Advertisement for orthosearch.org.uk
Results 1 - 20 of 24
Results per page:
Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_7 | Pages 128 - 128
4 Apr 2023
Li M Wu G Liu Y
Full Access

Miniscrew implants (MSIs) are widely used to provide absolute anchorage for the orthodontic treatment. However, the application of MSIs is limited by the relatively high failure rate (22.86%). In this study, we wished to investigate the effects of amorphous and crystalline biomimetic calcium phosphate coating on the surfaces of MSIs with or without the incorporated BSA for the osteointegration process with an aim to facilitate the early loading of MSIs. Amorphous and crystalline coatings were prepared on titanium mini-pin implants. Characterizations of coatings were examined by Scanning electron microscopy (SEM), Confocal laser-scanning dual-channel-fluorescence microscopy (CLSM) and Fourier-transform infrared spectroscopy (FTIR). The loading and release kinetics of bovine serum albumin (BSA) were evaluated by Enzyme linked immunosorbent assay (ELISA). Activity of alkaline phosphate (ALP) was measured by using the primary osteoblasts. In vivo, a model of metaphyseal tibial implantation in rats was used (n=6 rats per group). We had 6 different groups: no coating no BSA, no coating but with surface adsorption of BSA and incorporation of BSA in the biomimetic coating in the amorphous and crystalline coatings. Time points were 3 days, 1, 2 and 4 weeks. Histological and histomorphometric analysis were performed and the bone to implant contact (BIC) of each group was compared. In vitro, the incorporation of BSA changed the crystalline coating from sharp plates into curly plates, and the crystalline coating showed slow-release profile. The incorporation of BSA in crystalline coating significantly decreased the activity of ALP in vitro. In vivo study, the earliest significant increase of BIC appeared in crystalline coating group at one week. The crystalline coating can serve as a carrier and slow release system for the bioactive agent and accelerate osteoconductivity at early stage in vivo. The presence of BSA is not favorable for the early establishment of osteointegration


The Journal of Bone & Joint Surgery British Volume
Vol. 79-B, Issue 5 | Pages 816 - 819
1 Sep 1997
An YH Bradley J Powers DL Friedman RJ

We evaluated the effects of a serum protein coating on prosthetic infection in 29 adult male rabbits divided into three groups: control, albumin-coated and uncoated. We used 34 grit-blasted, commercially pure titanium implants. Eleven were coated with cross-linked albumin. All the implants were exposed to a suspension of Staphylococcus epidermidis before implantation. Our findings showed that albumin-coated implants had a much lower infection rate (27%) than the uncoated implants (62%). This may be a useful method of reducing the infection of prostheses


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_8 | Pages 90 - 90
11 Apr 2023
Williams R Snuggs J Schmitz T Janani R Basatvat S Sammon C Benz K Ito K Tryfonidou M Le Maitre C
Full Access

Low back pain is strongly associated with degeneration of the intervertebral disc (IVD). During degeneration, altered matrix synthesis and increased matrix degradation, together with accompanied cell loss is seen particularly in the nucleus pulposus (NP). It has been proposed that notochordal (NC) cells, embryonic precursors for the cells within the NP, could be utilized for mediating IVD regeneration. However, injectable biomaterials are likely to be required to support their phenotype and viability within the degenerate IVD. Therefore, viability and phenotype of NC cells were analysed and compared within biomaterial carriers subjected to physiological oxygen conditions over a four-week period were investigated. Porcine NC cells were incorporated into three injectable hydrogels: NPgel (a L-pNIPAM-co-DMAc hydrogel), NPgel with decellularized NC-matrix powder (dNCM) and Albugel (an albumin/ hyaluronan hydrogel). The NCs and biomaterials constructs were cultured for up to four weeks under 5% oxygen (n=3 biological repeats). Histological, immunohistochemical and glycosaminoglycans (GAG) analysis were performed to investigate NC viability, phenotype and extracellular matrix synthesis and deposition. Histological analysis revealed that NCs survive in the biomaterials after four weeks and maintained cell clustering in NPgel, Albugel and dNCM/NPgel with maintenance of morphology and low caspase 3 staining. NPgel and Albugel maintained NC cell markers (brachyury and cytokeratin 8/18/19) and extracellular matrix (collagen type II and aggrecan). Whilst Brachyury and Cytokeratin were decreased in dNCM/NPgel biomaterials, Aggrecan and Collagen type II was seen in acellular and NC containing dNCM/NPgel materials. NC containing constructs excreted more GAGs over the four weeks than the acellular controls. NC cells maintain their phenotype and characteristic features in vitro when encapsulated into biomaterials. NC cells and biomaterial construct could potentially become a therapy to treat and regenerate the IVD


