To create a comprehensive, user-friendly, database that facilitates selection of optimized
Introduction. Degenerative meniscal tears are the most common meniscal lesions, representing huge clinical and socio-economic burdens. Their role in knee osteoarthritis (OA) onset and progression is well established and demonstrated by several retrospective studies. Effective preventive measures and non-surgical treatments for degenerative meniscal lesions are still lacking, also because of the lack of specific and accurate
Stem cells represent an exciting biological therapy for the management of many musculoskeletal tissues that suffer degenerative disease and/or where the reparative process results in non-functional tissue (‘failed healing’). The original hypothesis was that implanted cells would differentiate into the target tissue cell type and synthesise new matrix. However, this has been little evidence that this happens in live
Introduction. Femoral head osteonecrosis (FHO) is a condition in which the inadequate blood supply disrupts osteogenic-angiogenic coupling that results in diminishment of femoral perfusion and ends up with FHO. The insufficient knowledge on molecular background and progression pattern of FHO and the restrictions in obtaining human samples bring out the need for a small
Objectives. The treatment of osteoporotic fractures is a major challenge, and the enhancement of healing is critical as a major goal in modern fracture management. Most osteoporotic fractures occur at the metaphyseal bone region but few models exist and the healing is still poorly understood. A systematic review was conducted to identify and analyse the appropriateness of current osteoporotic metaphyseal fracture
Surgeons treating fractures with many small osteochondral fragments have often expressed the clinical need for an adhesive to join such fragments, as an adjunct to standard implants. If an adhesive would maintain alignment of the articular surfaces and subsequently heal it could result in improved clinical outcomes. However, there are no bone adhesives available for clinical indications and few pre-clinical models to assess safety and efficacy of adhesive biomaterial candidates. A bone adhesive candidate based on water, α-TCP and an amino acid phosphoserine was evaluated in-vivo in a novel murine bone core model (preliminary results presented EORS 2019) in which excised bone cores were glued back in place and harvested @ 0, 3, 7, 14, 28 and 42days. Adhesive pull-out strength was demonstrated 0–28 days, with a dip at 14 days increasing to 11.3N maximum. Histology 0–42 days showed the adhesive progressively remodelling to bone in both cancellous and cortical compartments with no signs of either undesirable inflammation or peripheral ectopic bone formation. These favourable results suggested translation to a large
Cell-based therapies offer a promising strategy to treat tendon injuries and diseases. Both mesenchymal stromal cells (MSCs) and pluripotent stem cells (PSCs) are good candidates for such applications due to their self-renewing and differentiation capacity. However, the translation of cell-based therapies from bench to bedside can be hindered by the use of animal-derived components in ancillary materials and by the lack of standardised media and protocols for in vitro tenogenic differentiation. To address this, we have optimized
Objectives. We studied subchondral intraosseous pressure (IOP) in an
Objectives. During open orthopaedic surgery, joints may be exposed to air, potentially leading to cartilage drying and chondrocyte death, however, the long-term effects of joint drying in vivo are poorly understood. We used an
INTRODUCTION. In the treatment of nonunions, and other complications of bone repair, an attractive alternative to bone autografts would be the use of a combination of autologous mesenchymal progenitors cells (MSCs), biomaterials and growth factors. Our goal was to determine the therapeutic potential and contribution to the repair process of different sources of mesenchymal stem cells for the treatment of nonunions. METHODS. The right femur of Sprague-Dawley (SD) rats was stabilized with an aluminum plate (20 mm long, 4 mm wide, 2 mm thick) and four screws (1.5 mm diameter, 8 mm long). A diaphyseal critical size defect was performed (5 mm). Six groups (n=6–8
In vivo
