Advertisement for orthosearch.org.uk
Results 1 - 50 of 359
Results per page:
The Bone & Joint Journal
Vol. 105-B, Issue 4 | Pages 439 - 448
15 Mar 2023
Hong H Pan X Song J Fang N Yang R Xiang L Wang X Huang C

Aims. The prevalence of scoliosis is not known in patients with idiopathic short stature, and the impact of treatment with recombinant human growth hormone on those with scoliosis remains controversial. We investigated the prevalence of scoliosis radiologically in children with idiopathic short stature, and the impact of treatment with growth hormone in a cross-sectional and retrospective cohort study. Methods. A total of 2,053 children with idiopathic short stature and 4,106 age- and sex-matched (1:2) children without short stature with available whole-spine radiographs were enrolled in the cross-sectional study. Among them, 1,056 with idiopathic short stature and 790 controls who had radiographs more than twice were recruited to assess the development and progression of scoliosis, and the need for bracing and surgery. Results. In the cross-sectional study, there was an unexpectedly higher prevalence of scoliosis (33.1% (681/2,053) vs 8.52% (350/4,106)) in children with idiopathic short stature compared with controls (odds ratio 3.722; p < 0.001), although most cases were mild. In the longitudinal study, children with idiopathic short stature had a higher risk of the development and progression of scoliosis than the controls. Among children with idiopathic short stature without scoliosis at baseline, treatment with growth hormone significantly increased the risk of developing scoliosis (p = 0.015) and the need for bracing (p < 0.001). Among those with idiopathic short stature and scoliosis at baseline, treatment with growth hormone did not increase the risk of progression of the scoliosis, the need for bracing, or surgery. Conclusion. The impact of treatment with growth hormone on scoliosis in children with idiopathic short stature was considered controllable. However, physicians should pay close attention to the assessment of spinal curves in these children. Cite this article: Bone Joint J 2023;105-B(4):439–448


Aims. The assessment of the potential pathological influence of Growth Hormone (hGH), Testosterone, Estradiol, Follicle Stimulating Hormone (FSH) and Luteinizing Hormone in the development of SCFE and the re-evaluation of the Harris theory (increased quotient of hGH/sex hormones in patients suffering from SCFE). Methods. Nineteen patients in total were included in the study. Fourteen patients (7 boys, 7 girls, 16 hips) suffering from SCFE during the proceeding of this study, formed group ‘A’. Another 5 patients (4 boys, 1 girl), that had been treated for SCFE a few years before the study, formed group ‘B’. We measured serum hGH, FSH, LH, Testosterone and Estradiol levels. Furthermore we checked all necessary anthropometrical and clinical characteristics (age, height & weight, sexual maturation, grade of slipping). Results. Thirty six out of 95 in total measurements (37,9%) revealed pathological values. The majority of group A patients had pathological values (43% of measurements). The Harris theory seems to be true in 7 out of 19 in total patients: 5 group A patients (2 boys and 3 girls) and 2 group B patients (1 boy and 1 girl). Conclusions. We believe that a temporary (?) disorder or imbalance of hGH and sexhormones, under the possible influence of FSH and LH (along with other etiologic factors) during the early years of adolescence, may play a potentially significant role in the development of SCFE


Bone & Joint Research
Vol. 6, Issue 1 | Pages 14 - 21
1 Jan 2017
Osagie-Clouard L Sanghani A Coathup M Briggs T Bostrom M Blunn G

Intermittently administered parathyroid hormone (PTH 1-34) has been shown to promote bone formation in both human and animal studies. The hormone and its analogues stimulate both bone formation and resorption, and as such at low doses are now in clinical use for the treatment of severe osteoporosis. By varying the duration of exposure, parathyroid hormone can modulate genes leading to increased bone formation within a so-called ‘anabolic window’. The osteogenic mechanisms involved are multiple, affecting the stimulation of osteoprogenitor cells, osteoblasts, osteocytes and the stem cell niche, and ultimately leading to increased osteoblast activation, reduced osteoblast apoptosis, upregulation of Wnt/β-catenin signalling, increased stem cell mobilisation, and mediation of the RANKL/OPG pathway. Ongoing investigation into their effect on bone formation through ‘coupled’ and ‘uncoupled’ mechanisms further underlines the impact of intermittent PTH on both cortical and cancellous bone. Given the principally catabolic actions of continuous PTH, this article reviews the skeletal actions of intermittent PTH 1-34 and the mechanisms underlying its effect. Cite this article: L. Osagie-Clouard, A. Sanghani, M. Coathup, T. Briggs, M. Bostrom, G. Blunn. Parathyroid hormone 1-34 and skeletal anabolic action: The use of parathyroid hormone in bone formation. Bone Joint Res 2017;6:14–21. DOI: 10.1302/2046-3758.61.BJR-2016-0085.R1


Bone & Joint Research
Vol. 9, Issue 3 | Pages 139 - 145
1 Mar 2020
Guebeli A Platz EA Paller CJ McGlynn KA Rohrmann S