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_18 | Pages 11 - 11
14 Nov 2024
Maia J Bilo M Silva AS Sobreiro-Almeida R Mano J
Full Access

Introduction. Ink engineering can advance 3D-printability for better therapeutics, with optimized proprieties. Herein, we describe a methodology for yielding 3D-printable nanocomposite inks (NC) using low-viscous matrices, via the interaction between the organic and inorganic phases by chemical coupling. Method. Natural photocurable matrices were synthesized: a protein – bovine serum albumin methacrylate (BSAMA), and a polysaccharide – hyaluronic acid methacrylate (HAMA). Bioglass nanoparticles (BGNP) were synthesized and functionalized via aminosilane chemistry. The functionalization of BSAMA, HAMA, and BGNP were quantified via NMR. To arise extrudable inks, 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC) and N-Hydroxysuccinimide (NHS) chemistry was used to link innate carboxylic groups of BSAMA/HAMA and amine-functionalized BGNP. Different crosslinker and BGNP amounts were tested. Visible light photopolymerization is performed, using lithium phenyl-2,4,6-trimethylbenzoylphosphinate. The NC's rheological, mechanical, and biological behavior was evaluated before 3D extrusion printability. Result. All composite formulations effectively immobilized and homogeneously dispersed the BGNP, turning low-viscous materials (< 1 Pa) into shear-thinning formulations with tunable increased elastic/viscous moduli (50-500 Pa). More pronounced increments were found with increasing EDC/NHS and BGNP concentrations. The resulting inks produce robust and stable scaffolds successfully retrieved after post-print photocrosslinking (1-5 kPa). Bioactivity in simulated body fluid and in vitro assays using adipose-derive stem cells revealed a similar calcium/phosphate ratio to that of hydroxyapatite, and increased viability and metabolic activity. BSAMA and HAMA demonstrated distinct natures not only in printability but also in overall cellular performance and mechanical properties, making these ideal for interfacial tissue engineering. Conclusion. This strategy demonstrated being effective and reproducible to advance nanocomposites for 3D printing using different types of biomaterials. Further, we envision using both inks to produce hierarchical constructs via extrusion printing, better mimicking bone-to-cartilage interfaces. Acknowledgements. FCT grants (DOI:10.54499/2022.04605.CEECIND/CP1720/CT0021), (BI/UI89/10303/2022), (PRT/BD/154735/2023); EU's Horizon 2020 research and innovation programs InterLynk (Nº953169) and SUPRALIFE (Nº101079482) projects; CICECO-Aveiro Institute of Materials projects (DOI:10.54499/UIDB/50011/2020), (DOI:10.54499/UIDP/50011/2020), and (DOI:10.54499/LA/P/0006/2020), financed by FCT/MCTES(PIDDAC)


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_11 | Pages 62 - 62
1 Jul 2014
Abdel M Morrey M Barlowv J Grill D Kolbert C An K Steinmann S Morrey B Sanchez-Sotelo J
Full Access

