Abstract
Both backside and articular surface wear have been linked to osteolysis after total knee arthroplasty (TKA). Prostheses with cementless fixation, screw holes in high load regions, and thin polyethylene are susceptible to backside wear. Factors associated with articular wear are similarly well defined. Micromotion at the modular polyethylene interface has been reported for many prostheses, but the relevance of such data compared to articular motions and wear are difficult to appreciate. This study compares in vivo motions and wear occurring at the backside and articular surfaces after TKA.
Contemporary PCL-retaining prostheses from one manufacturer were implanted by one surgeon using cement fixation. The polyethylene inserts were > 6mm thick with a full peripheral rim capture and anterior wire locking mechanism. Femoral condylar motions were measured in 20 knees using fluoroscopic analysis during stair and gait activities. All patients had good to excellent clinical outcomes at one year follow-up. Articular and backside surface damage was evaluated on 32 polyethylene inserts retrieved after 27 months (1 to 71) months in-situ for infection (9), autopsy (6), patellar resurfacing (4), patellar loosening (4), tibial loosening (3), osteolysis (2), and other (4).
Femoral condylar translation over the polyethylene articular surface ranged from 5-10 mm, which is substantially larger than the reported 50-500 micron range of backside interface micromotion measured in vitro. Damage covered < 33% of the backside surface and appeared as a cast impression of the opposed metal tibial component without scratches associated with micromotion. In contrast, damage consisting predominantly of scratching, burnishing and tractive striations covered 46% of the articular surface.
Different locking mechanisms for modular polyethylene inserts result in different degrees of backside wear. No significant backside wear was observed these retrieved inserts with a wire-supplemented peripheral capture. Given the abrasive wear mechanisms and particulate debris shed during femoral condylar sliding, efforts to control motions at the articular surface appear warranted.
The abstracts were prepared by Nico Verdonschot. Correspondence should be addressed to him at Orthopaedic Research Laboratory, University Medical Centre, PO Box 9101, 6500 HB Nijmegen, The Netherlands.