Aims. To examine the relationship of sex steroid hormones with osteopenia in a nationally representative sample of men in the USA. Methods. Data on bone mineral density (BMD), serum sex hormones, dairy consumption, smoking status, and body composition were available for 806 adult male participants of the cross-sectional National Health and Nutrition Examination Survey (NHANES, 1999-2004). We estimated associations between quartiles of total and estimated free oestradiol (E2) and testosterone (T) and osteopenia (defined as 1 to 2.5 SD below the mean BMD for healthy 20- to 29-year-old men) by applying sampling weights and using multivariate-adjusted logistic regression. We then estimated the association between serum hormone concentrations and osteopenia by percentage of body fat, frequency of dairy intake, cigarette smoking status, age, and race/ethnicity. Results. Men in the lowest quartile of total E2 concentrations (< 21.52 pg/ml) had greater odds of osteopenia compared with men in the highest quartile (odds ratio (OR) 2.29, 95% confidence interval (CI) 1.11 to 4.73; p-trend = 0.030). Total and free T were not associated with osteopenia. Low total E2 concentrations were associated with greater odds of osteopenia among non-daily dairy consumers (p-trend = 0.046), current or former smokers (p-trend = 0.032), and younger men (p-trend = 0.031). No differences were observed by race/ethnicity and obesity. Conclusion. In this nationally representative study of the USA, men with lower total E2 were more likely to have osteopenia, which was particularly evident among younger men, men with less-than-daily dairy consumption, and current or former smokers. Cite this article:Bone Joint Res. 2020;9(3):139–145


The Bone & Joint Journal
Vol. 105-B, Issue 7 | Pages 723 - 728
1 Jul 2023
Raj RD Fontalis A Grandhi TSP Kim WJ Gabr A Haddad FS

There is a disparity in sport-related injuries between sexes, with females sustaining non-contact musculoskeletal injuries at a higher rate. Anterior cruciate ligament ruptures are between two and eight times more common than in males, and females also have a higher incidence of ankle sprains, patellofemoral pain, and bone stress injuries. The sequelae of such injuries can be devastating to an athlete, resulting in time out of sport, surgery, and the early onset of osteoarthritis. It is important to identify the causes of this disparity and introduce prevention programmes to reduce the incidence of these injuries. A natural difference reflects the effect of reproductive hormones in females, which have receptors in certain musculoskeletal tissues. Relaxin increases ligamentous laxity. Oestrogen decreases the synthesis of collagen and progesterone does the opposite. Insufficient diet and intensive training can lead to menstrual irregularities, which are common in female athletes and result in injury, whereas oral contraception may have a protective effect against certain injuries. It is important for coaches, physiotherapists, nutritionists, doctors, and athletes to be aware of these issues and to implement preventive measures. This annotation explores the relationship between the menstrual cycle and orthopaedic sports injuries in pre-menopausal females, and proposes recommendations to mitigate the risk of sustaining these injuries. Cite this article: Bone Joint J 2023;105-B(7):723–728


Bone & Joint Research
Vol. 11, Issue 5 | Pages 260 - 269
3 May 2022
Staats K Sosa BR Kuyl E Niu Y Suhardi V Turajane K Windhager R Greenblatt MB Ivashkiv L Bostrom MPG Yang X

Aims. To develop an early implant instability murine model and explore the use of intermittent parathyroid hormone (iPTH) treatment for initially unstable implants. Methods. 3D-printed titanium implants were inserted into an oversized drill-hole in the tibiae of C57Bl/6 mice (n = 54). After implantation, the mice were randomly divided into three treatment groups (phosphate buffered saline (PBS)-control, iPTH, and delayed iPTH). Radiological analysis, micro-CT (µCT), and biomechanical pull-out testing were performed to assess implant loosening, bone formation, and osseointegration. Peri-implant tissue formation and cellular composition were evaluated by histology. Results. iPTH reduced radiological signs of loosening and led to an increase in peri-implant bone formation over the course of four weeks (timepoints: one week, two weeks, and four weeks). Observational histological analysis shows that iPTH prohibits the progression of fibrosis. Delaying iPTH treatment until after onset of peri-implant fibrosis still resulted in enhanced osseointegration and implant stability. Despite initial instability, iPTH increased the mean pull-out strength of the implant from 8.41 N (SD 8.15) in the PBS-control group to 21.49 N (SD 10.45) and 23.68 N (SD 8.99) in the immediate and delayed iPTH groups, respectively. Immediate and delayed iPTH increased mean peri-implant bone volume fraction (BV/TV) to 0.46 (SD 0.07) and 0.34 (SD 0.10), respectively, compared to PBS-control mean BV/TV of 0.23 (SD 0.03) (PBS-control vs immediate iPTH, p < 0.001; PBS-control vs delayed iPTH, p = 0.048; immediate iPTH vs delayed iPTH, p = 0.111). Conclusion. iPTH treatment mediated successful osseointegration and increased bone mechanical strength, despite initial implant instability. Clinically, this suggests that initially unstable implants may be osseointegrated with iPTH treatment. Cite this article: Bone Joint Res 2022;11(5):260–269


The Journal of Bone & Joint Surgery British Volume
Vol. 93-B, Issue 1 | Pages 131 - 139
1 Jan 2011
Daugaard H Elmengaard B Andreassen TT Baas J Bechtold JE Soballe K