Summary. Based upon genetic analysis, decorin is an exciting pharmacologic agent of potential anti-fibrogenic effect on arthrofibrosis in our animal model. Introduction. While the pathophysiology of arthrofibrosis is not fully understood, some anti-fibrotic molecules such as decorin could potentially be used for the prevention or treatment of joint stiffness. The goal of this study was to determine whether intra-articular administration of decorin influences the expression of genes involved in the fibrotic cascade ultimately leading to less contracture in an animal model. Material and Methods. Eighteen rabbits had their right knees operated on to form contractures. The left knees served as controls. The 6 right limbs in the experimental group (Group 1) received four 500 ug/ml intra-articular injections of decorin over 8 days starting at 8 week, for a total of 2 mg. The 6 right limbs in the first control group (Group 2) received four intra-articular injections of bovine serum albumin (BSA) over 8 days starting at 8 weeks as well. The 6 six right limbs in the second control group (Group 3) received no injections. The contracted limbs of rabbits in Group 1 were biomechanically and genetically compared to the contracted limbs of rabbits in Groups 2 and 3 with the use of a calibrated joint measuring device and custom microarray, respectively. Results. There was no statistical difference in the flexion contracture angles between those right limbs that received intra-articular decorin versus those that received intra-articular BSA (66° vs. 69°; p = 0.41). Likewise, there was no statistical difference between those right limbs that received intra-articular decorin as opposed to those who had no injection (66° vs. 72°; p = 0.27). The lack of significance remained when the control left limbs were taken into account (p > 0.40). When compared to bovine serum albumin (BSA), decorin led to a statistically significant increase in the mRNA expression of 5 genes: substance P, neuropeptide γ, and neurokinin A, cyclin E2, and MMP-9 (p < 0.001). In addition, there was a statistically significant decrease in fibroblast growth factor receptor-2 (FGFR-2), rho-associated coiled-coil containing protein kinase-1 (ROCK-1), and vascular cell adhesion molecule-1 (VCAM-1) genes when intra-articular decorin was compared to no injection (p < 0.001). Conclusions. In this model, when administered intra-articularly at 8 weeks, 2 mg of decorin had no significant effect on joint contractures. However, our genetic analysis revealed a significant alteration in the expression of several fibrotic genes. Further studies investigating the route of administration, dosing, frequency, and timing are required before definitive conclusions may be drawn on the effects of decorin on joint contractures


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXVI | Pages 51 - 51
1 Aug 2012
Scholes S Joyce T
Full Access

Although bovine serum is the lubricant recommended by several international standards for the wear testing of orthopedic biomaterials there are issues over its use. The inherent batch variation in protein content means that two bovine serum lubricants can give different wear rates. Due to degradation, the lubricant needs to be changed regularly, so that any third body wear particles are removed, thus potentially influencing wear regimes. There are also cost and safety issues with the use of bovine serum. For these reasons, alternative lubricants were investigated. A 50-station wear test rig was used, which applied multi-directional motion to each ultra-high molecular weight polyethylene (UHMWPE) test pin. Each pin articulated against a cobalt chrome plate polished to better than 0.05 microns Ra. The following lubricants were used: 50% dilute bovine serum; soy protein; olive oil; wheatgerm oil; soya oil; albumin and globulin (AG) mix; albumin, globulin and chondroitin sulphate (AGC) mix; whole milk; Channel Island milk; 11 mg/ml protein egg white; 20 mg/ml egg white; and 40 mg/ml egg white. A minimum of 6 UHMWPE pins per lubricant were wear tested and the tests ran to 2.5 million cycles. Gravimetric measurements were taken throughout the test to determine the volume of wear and at the end of the test the samples were examined using a SEM. The lubricants giving the closest results to bovine serum were 20 and 40 mg/ml egg white, with mean UHMWPE total wear volumes of 17.4 mm3 and 17.8 mm3 compared to bovine serum which gave 20.7 mm3. Surface topographies showed similar features too. The 11 mg/ml egg white lubricant and the AG and AGC lubricants were next closest in terms of wear. An UV absorbance assay found that all the protein based lubricants suffered from a high degradation rate, and the rate increased with increasing protein content. Egg white may offer a less expensive alternative to dilute bovine serum as a test lubricant although it is likely that it too would need to be changed as regularly as bovine serum


