (p=0.03). Greater aggrecanolysis occurred in cartilage explants from T32KO mice after treatment with no stimulation (p=0.03), IL1α (p=0.02), and RA (p=0.001). Unstimulated T32KO chondrocytes expressed reduced Col2a1 (p=8.53×10. −5. ), and Sox9 (p=2.35×10. −6. ). Upon IL1α treatment, T32KO chondrocytes expressed increased Col10a1 (p=0.0003). Upon anabolic stimulation, T32KO chondrocytes expressed increased Col2a1 (OSM: p=0.001; IGF: p=0.001), and reduced Sox9 (OSM: p=0.0002; IGF: p=0.0006). These results indicate that altered TRIM32 expression in human articular tissue is associated with OA, and that Trim32 knockout results in increased cartilage degradation in murine femoral head explants. Predisposition to cartilage degeneration with reduced Trim32 expression may involve increased chondrocyte hypertrophy upon catabolic cytokine stimulation and dysregulation of Col2a1 and Sox9 expression upon anabolic stimulation


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_11 | Pages 340 - 340
1 Jul 2014
Vadalà G Musumeci M Giacalone A Russo F Denaro V
Full Access

Summary Statement. Intra-articular injection of humanised monoclonal anti-VEGF antibody (Bevacizumab, Avastin®) in a osteoarthritis rabbit model is related to positive restorative effects in terms of histopathologic evaluation. Introduction. Vascular endothelial growth factor (VEGF) is generally undetectable in adult human articular cartilage under physiological conditions. Upon exposure to pathological stimulation such as inflammation, hypoxia or accumulating mechanical stress, VEGF would be up regulated in hypertrophic chondrocytes of arthritic cartilage leading to osteophyte formation, disregulation of chondrocyte apoptosis and induction of catabolic factors, including matrix metalloproteinases (MMPs). This in vivo study aims to investigate the potential role of VEGF inhibition to treat Osteoarthritis (OA), through intra-articular injection of Bevacizumab, a humanised monoclonal anti-VEGF antibody, in a OA rabbit model. Methods. OA was induced in twelve adult male New Zealand rabbits surgically by monolateral Anterior Cruciate Ligament Transection (ACLT). The rabbits were randomly divided into two equal groups (experimental and control). Intra-articular injections of Bevacizumab or saline (control) were given 4 weeks after ACLT and were administered once a week for 4 time. Animal were sacrificed at 2 and 3 month time point an knee analyzed histologically and grossly. Histopathological variables such as the number of fibroblasts and inflammatory cells, collagenous matrix deposition, synovial hyperplasia, granulation tissue formation, vascular proliferation were evaluated. Results:The macroscopic evaluation of the knee in the experimental group revealed smooth joint surfaces of articular cartilage and no osteophyte formation compared to the control group that showed marked arthritis including synovial hypertrophy and osteophyte formation. Histologic assessment demonstrated, in the experimental group, significantly higher scores concerning number of microvessels, synovial hyperplasia, macrophage infiltration, collagenous matrix deposition, chondrocytes proliferation and apoptosis compared to the control group. Conclusion. In conclusion, VEGF modulation via intra-articular injection of Bevacizumab in a rabbit model of knee OA, resulted in reduction of articular cartilage degeneration through setting up an appropriate environment that prevent chondrocyte hypertrophy, apoptosis and osteophytes formation by blocking the intrinsic VEGF catabolic pathway, endochondral ossification, and the extrinsic VEGF-induced vascular invasion. VEGF-signaling inhibtion through Bevacizumab represent a potential way to treat OA


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_4 | Pages 105 - 105
1 Mar 2021
Lesage R Blanco MNF Van Osch GJVM Narcisi R Welting T Geris L
Full Access