Impaction allograft is an established method of securing initial stability of an implant in arthroplasty. Subsequent bone integration can be prolonged, and the volume of allograft may not be maintained. Intermittent administration of parathyroid hormone has an anabolic effect on bone and may therefore improve integration of an implant. Using a canine implant model we tested the hypothesis that administration of parathyroid hormone may improve osseointegration of implants surrounded by bone graft. In 20 dogs a cylindrical porous-coated titanium alloy implant was inserted into normal cancellous bone in the proximal humerus and surrounded by a circumferential gap of 2.5 mm. Morsellised allograft was impacted around the implant. Half of the animals were given daily injections of human parathyroid hormone (1–34) 5 μg/kg for four weeks and half received control injections. The two groups were compared by mechanical testing and histomorphometry. We observed a significant increase in new bone formation within the bone graft in the parathyroid hormone group. There were no significant differences in the volume of allograft, bone-implant contact or in the mechanical parameters. These findings suggest that parathyroid hormone improves new bone formation in impacted morsellised allograft around an implant and retains the graft volume without significant resorption. Fixation of the implant was neither improved nor compromised at the final follow-up of four weeks


Bone & Joint Research
Vol. 8, Issue 8 | Pages 397 - 404
1 Aug 2019
Osagie-Clouard L Sanghani-Kerai A Coathup M Meeson R Briggs T Blunn G

Objectives. Mesenchymal stem cells (MSCs) are of growing interest in terms of bone regeneration. Most preclinical trials utilize bone-marrow-derived mesenchymal stem cells (bMSCs), although this is not without isolation and expansion difficulties. The aim of this study was: to compare the characteristics of bMSCs and adipose-derived mesenchymal stem cells (AdMSCs) from juvenile, adult, and ovarectomized (OVX) rats; and to assess the effect of human parathyroid hormone (hPTH) 1-34 on their osteogenic potential and migration to stromal cell-derived factor-1 (SDF-1). Methods. Cells were isolated from the adipose and bone marrow of juvenile, adult, and previously OVX Wistar rats, and were characterized with flow cytometry, proliferation assays, osteogenic and adipogenic differentiation, and migration to SDF-1. Experiments were repeated with and without intermittent hPTH 1-34. Results. Juvenile and adult MSCs demonstrated significantly increased osteogenic and adipogenic differentiation and superior migration towards SDF-1 compared with OVX groups; this was the case for AdMSCs and bMSCs equally. Parathyroid hormone (PTH) increased parameters of osteogenic differentiation and migration to SDF-1. This was significant for all cell types, although it had the most significant effect on cells derived from OVX animals. bMSCs from all groups showed increased mineralization and migration to SDF-1 compared with AdMSCs. Conclusion. Juvenile MSCs showed significantly greater migration to SDF-1 and significantly greater osteogenic and adipogenic differentiation compared with cells from osteopenic rats; this was true for bMSCs and AdMSCs. The addition of PTH increased these characteristics, with the most significant effect on cells derived from OVX animals, further illustrating possible clinical application of both PTH and MSCs in bone regenerative therapies. Cite this article:L. Osagie-Clouard, A. Sanghani-Kerai, M. Coathup, R. Meeson, T. Briggs, G. Blunn. The influence of parathyroid hormone 1-34 on the osteogenic characteristics of adipose- and bone-marrow-derived mesenchymal stem cells from juvenile and ovarectomized rats. Bone Joint Res 2019;8:397–404. DOI: 10.1302/2046-3758.88.BJR-2019-0018.R1


Bone & Joint Research
Vol. 10, Issue 8 | Pages 514 - 525
2 Aug 2021
Chen C Kang L Chang L Cheng T Lin S Wu S Lin Y Chuang S Lee T Chang J Ho M

Aims. Osteoarthritis (OA) is prevalent among the elderly and incurable. Intra-articular parathyroid hormone (PTH) ameliorated OA in papain-induced and anterior cruciate ligament transection-induced OA models; therefore, we hypothesized that PTH improved OA in a preclinical age-related OA model. Methods. Guinea pigs aged between six and seven months of age were randomized into control or treatment groups. Three- or four-month-old guinea pigs served as the young control group. The knees were administered 40 μl intra-articular injections of 10 nM PTH or vehicle once a week for three months. Their endurance as determined from time on the treadmill was evaluated before kill. Their tibial plateaus were analyzed using microcalculated tomography (μCT) and histological studies. Results. PTH increased the endurance on the treadmill test, preserved glycosaminoglycans, and reduced Osteoarthritis Research Society International score and chondrocyte apoptosis rate. No difference was observed in the subchondral plate bone density or metaphyseal trabecular bone volume and bone morphogenetic 2 protein staining. Conclusion. Subchondral bone is crucial in the initiation and progression of OA. Although previous studies have shown that subcutaneous PTH alleviates knee OA by improving subchondral and metaphyseal bone mass, we demonstrated that intra-articular PTH injections improved spontaneous OA by directly affecting the cartilage rather than the subchondral or metaphyseal bone in a preclinical age-related OA model. Cite this article: Bone Joint Res 2021;10(8):514–525


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_11 | Pages 32 - 32
1 Dec 2020
Kaymakoglu M Dede EC Korkusuz P Ozdemir E Erden ME Turhan E
Full Access