Summary. Our results prove that Demineralised Cortical Bone (DCB) can be used as biological tendon graft substitute, combined with correct surgical technique and the use of suture bone anchor early mobilisation can be achieved. Introduction. Surgical repair of tendon injuries aims to restore length, mechanical strength and function. In severe injuries with loss of tendon substance a tendon graft or a substitute is usually used to restore functional length. This is usually associated with donor site morbidity, host tissue reactions and lack of remodelling of the synthetic substitutes which may result in suboptimal outcome. In this study we hypothesise that DCB present in biological tendon environment with early mobilisation and appropriate tension will result in remodelling of the DCB into ligament tissue rather that ossification of the DCB at traditional expected. Our preparatory cadaveric study (abstract submitted to CORS 2013) showed that the repair model used in this
Objectives. To compare the therapeutic potential of tissue-engineered constructs (TECs) combining mesenchymal stem cells (MSCs) and coral granules from either Acropora or Porites to repair large bone defects. Materials and Methods. Bone marrow-derived, autologous MSCs were seeded on Acropora or Porites coral granules in a perfusion bioreactor. Acropora-TECs (n = 7), Porites-TECs (n = 6) and bone autografts (n = 2) were then implanted into 25 mm long metatarsal diaphyseal defects in sheep. Bimonthly radiographic follow-up was completed until killing four months post-operatively. Explants were subsequently processed for microCT and histology to assess bone formation and coral bioresorption. Statistical analyses comprised Mann-Whitney, t-test and Kruskal–Wallis tests. Data were expressed as mean and standard deviation. Results. A two-fold increaseof newly formed bone volume was observed for Acropora-TECs when compared with Porites-TECs (14 . sd. 1089 mm. 3. versus 782 . sd. 507 mm. 3. ; p = 0.09). Bone union was consistent with autograft (1960 . sd. 518 mm. 3. ). The kinetics of bioresorption and bioresorption rates at four months were different for Acropora-TECs and Porites-TECs (81% . sd. 5% versus 94% . sd. 6%; p = 0.04). In comparing the defects that healed with those that did not, we observed that, when major bioresorption of coral at two months occurs and a scaffold material bioresorption rate superior to 90% at four months is achieved, bone nonunion consistently occurred using coral-based TECs. Discussion. Bone regeneration in critical-size defects could be obtained with full bioresorption of the scaffold using coral-based TECs in a large
Repair of tendon injuries aims to restore length, mechanical strength and function. We hypothesise that Demineralised Cortical Bone (DCB) present in biological tendon environment will result in remodelling of the DCB into ligament tissue. A cadaveric study was carried out to optimize the technique. The distal 1cm of the patellar tendon was excised and DCB was used to bridge the defect. 4 models were examined, Model-1: one anchor, Model-2: 2 anchors, Model-3: 2 anchors with double looped off-loading thread, Model-4: 2 anchors with 3 threads off-loading loop. 6 mature sheep undergone surgical resection of the distal 1cm of the right patellar tendon. Repair was done using DCB with 2 anchors. Immediate mobilisation was allowed,
The biomechanical evaluation of tendon repair with collagen-based scaffolds in rat model is a common method to determine the functional outcome of the tested material. We introduced a magnetic resonance imaging (MRI) approach to verify the biomechanical test data. In present study different collagen scaffolds for tendon repair were examined. Two collagen test materials: based on bovine stabilized collagen, chemically cross-linked with oriented collagenous fibres (material 1) and based on porcine dermal extracellular matrix, with no cross-linking (material 2) were compared. The
Rebound growth after hemiepiphysiodesis may be
a normal event, but little is known about its causes, incidence
or factors related to its intensity. The aim of this study was to
evaluate rebound growth under controlled experimental conditions. A total of 22 six-week-old rabbits underwent a medial proximal
tibial hemiepiphysiodesis using a two-hole plate and screws. Temporal
growth plate arrest was maintained for three weeks, and animals
were killed at intervals ranging between three days and three weeks
after removal of the device. The radiological angulation of the proximal
tibia was studied at weekly intervals during and after hemiepiphysiodesis.