During OA the homeostasis of healthy articular chondrocytes is dysregulated, which leads to a phenotypical transition of the cells, further influenced by external stimuli. Chondrocytes sense those stimuli, integrate them at the intracellular level and respond by modifying their secretory and molecular state. This process is controlled by a complex interplay of intracellular factors. Each factor is influenced by a myriad of feedback mechanisms, making the prediction of what will happen in case of external perturbation challenging. Hampering the hypertrophic phenotype has emerged as a potential therapeutic strategy to help OA patients (Ripmeester et al. 2018). Therefore, we developed a computational model of the chondrocyte's underlying regulatory network (RN) to identify key regulators as potential drug targets. A mechanistic mathematical model of articular chondrocyte differentiation was implemented with a semi-quantitative formalism. It is composed of a protein RN and a gene RN(GRN) and developed by combining two strategies. First, we established a mechanistic network based on accumulation of decades of biological knowledge. Second, we combined that mechanistic network with data-driven modelling by inferring an OA-GRN using an ensemble of machine learning methods. This required a large gene expression dataset, provided by distinct public microarrays merged through an in-house pipeline for cross-platform integration. We successfully merged various micro-array experiments into one single dataset where the biological variance was predominant over the batch effect from the different technical platforms. The gain of information provided by this merge enabled us to reconstruct an OA-GRN which subsequently served to complete our mechanistic model. With this model, we studied the system's multi-stability, equating the model's stable states to chondrocyte phenotypes. The network structure explained the occurrence of two biologically relevant phenotypes: a hypertrophic-like and a healthy-like phenotype, recognized based on known cell state markers. Second, we tested several hypotheses that could trigger the onset of OA to validate the model with relevant biological phenomena. For instance, forced inflammation pushed the chondrocyte towards hypertrophy but this was partly rescued by higher levels of TGF-β. However, we could annihilate this rescue by concomitantly mimicking an increase in the ALK1/ALK5 balance. Finally, we performed a screening of in-silico (combinatorial) perturbations (inhibitions and/or over-activations) to identify key molecular factors involved in the stability of the chondrocyte state. More precisely, we looked for the most potent conditions for decreasing hypertrophy. Preliminary validation experiments have confirmed that PKA activation could decrease the hypertrophic phenotype in primary chondrocytes. Importantly the in-silico results highlighted that targeting two factors at the same time would greatly help reducing hypertrophic changes. A priori testing of conditions with in-silico models may cut time and cost of experiments via target prioritization and opens new routes for OA combinatorial therapies


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_11 | Pages 347 - 347
1 Jul 2014
Semevolos S Kinsley M Duesterdieck-Zellmer K
Full Access

Summary Statement. Wnt/β-catenin gene expression is altered in early osteochondrosis, particularly in chondrocytes surrounding cartilage canals, and may be associated with disease initiation and/or pathogenesis. Introduction. Osteochondrosis (OC) is a disease of articular cartilage development involving abnormal endochondral ossification along the osteochondral junction. Associated etiological factors of OC have included rapid growth rate, biomechanical trauma, abnormal collagen turnover, aberrant paracrine signaling, and altered blood supply involving cartilage canals. Wnt signaling regulates chondrocyte differentiation/maturation during pre-/post-natal cartilage development. Gene expression profiling of leukocytes has revealed aberrant expression of Wnt/β-catenin pathway in early OC. The objective of this study was to elucidate the expression of molecules associated with Wnt/β-catenin signaling in early OC using an equine model. Our hypothesis was that there would be increased expression of Wnt signaling molecules in chondrocytes adjacent to cartilage canals and the osteochondral junction in early OC lesions compared to normal controls. Patients & Methods. Osteochondral samples were obtained (IACUC-approved) from femoropatellar joints of 15 euthanised immature horses (1–6 months old). Disease status was determined based on histology of osteochondral junctions (7 early OC, 8 normal controls). Osteochondral sections were frozen in OCT for laser capture microdissection (LCM) or fixed in 4% paraformaldehyde and paraffin-embedded for immunohistochemistry. Chondrocytes surrounding cartilage canals and osteochondral junctions were captured using LCM. RNA isolation and reverse transcription were performed. Equine-specific β-catenin, Wnt-4, Wnt-5b, Wnt-11, Dickkopf-1(Dkk-1), Lrp-4 and -6, Axin1, Wnt inhibitory factor(WIF)-1, secreted Frizzled-related protein-1, -3, and -5(Sfrp), retinoic acid receptor-gamma(RARG), RAR-inducible serine carboxypeptidase(SC-PEP) and 18S mRNA expression was evaluated by two-step real-time qPCR. Spatial protein expression was determined by immunohistochemistry using rabbit polyclonal (β-catenin, Wnt-11) or mouse monoclonal (Wnt-4, Dkk1) primary antibodies (confirmed by Western blot). Statistical analysis of early OC vs. normal controls was performed using Wilcoxon rank sum test (p <0.05). Results. Chondrocytes adjacent to cartilage canals had significantly increased gene expression of β-catenin (p=0.026), Wnt-5b (p=0.04), Lrp6 (p=0.026), WIF-1 (p=0.026), Dkk-1 (p=0.015), Axin1 (0.041), and SC-PEP (p=0.026), and decreased expression of Wnt-11 (p=0.04), in OC vs. normal controls. OC chondrocytes along osteochondral junctions had significantly increased gene expression of β-catenin (p=0.004) and SC-PEP (p=0.026), with a trend for increased Wnt-4 (p= 0.06) and Wnt-5b (p=0.06) compared to normal controls. Immunostaining for β-catenin was moderate in deep cartilage layers, including osteochondral junction chondrocytes. Wnt-4 immunostaining was moderate along the osteochondral junction and minimal along cartilage canals. Strong Wnt-11 protein expression was apparent in superficial cartilage layers and vascular cells lining cartilage canals and osteochondral junction. Mild to moderate Dkk1 immunostaining was found along osteochondral junction. Discussion/Conclusion. Wnt/β-catenin signaling regulates cartilage differentiation during development and is important in endochondral ossification. Increased gene expression of β-catenin in OC chondrocytes may affect chondrocyte hypertrophy or induce cartilage degeneration, depending on the stage of cartilage development, as β-catenin has been shown to play a dual role in cartilage growth and degeneration. In cells surrounding cartilage canals, increased gene expression of Lrp6, a co-receptor for Wnt proteins, provides further evidence of upregulation of canonical signaling in OC. However, increased Wnt inhibitor gene expression in OC chondrocytes, including Dkk1, WIF-1, and Axin1, may be an attempt to control activation of the canonical pathway