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_2 | Pages 6 - 6
1 Jan 2019
Yu K Blumenthal D Bass S Hagan ML Castro A Jr TG Mcneil PL Mcgee-Lawrence ME
Full Access

Osteocytes direct bone adaptation to mechanical loading (e.g., exercise), but the ways in which osteocytes detect loading remain unclear. We recently showed that osteocytes develop repairable plasma membrane disruptions (PMD) in response to treadmill-running exercise, and that these PMD initiate mechanotransduction. As treadmill running is a non-voluntary activity for rodents, our current goal was to determine whether osteocytes develop PMD with voluntary wheel running as a better model of physiological exercise. Male and female Hsd:ICR mice from lines selectively bred (>75 generations) to demonstrate high voluntary wheel running (“High Runners”) or non-selected control lines (“Control”) were studied (n=9 to 12 mice per sex per line, 4 lines each). At 12 weeks of age, half of the animals within each group were provided access to running wheels for 6 days while remaining mice had no wheel access. Tibias were collected at sacrifice and bone mineral density was analyzed by DXA. Osteocyte PMD were quantified by immunochemistry for intracellular albumin. Groups were compared with 3-factor ANOVA. Voluntary exercise (wheel access) significantly increased osteocyte PMD (+16.4%, p=0.013). PMD-labelled osteocytes did not differ between sexes (p=0.415). Male mice had significantly greater BMD (p=0.0007) and BMC (<0.0001) than females. Interestingly, mice with wheel access had significantly lower BMD and BMC compared to mice without wheel access (p<0.004), and high runner lines had significantly lower BMD (p=0.001) and BMC (p<0.0001) than control lines. This may reflect new bone formation in the exercising mice, as newly formed bone is less mineralized than older bone. Data from this experiment support the idea that loading-induced disruptions develop in the osteocyte plasma membrane during both voluntary (wheel running) and forced (treadmill, shown previously) physical activity. These studies support the role of plasma membrane disruptions as a mechanosensation mechanism in osteocytes


Bone & Joint Research
Vol. 7, Issue 2 | Pages 157 - 165
1 Feb 2018
Sun Y Kiraly AJ Sun AR Cox M Mauerhan DR Hanley EN

Objectives

The objectives of this study were: 1) to examine osteophyte formation, subchondral bone advance, and bone marrow lesions (BMLs) in osteoarthritis (OA)-prone Hartley guinea pigs; and 2) to assess the disease-modifying activity of an orally administered phosphocitrate ‘analogue’, Carolinas Molecule-01 (CM-01).

Methods

Young Hartley guinea pigs were divided into two groups. The first group (n = 12) had drinking water and the second group (n = 9) had drinking water containing CM-01. Three guinea pigs in each group were euthanized at age six, 12, and 18 months, respectively. Three guinea pigs in the first group were euthanized aged three months as baseline control. Radiological, histological, and immunochemical examinations were performed to assess cartilage degeneration, osteophyte formation, subchondral bone advance, BMLs, and the levels of matrix metalloproteinse-13 (MMP13) protein expression in the knee joints of hind limbs.


Bone & Joint Research
Vol. 5, Issue 11 | Pages 569 - 576
1 Nov 2016
Akahane M Shimizu T Kira T Onishi T Uchihara Y Imamura T Tanaka Y

Objectives

To assess the structure and extracellular matrix molecule expression of osteogenic cell sheets created via culture in medium with both dexamethasone (Dex) and ascorbic acid phosphate (AscP) compared either Dex or AscP alone.

Methods

Osteogenic cell sheets were prepared by culturing rat bone marrow stromal cells in a minimal essential medium (MEM), MEM with AscP, MEM with Dex, and MEM with Dex and AscP (Dex/AscP). The cell number and messenger (m)RNA expression were assessed in vitro, and the appearance of the cell sheets was observed after mechanical retrieval using a scraper. β-tricalcium phosphate (β-TCP) was then wrapped with the cell sheets from the four different groups and subcutaneously implanted into rats.