Adrenomedullin is a peptide hormone that has attracted attention with its proliferative and anti-apoptotic effects on osteoblasts in recent years. We investigated the effect of adrenomedullin on healing of the segmental bone defect in a rat model. 36 Wistar rats were randomly divided in six groups based on follow-up periods and administered dose of adrenomedullin hormone. In each group, a 2 mm bone defect was created at the diaphysis of radius, bilaterally. NaCl solution was administered to sham groups three times a week for 4 and 8 weeks, intraperitoneally. Adrenomedullin was administered to study groups three times a week; 15 µg-4 weeks, 15 µg-8 weeks, 30 µg-4 weeks and 30 µg-8 weeks, respectively. After euthanasia, the segmental defects were evaluated by histomorphometric (new bone area (NBA)) and micro-tomographic (bone volume (BV), bone surface (BS), bone mineral density (BMD)) analysis. Although 4 and 8 weeks 15 μg administered study groups had higher NBA values than the other study and control groups, histomorphometric analysis did not reveal any statistical difference between the control and study groups in terms of new bone area (p > 0.05). In micro-tomographic analysis, BV was higher in 15 μg – 4 weeks group than 30 μg – 4 weeks group (296.9 vs 208.5, p = 0.003) and BS was lower in 30 μg – 4 weeks than 4 week - control group (695.5 vs 1334.7, p = 0.005) but in overall, no significant difference was found between the control and study groups (p > 0.05). Despite these minor differences in histomorphometric and micro-tomographic criteria indicating new bone formation, BMD values of 15 µg-4 and −8 weeks study groups showed significant increase comparing with the control group (p = 0.04, p = 0.001, respectively). Adrenomedullin seemed to have a positive effect on BMD at a certain dose (15 µg) but it alone is not considered sufficient for healing of the defect with new bone formation. Further studies are needed to assess its effects on bone tissue trauma. This study was funded by Hacettepe University Scientific Research Projects Coordination Unit


Bone & Joint Research
Vol. 9, Issue 10 | Pages 675 - 688
1 Oct 2020
Shao L Gou Y Fang J Hu Y Lian Q Zhang Y Wang Y Tian F Zhang L

Aims. Parathyroid hormone (PTH) (1-34) exhibits potential in preventing degeneration in both cartilage and subchondral bone in osteoarthritis (OA) development. We assessed the effects of PTH (1-34) at different concentrations on bone and cartilage metabolism in a collagenase-induced mouse model of OA and examined whether PTH (1-34) affects the JAK2/STAT3 signalling pathway in this process. Methods. Collagenase-induced OA was established in C57Bl/6 mice. Therapy with PTH (1-34) (10 μg/kg/day or 40 μg/kg/day) was initiated immediately after surgery and continued for six weeks. Cartilage pathology was evaluated by gross visual, histology, and immunohistochemical assessments. Cell apoptosis was analyzed by TUNEL staining. Microcomputed tomography (micro-CT) was used to evaluate the bone mass and the microarchitecture in subchondral bone. Results. Enhanced matrix catabolism, increased apoptosis of chondrocytes in cartilage, and overexpressed JAK2/STAT3 and p-JAK2/p-STAT3 were observed in cartilage in this model. All of these changes were prevented by PTH (1-34) treatment, with no significant difference between the low-dose and high-dose groups. Micro-CT analysis indicated that bone mineral density (BMD), bone volume/trabecular volume (BV/TV), and trabecular thickness (Tb.Th) levels were significantly lower in the OA group than those in the Sham, PTH 10 μg, and PTH 40 μg groups, but these parameters were significantly higher in the PTH 40 μg group than in the PTH 10 μg group. Conclusion. Intermittent administration of PTH (1-34) exhibits protective effects on both cartilage and subchondral bone in a dose-dependent manner on the latter in a collagenase-induced OA mouse model, which may be involved in regulating the JAK2/STAT3 signalling pathway. Cite this article: Bone Joint Res 2020;9(10):675–688


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_16 | Pages 40 - 40
1 Dec 2021
Cheong VS Roberts B Kadirkamanathan V Dall'Ara E
Full Access

Abstract. Objectives. Current therapies for osteoporosis are limited to generalised antiresorptive or anabolic interventions, which do not target specific regions to improve skeletal health. Moreover, the adaptive changes of separate and combined pharmacological and biomechanical treatments in the ovariectomised (OVX) mouse tibia has not been studied yet. Therefore, this study combines micro- computed tomography (micro-CT) imaging and computational modelling to evaluate the efficacies of treatments in reducing bone loss. Methodology. In vivo micro-CT (10.4µm/voxel) images of the right tibiae of N=18 female OVX C57BL/6 mice were acquired at weeks 14, 16, 18, 20 and 22 of age for 3 groups: mechanical loading (ML), parathyroid hormone (PTH) or combined therapies (PTHML). All mice received either injection of PTH (100μg/kg/day, 5days/week) or vehicle from week 18. The right tibiae were mechanically loaded in vivo at week 19 and 21 with a 12N peak load, 40 cycles/day and 3 days/week. Bone adaptation was quantified through spatial changes in bone mineral density (BMD) and strain distribution was obtained from micro-CT-based finite element models. Results. Densitometric parameters improved for all treatment between week 18–20 (10–21%), with the strongest benefits due to loading in the proximal regions (16–35%). At week 22, PTHML treatment induced 23–76% higher bone apposition in the proximal tibia than either monotherapy. Compared to the OVX control, all treatments reduced periosteal resorption at weeks 18–20 and 20–22 (20–87%). However, resorption in weeks 20–22 were 29–55% higher than weeks 18–20, increasing the strain in the proximal tibia. Synergistic effects of PTH and ML were observed on the periosteal surface of proximal tibia, but additive effects were seen predominately on the distal and lateral tibia. Conclusions. ML had a more dominant effect in improving bone health. PTH enhances bone's osteogenic response to ML additively and synergistically in a site- and time-dependent manner