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_11 | Pages 287 - 287
1 Jul 2014
Semevolos S Kinsley M Duesterdieck-Zellmer K Riddick T
Full Access

Summary Statement. Differential expression of canonical and noncanonical Wnt signalling along cartilage canals and osteochondral junctions is dependent on age. Increased gene expression of PTHrP along cartilage canals and Ihh along osteochondral junctions suggests paracrine feedback in articular-epiphyseal cartilage. Introduction. Wnt signaling has been shown to regulate chondrocyte differentiation during pre-/post-natal cartilage development. In addition, parathyroid-related peptide(PTHrP) and Indian hedgehog(Ihh) create a negative feedback loop in growth cartilage, but less is known in articular cartilage. The objective of this study was to elucidate expression of regulatory molecules in chondrocytes surrounding cartilage canals and osteochondral junctions during neonatal and pre-adolescent development. We hypothesised there would be increased expression of canonical Wnt signalling molecules and Ihh in osteochondral junction chondrocytes compared to cartilage canal chondrocytes. In addition, we hypothesised that Wnt signaling and PTHrP expression would be greater in neonates than pre-adolescents. Patients & Methods. Osteochondral samples were obtained(IACUC-approved) from normal femoropatellar joints of 14 euthanised immature horses(6 neonates, 8 pre-adolescents). Samples were frozen in OCT for laser capture microdissection(LCM) or fixed in 4% paraformaldehyde and paraffin-embedded for immunohistochemistry. Chondrocytes surrounding cartilage canals and osteochondral junctions were captured using LCM. Following RNA isolation, equine-specific β-catenin, Wnt-4, Wnt-5b, Wnt-11, Dickkopf-1(Dkk-1), low-density lipoprotein receptor-related protein-4,-6(Lrp4, Lrp6), Axin1, Wnt inhibitory factor-1(WIF)-1, secreted Frizzled-related protein-1,-3,-5(sFRP), retinoic acid receptor gamma(RARG), RAR-inducible serine carboxypeptidase(SC-PEP), Ihh, PTHrP, VEGF, PDGF, MMP-13, and 18S mRNA expression levels were evaluated by two-step real-time qPCR. Following immunohistochemistry using rabbit polyclonal or mouse monoclonal primary antibodies (confirmed by Western blot), spatial tissue protein expression was scored (0–3). Statistical analysis included Wilcoxon signed rank test(paired samples) or rank sum test(unpaired samples)(P<0.05). Results. Gene expression in chondrocytes along cartilage canals was significantly higher for PTHrP, β-catenin, Lrp6, Axin1, sFRP5, RARgamma, and SC-PEP than osteochondral junctions. Conversely, gene expression of Ihh, Wnt4, Wnt11, sFRP3, and VEGF were higher in osteochondral junction chondrocytes than cartilage canals. There was higher protein expression of β-catenin, PDGF, VEGF, and MMP-13 along osteochondral junctions than cartilage canals of pre-adolescents. Neonates had higher gene expression of PTHrP, Wnt-5b, sFRP3, Lrp6, and RARG in cartilage canal chondrocytes than pre-adolescents, while Ihh, Wnt-11, Lrp4, and Dkk1 were significantly higher in pre-adolescents. Immunostaining was higher for β-catenin and Wnt-11 in pre-adolescent osteochondral junction cartilage than neonates. No differences were found between age groups for Wnt-4 immunostaining. Dkk1 protein expression was significantly higher in the middle cartilage layer of pre-adolescents than neonates. Immunostaining was greater for Ihh and PTHrP in the deep cartilage layer of pre-adolescents than neonates. PDGF, VEGF, and MMP13 protein expression was higher in the superficial cartilage layer of pre-adolescents than neonates. Discussion. Wnt/β-catenin and Ihh/PTHrP signaling regulate cartilage differentiation during development and are important in endochondral ossification. This study revealed cell-specific, age-related differences in gene/protein expression of both regulatory pathways. Cells surrounding cartilage canals typically appeared small/rounded compared to larger chondrocytes along osteochondral junctions, likely due to different developmental stages. Higher PTHrP gene expression along cartilage canals and Ihh expression along osteochondral junctions may reflect these stages, suggesting paracrine feedback in articular-epiphyseal cartilage. β-catenin signaling may induce chondrocyte hypertrophy, potentially by enhancing Ihh and MMP-13 expression. Differential expression of canonical(β-catenin, Wnt-4, Lrp4, Lrp6) and noncanonical Wnt signalling(Wnt-5b, Wnt-11) and Wnt inhibitors (Dkk1, Axin1, sFRP3, sFRP5, Wif-1) surrounding cartilage canals and osteochondral junctions provides evidence of age-related interactions during postnatal development