Bone & Joint Research
Vol. 5, Issue 12 | Pages 610 - 618
1 Dec 2016
Abubakar AA Noordin MM Azmi TI Kaka U Loqman MY

In vivo animal experimentation has been one of the cornerstones of biological and biomedical research, particularly in the field of clinical medicine and pharmaceuticals. The conventional in vivo model system is invariably associated with high production costs and strict ethical considerations. These limitations led to the evolution of an ex vivo model system which partially or completely surmounted some of the constraints faced in an in vivo model system. The ex vivo rodent bone culture system has been used to elucidate the understanding of skeletal physiology and pathophysiology for more than 90 years. This review attempts to provide a brief summary of the historical evolution of the rodent bone culture system with emphasis on the strengths and limitations of the model. It encompasses the frequency of use of rats and mice for ex vivo bone studies, nutritional requirements in ex vivo bone growth and emerging developments and technologies. This compilation of information could assist researchers in the field of regenerative medicine and bone tissue engineering towards a better understanding of skeletal growth and development for application in general clinical medicine.

Cite this article: A. A. Abubakar, M. M. Noordin, T. I. Azmi, U. Kaka, M. Y. Loqman. The use of rats and mice as animal models in ex vivo bone growth and development studies. Bone Joint Res 2016;5:610–618. DOI: 10.1302/2046-3758.512.BJR-2016-0102.R2.


The Journal of Bone & Joint Surgery British Volume
Vol. 89-B, Issue 5 | Pages 693 - 700
1 May 2007
Ishii I Mizuta H Sei A Hirose J Kudo S Hiraki Y

We have investigated in vitro the release kinetics and bioactivity of fibroblast growth factor-2 (FGF-2) released from a carrier of fibrin sealant. In order to evaluate the effects of the FGF-2 delivery mechanism on the repair of articular cartilage, full-thickness cylindrical defects, 5 mm in diameter and 4 mm in depth, which were too large to undergo spontaneous repair, were created in the femoral trochlea of rabbit knees. These defects were then filled with the sealant.

Approximately 50% of the FGF-2 was released from the sealant within 24 hours while its original bioactivity was maintained. The implantation of the fibrin sealant incorporating FGF-2 successfully induced healing of the surface with hyaline cartilage and concomitant repair of the subchondral bone at eight weeks after the creation of the defect.

Our findings suggest that this delivery method for FGF-2 may be useful for promoting regenerative repair of full-thickness defects of articular cartilage in humans.


Bone & Joint Research
Vol. 3, Issue 9 | Pages 273 - 279
1 Sep 2014
Vasiliadis ES Kaspiris A Grivas TB Khaldi L Lamprou M Pneumaticos SG Nikolopoulos K Korres DS Papadimitriou E

Objectives

The aim of this study was to examine whether asymmetric loading influences macrophage elastase (MMP12) expression in different parts of a rat tail intervertebral disc and growth plate and if MMP12 expression is correlated with the severity of the deformity.

Methods

A wedge deformity between the ninth and tenth tail vertebrae was produced with an Ilizarov-type mini external fixator in 45 female Wistar rats, matched for their age and weight. Three groups were created according to the degree of deformity (10°, 30° and 50°). A total of 30 discs and vertebrae were evaluated immunohistochemically for immunolocalisation of MMP12 expression, and 15 discs were analysed by western blot and zymography in order to detect pro- and active MMP12.


Bone & Joint 360
Vol. 3, Issue 4 | Pages 35 - 38
1 Aug 2014
Hammerberg EM


Bone & Joint Research
Vol. 3, Issue 3 | Pages 76 - 81
1 Mar 2014
Okabe YT Kondo T Mishima K Hayase Y Kato K Mizuno M Ishiguro N Kitoh H

Objectives

In order to ensure safety of the cell-based therapy for bone regeneration, we examined in vivo biodistribution of locally or systemically transplanted osteoblast-like cells generated from bone marrow (BM) derived mononuclear cells.