Orthopaedic Proceedings
Vol. 86-B, Issue SUPP_IV | Pages 455 - 455
1 Apr 2004
Day G McPhee I Batch J
Full Access

Introduction: Following an Australian study on the incidence of scoliosis in a population of short-statured children treated with human growth hormone (conducted during 2001–2002), it was determined that the only risk factor for the presence of idiopathic scoliosis was having Turner/another syndrome. The 30% incidence in Turner syndrome was noted to be much higher than previously reported (11–12%). The aim of this study is to determine the incidence of scoliosis in a group of growth hormone-treated and non-treated Turner Syndrome subjects who attended the International Turner Syndrome Society meeting in Sydney, Australia in July 2003 and to correlate the results with the Australian 2001–2002 results. Methods: 88 subjects were clinically examined for the presence and severity of idiopathic scoliosis. Their ages ranged from 11 to 60 years. All subjects provided information regarding previous growth hormone and/or oestrogen administration. Anthropometric data including sitting and standing height and arm span was also collated on this cohort. Results: 13 of 46 (28.3%) subjects who had no growth hormone treatment were found to have scoliosis. Five of 42 (12%) subjects who were growth hormone treated were found to have scoliosis. 12 curves were thoracic, five were thoracolumbar and one was lumbar. The 13 subjects with scoliosis and no growth hormone treatment had curves between10 and 20° Cobb angle. Three growth hormone-treated subjects had curves of 10°, one had a curve of 30° and the last subject had already undergone scoliosis surgery. Combining the results of this study with the three Australian States study from 2001–2002, 18 of 87 (21%) growth hormone-treated Turner syndrome subjects have idiopathic scoliosis. 13 of 46 (28%) non-growth hormone-treated Turner syndrome subjects also have idiopathic scoliosis. Of the total 133 subjects in this cohort, 31 (23%) have idiopathic scoliosis. Discussion: The incidence of idiopathic scoliosis in Turner syndrome appears to have been understated in previous studies. Data from this study would indicate that treating children who have Turner syndrome with adjuvant human growth hormone does not appear to result in a greater incidence or severity of idiopathic scoliosis. In this relatively small study, two of five children who had previous growth hormone treatment developed larger curves, one requiring corrective scoliosis surgery


Orthopaedic Proceedings
Vol. 86-B, Issue SUPP_IV | Pages 454 - 455
1 Apr 2004
Day G McPhee I Batch J
Full Access

Introduction: Retrospective reports of adverse events following growth hormone administration to short-statured children indicate that the incidence of scoliosis is elevated, largely due to the higher incidence of scoliosis in Turner/other syndromes within the group. The aims of this study are to analyse risk factors for scoliosis in these children. Methods: Data on 184 of 267 (65%) current and recent Australian children from the Australian OZGROW program was collected in 2001/2002 (from three Australian States). This included medical records (including past history of known scoliosis), growth charts, timing of growth hormone and oestrogen administration and the presence and severity of scoliosis from clinical examination. Growth hormone dosage was controlled by Australian Health Department guidelines. Standard oestrogen dosage was similar for all pubertal girls. The cohort was noted to comprise many varying syndromes, some of whom were pituitary hormone deficient. Potential risk factors for the development of scoliosis were statistically analysed. Results: Of 45 subjects with Turner Syndrome, 13 (30%) have idiopathic scoliosis and 2 have a hemi-vertebra. Of the other 139 subjects, 15 have scoliosis but 11 have syndromes which would normally be associated with scoliosis. Therefore, the incidence of idiopathic scoliosis in the remaining 128 subjects is 3.1% (4/128), which is within the normal population range. All 4 have mild scoliosis < 20 degrees. For the 139 subjects with idiopathic short stature or a specific syndrome, the age of commencement and total amount of growth hormone and/or oestrogen did not affect the degree of scoliosis. Discussion: Having Turner Syndrome was the only variable identified as a risk factor for having scoliosis (p< .001). The incidence of scoliosis in growth hormone treated Turner Syndrome subjects is much larger than previously reported (11–12%). 1,. 2. To the authors’ knowledge, this is the first report derived from non-retrospective data on the incidence of scoliosis in a growth hormone–treated Turner Syndrome population. This stimulated the next study looking at the incidence of scoliosis in growth hormone-treated and non-growth hormone-treated subjects with Turner Syndrome


Orthopaedic Proceedings
Vol. 93-B, Issue SUPP_II | Pages 101 - 101
1 May 2011
Daugaard H Elmengaard B Lamberg A Bechtold J Soballe K
Full Access

