Abstract
In vivo oxidative degradation in ultra-high molecular weight polyethylene (UHMWPE) has gained significant attention in recent years, especially with the discovery of unanticipated oxidation in retrieved highly cross-linked bearings. While significant attention has been paid to mechanical property changes caused by oxidation, there has been little focus on understanding how wear rates are affected by these in vivo changes. Recent work has demonstrated the possibility of machining wear pins from retrieved UHMWPE bearings, but leveling of the pins removed the in vivo articular surface.[1] The goal of this study is to determine whether wear pins can be produced utilizing the native articular surface.
Three materials were used for this study: a short-duration retrieved mobile-bearing conforming tibial insert with minimal oxidation (non-oxidized); a shelf-aged, oxidized, non-conforming fixed bearing tibial insert (oxidized); and standard NIST 1050 bar stock (NIST). Utilizing both conforming and non-conforming devices tests the technique over a range of articular curvatures, while testing a highly oxidized material tests the feasibility of maintaining the native surface when machining wear pins with compromised mechanical properties.
FTIR analysis was performed at the articular surface of the devices near where the pins were taken, using ketone peak height as an indicator of oxidation. Wear rates were determined using a six station AMTI OrthoPod with an applied load of 100 N in multidirectional motion for a total of 2 million cycles.
The oxidized material had a surface ketone level of 0.26, the non-oxidized device had a ketone level of 0.05, and the NIST sample had a ketone level less than 0.01. Two pins of each material were machined to ¼″ diameter with a length of the through thickness of the tibial inserts; soak controls were also produced.
Figure 1 shows mass loss data for all six pins tested. Wear rates between the two pins of each group were fairly repeatable, and the wear rates of the different groups could be easily differentiated. The pins machined from NIST bar stock showed the best match-up, but pins machined from retrieved devices also showed good repeatability, with the non-conforming device showing better results than the conforming device.
The ability to produce repeatable wear results with pins machined from in vivo devices is an important step in understanding how the wear rate changes over time in vivo. By maintaining the native articular surface, this test will give a more true representation of the in-vivo wear rate. This method will enable future investigations into how wear rates are affected by oxidation, absorbed chemical species, or other changes that occur in vivo.