Methods

BM cells obtained from a total of 13 Sprague-Dawley (SD) green fluorescent protein transgenic (GFP-Tg) rats were culture-expanded in an osteogenic differentiation medium for three weeks. Osteoblast-like cells were then locally transplanted with collagen scaffolds to the rat model of segmental bone defect. Donor cells were also intravenously infused to the normal Sprague-Dawley (SD) rats for systemic biodistribution. The flow cytometric and histological analyses were performed for cellular tracking after transplantation.


Objective

To study the effect of hyaluronic acid (HA) on local anaesthetic chondrotoxicity in vitro.

Methods

Chondrocytes were harvested from bovine femoral condyle cartilage and isolated using collagenase-containing media. At 24 hours after seeding 15 000 cells per well onto a 96-well plate, chondrocytes were treated with media (DMEM/F12 + ITS), PBS, 1:1 lidocaine (2%):PBS, 1:1 bupivacaine (0.5%):PBS, 1:1 lidocaine (2%):HA, 1:1 bupivacaine (0. 5%):HA, or 1:1 HA:PBS for one hour. Following treatment, groups had conditions removed and 24-hour incubation. Cell viability was assessed using PrestoBlue and confirmed visually using fluorescence microscopy.


The Journal of Bone & Joint Surgery British Volume
Vol. 88-B, Issue 2 | Pages 264 - 269
1 Feb 2006
Arora A Nadkarni B Dev G Chattopadhya D Jain AK Tuli SM Kumar S

We studied 51 patients with osteo-articular tuberculosis who were divided into two groups. Group I comprised 31 newly-diagnosed patients who were given first-line antituberculous treatment consisting of isoniazid, rifampicin, ethambutol and pyrazinamide. Group II (non-responders) consisted of 20 patients with a history of clinical non-responsiveness to supervised uninterrupted antituberculous treatment for a minimum of three months or a recurrence of a previous lesion which on clinical observation had healed. No patient in either group was HIV-positive. Group II were treated with an immunomodulation regime of intradermal BCG, oral levamisole and intramuscular diphtheria and tetanus vaccines as an adjunct for eight weeks in addition to antituberculous treatment. We gave antituberculous treatment for a total of 12 to 18 months in both groups and they were followed up for a mean of 30.2 months (24 to 49). A series of 20 healthy blood donors served as a control group.

Twenty-nine (93.6%) of the 31 patients in group I and 14 of the 20 (70%) in group II had a clinicoradiological healing response to treatment by five months.

The CD4 cell count in both groups was depressed at the time of enrolment, with a greater degree of depression in the group-II patients (686 cells/mm3 (sd 261) and 545 cells/mm3 (sd 137), respectively; p < 0.05). After treatment for three months both groups showed significant elevation of the CD4 cell count, reaching a level comparable with the control group. However, the mean CD4 cell count of group II (945 cells/mm3 (sd 343)) still remained lower than that of group I (1071 cells/mm3 (sd 290)), but the difference was not significant. Our study has shown encouraging results after immunomodulation and antituberculous treatment in non-responsive patients. The pattern of change in the CD4 cell count in response to treatment may be a reliable clinical indicator.


The Journal of Bone & Joint Surgery British Volume
Vol. 94-B, Issue 4 | Pages 564 - 569
1 Apr 2012
Pendegrass CJ El-Husseiny M Blunn GW

The success of long-term transcutaneous implants depends on dermal attachment to prevent downgrowth of the epithelium and infection. Hydroxyapatite (HA) coatings and fibronectin (Fn) have independently been shown to regulate fibroblast activity and improve attachment. In an attempt to enhance this phenomenon we adsorbed Fn onto HA-coated substrates. Our study was designed to test the hypothesis that adsorption of Fn onto HA produces a surface that will increase the attachment of dermal fibroblasts better than HA alone or titanium alloy controls.