Introduction: Hip arthroplasty can present surgeons with difficult bone loss. Impacted allografting is a well-established way of initally securing implant stability. However subsequent bone integration and fusion can be prolonged. Also concerns relate on maintaining bone volume of allograft during integration. Intermittent administration of parathyroid hormone (PTH) is bone anabolic and improves fracture healing. As adjuvant in implant surgery PTH has only recently been introduced experimentally predominantly showing improved implant integration within empty peri-implant bone defects. Given the desire to improve the graft incorporation process, the purpose of our study is to examine whether PTH improves early implant integration by accelerating healing of peri-implant bone allograft. We test the hypothesis that systemic intermittent administration of PTH increases new bone formation in allograft inserted in a gap with impacted morselized bone allograft around an experimental orthopaedic implant. We hypothesize that parathyroid hormone will improve new bone formation in allograft and preserve allograft. Methods: An unpaired canine study was carried out following approval of our Institutional Animal Care and Use Committee. In 20 skeletally mature dogs cylindrical titanium alloy porous coated implants (6x10mm) were inserted in a 2.5 mm circumferential gap in the extraarticular cancellous bone site of the proximal humeri. Cancellous bone was milled on fine setting and impacted in the gap. Test animal were postoperatively randomised to daily treatment of placebo or parathyroid hormon rhPTH (1–34)(teriparatide)(Bachem) 5 μg / kg s.c. After 4 weeks observation time specimen blocks were harvested, sectioned and evaluated by unbiased stereological histomor-phometry (newCast, Visiopharm, Horsholm, Denmark). The endpoints were bone-to-implant contact and tissue density in an outer gap region of 1500 μm and an inner gap region reaching the implant. Since data were not normally distributed a non-parametric analysis two-sample Wilcoxon rank-sum test was applied with p-value < 0.05 considered statistically significant. Data are accordingly presented as median and interquartile ranges. Results: Two implants in the PTH group were excluded. In the peri-centric region new bone improved significantly (outer region: PTH 21.1 (12.9–16.3) / control 15.2 (13.9–16.2), inner region: PTH 19.8 (15.8–21.5)/control 14.0 (12.9–16.3)). There were no significant differences in the amount of allograft. At the implant interface new bone for PTH was 11.5 (8.1–14.0), as for control 10.5 (7.2–14.8). Old bone for PTH was 1.5 (0.8–2.0), and old bone 1.4 (0.8–1.7). Bone tissue showed no significant differences. Conclusion: Parathyroid hormone shows promise in significant inducing bone formation in impacted morselized allograft around implant without resorbing it significantly retaining graft volume


Orthopaedic Proceedings
Vol. 92-B, Issue SUPP_IV | Pages 615 - 615
1 Oct 2010
Daugaard H Bechtold J Elmengaard B Lamberg A Soballe K
Full Access

Introduction: Treatment of osteoarthritis by total joint replacement generally shows a high success rate; however challenges remain. Prostheses inserted without cement are popular worldwide. Insertion of uncemented implants is intended to be pressfit. Early bone growth on the implant is critical to long-term fixation. Parathyroid hormone (PTH) is a regulator of bone metabolism. When PTH is administered intermittently it induces strong anabolic effect by increasing osteoblastic activity. Our understanding of PTH is mainly based on research on osteoporosis, in which bone formation is known to be coupled to the bone resorption. In the orthopaedic situation of a joint replacement other conditions apply. We therefore find it of interest to examine PTH’s role as an adjuvant in implant surgery. We examine the effect of PTH on the osseointegration of an experimental orthopaedic implant in which the implant due to insertion initiates a bone repair in the implant bed. We hypothesize that parathyroid hormone will improve the bone ongrowth at the bone-implant interface. Methods: An unpaired canine study was carried out following approval of our Institutional Animal Care and Use Committee. In 20 skeletally mature dogs cylindrical titanium alloy porous coated implants (6×10mm) were inserted pressfit (0.1 mm under-drill) in the extraarticular cancellous bone site of the proximal tibia. Test animal were postoperatively randomised to daily treatment of placebo or parathyroid hormon rhPTH (1–34)(t eriparatide)(Bachem) 5 μg/kg s.c. After 4 weeks observation time specimen blocks were harvested, sectioned and evaluated by unbiased stereological histomorphometry (CAST-grid system (Olympus Denmark)). The endpoints were bone-to-implant contact and tissue density in a 500 μm region of interest. Since data were not normally distributed a non-parametric analysis two-sample Wilcoxon rank-sum test was applied with p-value < 0.05 considered statistically significant. Data are accordingly presented as median and interquartile ranges. Results: Two implants in the PTH group were excluded. At the implant interface tissue density for PTH was 0,193 (0,157–0,229) for bone, 0,796 (0,764–0,821) for marrow and 0 (0–0,009) for fibrous tissue, as for control 0,163 (0,141–0,193) for bone, 0,837 (0,805–0,859) for marrow and 0 (0-0) for fibrous tissue. Bone tissue showed no significant differences. In the peri-centric region the tissue fraction for PTH was 0,238 (0,211–0,276) for bone, 0,752 (0,724–0,785) for marrow and 0 (0–0,007) for fibrous tissue, as for control 0,223 (0,201–0,235) for bone, 0,777 (0,765–0,799) for marrow and 0 (0–0) for fibrous tissue. Conclusion: In conclusion parathyroid hormone does not show significantly induced bone formation at a titanium alloy implant that has a porous coating of titanium alloy and inserted pressfit


The Journal of Bone & Joint Surgery British Volume
Vol. 87-B, Issue 9 | Pages 1278 - 1284
1 Sep 2005
Irie T Aizawa T Kokubun S

Sex hormones play important roles in the regulation of the proliferation, maturation and death of chondrocytes in the epiphyseal growth plate. We have investigated the effects of male castration on the cell kinetics of chondrocytes as defined by the numbers of proliferating and dying cells. The growth plates of normal rabbits and animals castrated at eight weeks of age were obtained at 10, 15, 20 and 25 weeks of age. Our study suggested that castration led to an increase in apoptosis and a decrease in the proliferation of chondrocytes in the growth plate. In addition, the number of chondrocytes in the castrated rabbits was less than that of normal animals of the same age