A histological study of the retrieved proximal physis of the tibia
was performed. The mean angulation achieved at three weeks was 34.7° (standard
deviation ( In our rabbit model, rebound was an event of variable incidence
and intensity and, when present, did not appear immediately after
restoration of growth, but took some time to appear. Cite this article:
Aging impairs the regenerative capacity of musculoskeletal tissues and is associated with poor healing outcomes. PolgAD257A/D257A (PolgA) mice present a premature aging phenotype due to the accumulation of mitochondrial DNA (mtDNA) point mutations at rates 3 – 5 fold higher compared to wild type mice. Consequently, PolgA mice exhibit the premature onset of clinically-relevant musculoskeletal aging characteristics including frailty, osteo-sarcopenia, and kyphosis. I will present our recent findings on the use of PolgA mice to investigate the effects of aging on the regenerative capacity of bone. In particular, I will focus on the mechano-sensitivity of the regenerative process in aged bone environments and the opportunities it presents for clinical translation of mechanical intervention therapies.
The cartilage diseases such as osteoarthritis and chondral injuries are considered irreversible and the result of recent treatments remains not optimal. One of the reasons is due to the poor understanding of chondrocyte behaviours. To understand more about cartilage, we designed a series of novel experiments. First, a total joint of bovine metatarsophalanges was isolated as our novel model. We chose it because the configuration and the healing potential were similar to human, and many variables of large
Nitrogen-containing bisphosphonates such as Zoledronic Acid (ZA) are used clinically for the treatment of skeletal diseases related with increased bone resorption. The gold standard is to administrate the drug through a systemic pathway, however this is often associated with high dosages, risk of side-effects, reduced site-specific drug delivery and hence, limited drug-effectiveness. A controlled local drug delivery, via a biomimetic bone graft, could be beneficial by direct and time-regulated application of significantly lower drug dosage at the site of interest. Thus, higher efficacy and reduced side-effects could be expected. In this experimental in vivo study, we examined the effect of ZA when used together with a Calcium Sulphate/Hydroxyapatite biomaterial in a femoral condyle bone defect in rats and compared local to systemic administration. The following groups were used: group1: empty defect (no biomaterial & no treatment), group2: biomaterial alone, group3: biomaterial + systemic ZA (0.1mg ZA/kg – single subcutaneous injection), group4–6: biomaterial conjugated with ZA at different concentrations, (0.07 to 0.70 mg ZA/mL of paste, corresponding to 0.0024 to 0.024 mg ZA/kg). The
Summary Statement. Novel radiopaque UHMWPE sublaminar cables may be a promising alternative to gliding pedicle screws or titanium sublaminar cables within a growth-guidance system for the surgical treatment of early onset scoliosis. Introduction. Growth-guidance or self-lengthening rod systems are an alternative to subcutaneous growing rods and the vertical expandable prosthetic titanium rib for the treatment of early onset scoliosis. Their main perceived advantage over growing rods is the marked decrease in subsequent operative procedures. The Shilla growth-guidance system and a modern Luque trolley are examples of such systems; both depend on gliding pedicle screws and/or sliding titanium sublaminar wires. However, the unknown consequences of metal-on-metal wear debris are reason for concern especially in young patients. In this study, instrumentation stability, residual growth in the operated segment after surgery and biocompatibility of the novel radiopaque UHMWPE cables as an alternative to gliding pedicles screws or titanium sublaminar wires were assessed in an immature sheep model. Materials and methods. Twelve immature sheep were treated with segmental sublaminar spinal instrumentation: dual CoCr rods were held in place by pedicle screws at the most caudal instrumented level (L5) and novel radiopaque UHMWPE (Bi. 2. O. 3. additive) woven cables were placed at 5 thoracolumbar levels. Lateral radiographs were taken at 4-week intervals to evaluate growth of the instrumented segment. Four age-matched, unoperated