Iodinated Fn was used to investigate the durability of the protein coating and a bioassay using human dermal fibroblasts was performed to assess the effects of the coating on cell attachment. Cell attachment data were compared with those for HA alone and titanium alloy controls at one, four and 24 hours. Protein attachment peaked within one hour of incubation and the maximum binding efficiency was achieved with an initial droplet of 1000 ng. We showed that after 24 hours one-fifth of the initial Fn coating remained on the substrates, and this resulted in a significant, three-, four-, and sevenfold increase in dermal fibroblast attachment strength compared to uncoated controls at one, four and 24 hours, respectively.


The Journal of Bone & Joint Surgery British Volume
Vol. 92-B, Issue 2 | Pages 298 - 303
1 Feb 2010
Toom A Suutre S Märtson A Haviko T Selstam G Arend A

We have developed an animal model to examine the formation of heterotopic ossification using standardised muscular damage and implantation of a beta-tricalcium phosphate block into a hip capsulotomy wound in Wistar rats. The aim was to investigate how cells originating from drilled femoral canals and damaged muscles influence the formation of heterotopic bone. The femoral canal was either drilled or left untouched and a tricalcium phosphate block, immersed either in saline or a rhBMP-2 solution, was implanted. These implants were removed at three and 21 days after the operation and examined histologically, histomorphometrically and immunohistochemically.

Bone formation was seen in all implants in rhBMP-2-immersed, whereas in those immersed in saline the process was minimal, irrespective of drilling of the femoral canals. Bone mineralisation was somewhat greater in the absence of drilling with a mean mineralised volume to mean total volume of 18.2% (sd 4.5) versus 12.7% (sd 2.9, p < 0.019), respectively.

Our findings suggest that osteoinductive signalling is an early event in the formation of ectopic bone. If applicable to man the results indicate that careful tissue handling is more important than the prevention of the dissemination of bone cells in order to avoid heterotopic ossification.


The Journal of Bone & Joint Surgery British Volume
Vol. 89-B, Issue 8 | Pages 1110 - 1114
1 Aug 2007
Biant LC Bentley G

Implantation of autologous chondrocytes and matrix autologous chondrocytes are techniques of cartilage repair used in the young adult knee which require harvesting of healthy cartilage and which may cause iatrogenic damage to the joint. This study explores alternative sources of autologous cells.

Chondrocytes obtained from autologous bone-marrow-derived cells and those from the damaged cartilage within the lesion itself are shown to be viable alternatives to harvest-derived cells. A sufficient number and quality of cells were obtained by the new techniques and may be suitable for autologous chondrocyte and matrix autologous chondrocyte implantation.


The Journal of Bone & Joint Surgery British Volume
Vol. 91-B, Issue 5 | Pages 691 - 699
1 May 2009
Amin AK Huntley JS Simpson AHRW Hall AC

The aim of this study was to determine whether subchondral bone influences in situ chondrocyte survival. Bovine explants were cultured in serum-free media over seven days with subchondral bone excised from articular cartilage (group A), subchondral bone left attached to articular cartilage (group B), and subchondral bone excised but co-cultured with articular cartilage (group C). Using confocal laser scanning microscopy, fluorescent probes and biochemical assays, in situ chondrocyte viability and relevant biophysical parameters (cartilage thickness, cell density, culture medium composition) were quantified over time (2.5 hours vs seven days). There was a significant increase in chondrocyte death over seven days, primarily within the superficial zone, for group A, but not for groups B or C (p < 0.05). There was no significant difference in cartilage thickness or cell density between groups A, B and C (p > 0.05). Increases in the protein content of the culture media for groups B and C, but not for group A, suggested that the release of soluble factors from subchondral bone may have influenced chondrocyte survival. In conclusion, subchondral bone significantly influenced chondrocyte survival in articular cartilage during explant culture.

The extrapolation of bone-cartilage interactions in vitro to the clinical situation must be made with caution, but the findings from these experiments suggest that future investigation into in vivo mechanisms of articular cartilage survival and degradation must consider the interactions of cartilage with subchondral bone.