The Journal of Bone & Joint Surgery British Volume
Vol. 62-B, Issue 3 | Pages 391 - 396
1 Aug 1980
Northmore-Ball M Wood M Meggitt B

In 65 mature Wistar rats a Kirschner wire was introduced into the medullary cavity of each femur. A closed transverse mid-shaft fracture of one femur was produced by a three-point bending technique. Subsequently the mechanical characteristics of the healing fracture, including the torque and angle of twist required to take the callus to its yield point and to ultimate failure, were compared with those for the opposite femur of each rat. Controls were killed in groups at two, three, four, five and seven weeks. Test animals were given bovine growth hormone in a daily dose of five milligrams before being killed in groups at two, three and four weeks. A significant increase in torque index was found in the two-week group of test animals but not in subsequent groups. No evidence was found that growth hormone given alone could produce an overall shortening of the healing time in fresh fractures


The Journal of Bone & Joint Surgery British Volume
Vol. 56-B, Issue 4 | Pages 703 - 705
1 Nov 1974
Rennie W Mitchell N

1. A case is reported of a girl aged fifteen with growth hormone deficiency who developed a slip of the left femoral capital epiphysis at the age of seventeen during human growth hormone therapy. 2. The epiphysiolysis is regarded as iatrogenic


The Bone & Joint Journal
Vol. 104-B, Issue 8 | Pages 915 - 921
1 Aug 2022
Marya S Tambe AD Millner PA Tsirikos AI

Adolescent idiopathic scoliosis (AIS), defined by an age at presentation of 11 to 18 years, has a prevalence of 0.47% and accounts for approximately 90% of all cases of idiopathic scoliosis. Despite decades of research, the exact aetiology of AIS remains unknown. It is becoming evident that it is the result of a complex interplay of genetic, internal, and environmental factors. It has been hypothesized that genetic variants act as the initial trigger that allow epigenetic factors to propagate AIS, which could also explain the wide phenotypic variation in the presentation of the disorder. A better understanding of the underlying aetiological mechanisms could help to establish the diagnosis earlier and allow a more accurate prediction of deformity progression. This, in turn, would prompt imaging and therapeutic intervention at the appropriate time, thereby achieving the best clinical outcome for this group of patients.

Cite this article: Bone Joint J 2022;104-B(8):915–921.


The Journal of Bone & Joint Surgery British Volume
Vol. 90-B, Issue 3 | Pages 400 - 404
1 Mar 2008
Johansson HR Skripitz R Aspenberg P

We have examined the deterioration of implant fixation after withdrawal of parathyroid hormone (PTH) in rats. First, the pull-out force for stainless-steel screws in the proximal tibia was measured at different times after withdrawal. The stimulatory effect of PTH on fixation was lost after 16 days. We then studied whether bisphosphonates could block this withdrawal effect. Mechanical and histomorphometric measurements were conducted for five weeks after implantation. Subcutaneous injections were given daily. Specimens treated with either PTH or saline during the first two weeks showed no difference in the mechanical or histological results (pull-out force 76 N vs 81 N; bone volume density 19% vs 20%). Treatment with PTH for two weeks followed by pamidronate almost doubled the pull-out force (152 N; p < 0.001) and the bone volume density (37%; ANOVA, p < 0.001). Pamidronate alone did not have this effect (89 N and 25%, respectively). Thus, the deterioration can be blocked by bisphosphonates. The clinical implications are discussed


Orthopaedic Proceedings
Vol. 86-B, Issue SUPP_III | Pages 374 - 374
1 Mar 2004
Papavasiliou K Kapetanos G Kirkos J Beslikas T Papavasiliou V
Full Access

Aims: In order to assess the potential pathologic inßuence of any Parathyroid Hormone (PTH) disturbances on the development of Slipped Capital Femoral Epiphysis (SCFE) during adolescence, we conducted a prospective clinical study. Methods: Nineteen patients in total were included in the study. Fourteen patients, 7 boys and 7 girls (16 hips), suffering from SCFE during the proceedings of this study, formed group ÔAñ. Another 5 patients that had been treated for SCFE a few years before the study, were used as a control group (group ÔBñ). We measured the level of I-PTH, along with serum Calcium (Ca) and Phosphorus (P) levels. Furthermore we checked all the necessary anthropometrical characteristics of the patients (age, height, weight and sexual maturation). Each patient of group ÔAñ was categorized from grade I to grade V according to the progress of the slipping. Results: An increased incidence (9 out of 14 patients), of serum PTH level abnormalities (both decrease and increase) in group ÔAñ was detected. Group ÔBñ patients had normal results. It is interesting that the detected I-PTH serum level abnormalities were not in any pattern related to the Ca and P serum levels. Conclusions: We believe that a temporary Parathyroid Hormone disorder or imbalance (along with others etiologic factors) during the early years of adolescence, may play a potentially signiþcant role in the development of SCFE


The Journal of Bone & Joint Surgery British Volume
Vol. 71-B, Issue 1 | Pages 33 - 38
1 Jan 1989
Brenkel I Dias J Davies T Iqbal S Gregg P

In 15 consecutive patients with slipped capital femoral epiphysis we recorded height, weight and skeletal maturity. Sexual maturity was assessed clinically and biochemically, and Harris's hypothesis that there is an increased ratio of serum growth hormone to oestrogen was tested in comparison with 15 age and sex matched controls. We found no difference in skeletal or sexual maturity between the groups, or any overt endocrine abnormality in the patients. However almost half the patients with slipped epiphysis were over the 90th weight percentile, suggesting that mechanical factors such as obesity are more important aetiologically than endocrine abnormalities