Bone & Joint Research
Vol. 7, Issue 5 | Pages 343 - 350
1 May 2018
He A Ning Y Wen Y Cai Y Xu K Cai Y Han J Liu L Du Y Liang X Li P Fan Q Hao J Wang X Guo X Ma T Zhang F

Aim

Osteoarthritis (OA) is caused by complex interactions between genetic and environmental factors. Epigenetic mechanisms control the expression of genes and are likely to regulate the OA transcriptome. We performed integrative genomic analyses to define methylation-gene expression relationships in osteoarthritic cartilage.

Patients and Methods

Genome-wide DNA methylation profiling of articular cartilage from five patients with OA of the knee and five healthy controls was conducted using the Illumina Infinium HumanMethylation450 BeadChip (Illumina, San Diego, California). Other independent genome-wide mRNA expression profiles of articular cartilage from three patients with OA and three healthy controls were obtained from the Gene Expression Omnibus (GEO) database. Integrative pathway enrichment analysis of DNA methylation and mRNA expression profiles was performed using integrated analysis of cross-platform microarray and pathway software. Gene ontology (GO) analysis was conducted using the Database for Annotation, Visualization and Integrated Discovery (DAVID).


Bone & Joint Research
Vol. 5, Issue 6 | Pages 218 - 224
1 Jun 2016
Cheng N Guo A Cui Y

Objectives

Recent studies have shown that systemic injection of rapamycin can prevent the development of osteoarthritis (OA)-like changes in human chondrocytes and reduce the severity of experimental OA. However, the systemic injection of rapamycin leads to many side effects. The purpose of this study was to determine the effects of intra-articular injection of Torin 1, which as a specific inhibitor of mTOR which can cause induction of autophagy, is similar to rapamycin, on articular cartilage degeneration in a rabbit osteoarthritis model and to investigate the mechanism of Torin 1’s effects on experimental OA.

Methods

Collagenase (type II) was injected twice into both knees of three-month-old rabbits to induce OA, combined with two intra–articular injections of Torin 1 (400 nM). Degeneration of articular cartilage was evaluated by histology using the Mankin scoring system at eight weeks after injection. Chondrocyte degeneration and autophagosomes were observed by transmission electron microscopy. Matrix metallopeptidase-13 (MMP-13) and vascular endothelial growth factor (VEGF) expression were analysed by quantitative RT-PCR (qPCR).Beclin-1 and light chain 3 (LC3) expression were examined by Western blotting.


Bone & Joint Research
Vol. 3, Issue 3 | Pages 51 - 59
1 Mar 2014
Kim HJ Braun HJ Dragoo JL

Background

Resveratrol is a polyphenolic compound commonly found in the skins of red grapes. Sirtuin 1 (SIRT1) is a human gene that is activated by resveratrol and has been shown to promote longevity and boost mitochondrial metabolism. We examined the effect of resveratrol on normal and osteoarthritic (OA) human chondrocytes.

Methods

Normal and OA chondrocytes were incubated with various concentrations of resveratrol (1 µM, 10 µM, 25 µM and 50 µM) and cultured for 24, 48 or 72 hours or for six weeks. Cell proliferation, gene expression, and senescence were evaluated.


Bone & Joint Research
Vol. 3, Issue 11 | Pages 310 - 316
1 Nov 2014
Tomaszewski R Bohosiewicz J Gap A Bursig H Wysocka A

Objectives

The aim of this experimental study on New Zealand’s white rabbits was to investigate the transplantation of autogenous growth plate cells in order to treat the injured growth plate. They were assessed in terms of measurements of radiological tibial varus and histological characteristics.

Methods

An experimental model of plate growth medial partial resection of the tibia in 14 New Zealand white rabbits was created. During this surgical procedure the plate growth cells were collected and cultured. While the second surgery was being performed, the autologous cultured growth plate cells were grafted at the right tibia, whereas the left tibia was used as a control group.