Objectives. The objective of this study was to quantify the relative movement between the
INTRODUCTION. Tibiofemoral contact at the base of the
Introduction. The hip-knee-ankle (HKA) angle between the mechanical axis of the femur (FM) and the mechanical axis of the tibia (TM) is the standard parameter to assess the coronal alignment of the lower extremity. TM is the line between the center of the tibial spines notch (Point T) and the center of the tibial plafond. However, this theory is based on the premise that TM coincides the anatomical axis of the tibia (TA). Fig.1a shows typical varus knee with medial shift of the tibial
In vivo oxidative degradation in ultra-high molecular weight polyethylene (UHMWPE) has gained significant attention in recent years, especially with the discovery of unanticipated oxidation in retrieved highly cross-linked bearings. While significant attention has been paid to mechanical property changes caused by oxidation, there has been little focus on understanding how wear rates are affected by these in vivo changes. Recent work has demonstrated the possibility of machining wear pins from retrieved UHMWPE bearings, but leveling of the pins removed the in vivo
Fractures of the distal humeral
Certain cases of patello-femoral maltracking can lead to
We report a study of the shapes of the tibial and femoral
Allografts of intact cartilage, isolated chondrocytes and cultured chondrocytes taken from the epiphysial growth-plate and from the
Both backside and
Bone loss involving
We have studied damage to the tibial
Restoration of joint line in total knee arthroplasty (TKA) is important for kinematics of knee and ligamentous balance. Especially in revision TKA, it may be difficult to identify the joint line. The aim of this study is to define the relationship between epicondyles and
INTRODUCTION. Contemporary PCL sacrificing Total Knee Arthroplasty (TKA) implants (CS) consist of symmetric medial and lateral tibial
Introduction. Highly crosslinked ultrahigh-molecular-weight polyethylene (XLPE) reduces wear and osteolysis in total hip arthroplasty, but it is unclear if XLPE will provide the same clinical benefit in total knee arthroplasty (TKA). Adhesive and abrasive wear generally dominate in polyethylene acetabular components, whereas fatigue wear is an important wear mechanism in polyethylene TKA tibial inserts. The wear resistance of XLPE depends on the crosslink density of the material, which may decrease during in vivo mechanical loading, leading to more wear and increased oxidation. To examine this possibility, we measured crosslink density and oxidation levels in loaded and unloaded locations of retrieved tibial inserts to evaluate the short-term performance of XLPE material in TKA. Materials and Methods. Forty retrieved XLPE tibial inserts (23 remelted, 17 annealed) retrieved after a mean time of 18 ± 14 months were visibly inspected to identify loaded (burnished) and unloaded (unburnished) locations on the plateaus of each insert using a previously published damage mapping method. For each insert, four cubes (3 mm3) were cut from loaded and unloaded surface and subsurface locations (Fig. 1). Swell ratio testing was done according to ASTM F2214 to calculate crosslink density of the cubes. With a microtome, 200 μm sections were taken adjacent to the cubes and oxidation was assessed with Fourier transform infrared spectroscopy following ASTM F2102 (Fig. 2). Surface oxidation was measured in the sections adjacent the surface cubes and subsurface oxidation was measured in sections adjacent to the subsurface cubes. The effects of location (surface vs. subsurface in the loaded and unloaded regions) and thermal treatment (annealed vs. remelted) on crosslink density and oxidation were assessed with repeated measures generalized estimating equations (GEEs), with the implant treated as the repeated factor. Results are presented as means and 95% confidence intervals and the level of significance was α=0.05. Results. Crosslink density was associated with location within the polyethylene tibial inserts (p<0.001), while oxidation was associated with both location (p<0.001) and heat treatment (p=0.003). The loaded surface (location 1 in Fig. 1) had 13% lower crosslink density than all other locations (p<0.001 for each), and greater oxidation than all other locations (Fig. 3). Specifically, oxidation of the loaded surface was 0.29[0.17,0.40] greater (two times greater) than that of the unloaded surface (p < 0.001), whereas subsurface areas of loaded and unloaded regions differed by only 0.03[0.00,0.07] (p<0.022). Additionally, surface oxidation was over 7-fold greater than subsurface oxidation in the loaded region (difference: 0.56[0.44,0.68], p<0.001). Annealed XLPE had 2-fold greater oxidation than remelted XLPE (difference 0.159, 95% CI = 0.045, 0.126), and this was independent of location within the inserts. Conclusions. In vivo loading of XLPE decreased the crosslink density and increased the oxidation in areas that underwent wear and deformation at the
Knee joint should be aligned for reconstruction of the function in Total Knee Replacement(TKR). Although a surgeon try to correct the alignment of a knee joint, sometimes varus/valgus alignment has been tried in order to reconstruct function of knee joint. As a result, the varus or valgus alignment affects to ligaments and soft tissue, and the contact condition is changed between femoral component and tibial insert. One of important factor, wear characteristics of an implant can be changed due to the contact condition. In this study, we performed static contact tests from extension to flexion in varus and valgus to define the effect to contact condition when the alignment is varus or valgus. LOSPA TKR femoral component #6 and Tibial insert #5 manufactured by Corentec Co., Ltd. were used as test specimens. The tests have performed with adapting ASTM F2777–10 ‘Standard Test Method for Evaluating Knee Bearing (Tibial Insert) Endurance and Deformation under High Flexion’. The test set like as Fig. 1. The load is applied at 7:3 ratio of lateral-medial by adapting gait analysis. The 5° of jig is used to compare the result in neutral, varus and valgus. The fuji films were used in tests were scanned, and the results were analyzed the compressed area and contact stress as angles of flexion in neutral stance and varus/valgus from scanning. The tests were performed 5 times per each for a reliability.Introduction
Methods
The data collected from both digitizing tools were merged into the same coordinate system and graphically represented. Paired Student’s t-tests were used to compare the inclination and retroversion angles for the two techniques.
Small deviations in the recovery of head orientation in shoulder arthroplasty may impact on the longevity of an implant. The differences in inclination and retroversion noted in this study may alter the load on the glenoid and/or rotator cuff mechanism in joint replacement. Further research is necessary.
In an attempt to repair articular cartilage, allograft articular chondrocytes embedded in collagen gel, were transplanted into full-thickness defects in rabbit articular cartilage. Twenty-four weeks after the transplantation, the defects were filled with hyaline cartilage, specifically synthesising Type II collagen. These chondrocytes were autoradiographically proven to have originated from the transplanted grafts. Assessed histologically the success rate was about 80%, a marked improvement over the results reported in previous studies on chondrocyte transplantation without collagen gel. By contrast, the defects without chondrocyte transplantation healed with fibrocartilage. Immunological enhancement induced by transplanted allogenic chondrocytes or collagen was not significant at eight weeks after treatment, so far as shown by both direct and indirect blastformation reactions. Thus, allogenic transplantation of isolated chondrocytes embedded in collagen gel appears to be one of the most promising methods for the restoration of articular cartilage.
We describe a lumbar facet syndrome in which disabling symptoms are associated with normal or near-normal plain radiographs. Local spinal fusion relieved symptoms in 12 patients; the excised facet joint surfaces showed some of the histological changes seen in chondromalacia patellae and in osteoarthritis of other large joints. The most frequent change was focal full-thickness cartilage necrosis or loss of cartilage with exposure of subchondral bone, but osteophyte formation was remarkably absent in all specimens. We suggest that there are both clinical and histological similarities between the facet arthrosis syndrome and chondromalacia patellae. Facet arthrosis may be a relatively important cause of intractable back pain in young and middle-aged adults.
We undertook this study to determine the minimum
amount of coronoid necessary to stabilise an otherwise intact elbow
joint. Regan–Morrey types II and III, plus medial and lateral oblique
coronoid fractures, collectively termed type IV fractures, were
simulated in nine fresh cadavers. An electromagnetic tracking system
defined the three-dimensional stability of the ulna relative to
the humerus. The coronoid surface area accounts for 59% of the anterior articulation.
Alteration in valgus, internal and external rotation occurred only
with a type III coronoid fracture, accounting for 68% of the coronoid
and 40% of the entire
Hip joint biomechanics can be altered by abnormal morphology of the acetabulum and/or femur. This may affect load distribution and contact stresses on the