Orthopaedic Proceedings
Vol. 92-B, Issue SUPP_II | Pages 333 - 333
1 May 2010
Papavasiliou K Potoupnis M Sayegh F Kenanidis E Kirkos J Kapetanos G
Full Access

Introduction: Parathyroid hormone (PTH) is a major regulator of bone metabolism. Continuously elevated levels of PTH activate osteoclasts, whereas its intermittent administration principally induces osteoblastic activity. There is increasing evidence that intermittent treatment with PTH may enhance the early fixation of orthopaedic implants. Aim of this study was the evaluation of the impact of Total Knee Replacement (TKR) on the serum level of Intact-Parathyroid Hormone (I-PTH), as continuously elevated levels of the latter may potentially play a negative role in the implant’s incorporation process. Methods: During a period of 29 months, one hundred and nineteen postmenopausal women suffering from end-stage idiopathic knee osteoarthritis, scheduled to undergo TKR, were enrolled in this prospective study. Their mean age was 69.8 (±6.01) years. The serum levels of I-PTH, Calcium, Phosphorus & Creatinine were evaluated and the clearance of creatinine was calculated one day pre-operatively and on the seventh post-operative day. Patients with abnormal preoperative values were excluded from the study. Furthermore, patients suffering from any endocrine disorder, rheumatoid or any other secondary arthritis, osteoporosis or any other disease that could interfere with their bone homeostasis as well as patients receiving medication affecting bone metabolism, were also excluded from the study. None had suffered any fracture or underwent any orthopaedic surgical operation during the 36 months prior to their enrollment. Results: Sixteen patients (13.4%) had abnormally elevated post-operative I-PTH values. However, statistical analysis revealed a statistically significant trend towards decrease in post-operative I-PTH values (p=0.018). The weight (p=0.763), age (p=0.776), serum creatinine level (p=0.922) and creatinine clearance of the patients (p=0.963) did not have a statistically significant impact on the observed alteration of I-PTH values after TKR. Discussion and Conclusion: The serum levels of I-PTH seem to decrease following a TKR. This is more or less expected, as immediately after implantation, bone cells adjacent to the implant are likely to be dead due to necrosis or apoptosis. The latter is a strong stimulus for bone resorption that probably leads to increased serum calcium concentrations that may well decrease the endogenous PTH production. Another possible explanation could be the temporary immobilization of the patients undergoing TKR. However, a substantial number of women had abnormally elevated post-operative I-PTH values. Regardless of what actually caused that increase, the negative impact of continuously elevated PTH on bone formation, may interfere with the implant’s incorporation procedure, hence the evaluation of serum I-PTH before and after TKR is strongly recommended


The Journal of Bone & Joint Surgery British Volume
Vol. 83-B, Issue 3 | Pages 437 - 440
1 Apr 2001
Skripitz R Aspenberg P

The intermittent administration of parathyroid hormone (PTH) increases the formation of bone by stimulating osteoblastic activity. Our study evaluates the possibility that intermittent treatment with PTH (1-34) may also enhance the implant-bone fixation of stainless-steel screws. Twenty-eight rats received one screw in either one (n = 8) or in both (n = 20) proximal tibiae. We administered either PTH (1-34) in a dosage of 60 μg/kg/day (n = 14) or vehicle (n = 14) over a period of four weeks. At the end of this time, the degree of fixation was assessed by measuring the removal torque on one screw in each rat (n = 28) and the pull-out strength on the contralateral screw (n = 20). PTH increased the mean removal torque from 1.1 to 3.5 Ncm (p = 0.001) and the mean pull-out strength from 66 to 145 N (p = 0.002). No significant differences in body-weight or ash weight of the femora were seen. Histological examination showed that both groups had areas of soft tissue at the implant-bone interface, but these appeared less in the PTH group. These results indicate that intermittent treatment with PTH may enhance the early fixation of orthopaedic implants


Orthopaedic Proceedings
Vol. 84-B, Issue SUPP_III | Pages 219 - 219
1 Nov 2002
Liu J
Full Access

A one-year-8-month-old girl who received radiotherapy and chemotheraphy after excision of embryonal rhabdomyosarcoma from left labium majus pudendi developed slipped capital femoral epiphysis (SCFE) over right hip when she was 9 years old. After mild limp had been noted for 6 months she was then referred to pediatric orthopedic surgeon and two Knowles pins were used to fix the slipping. The second case was a 17-year-old girl with Turner syndrome. SCFE developed during the growth hormone therapy and it was treated with percutaneous pinning with two cannnulated screws. The possibility of developing SCFE should always be kept in mind when treating and following these particular cases to avoid delay of diagnosis


The Journal of Bone & Joint Surgery British Volume
Vol. 75-B, Issue 4 | Pages 645 - 649
1 Jul 1993
Hardy Conlan D Hay S Gregg P

The changes in serum adjusted ionised calcium and parathyroid hormone (PTH) were prospectively studied in 32 patients with isolated tibial fractures, treated conservatively. We measured serum albumin, adjusted total calcium, phosphate, pH, adjusted ionised calcium and PTH at intervals until the fractures had healed. The mean ionised calcium adjusted for pH fell within 24 hours of injury, and then rose to a peak at between four and six weeks. These changes cannot be explained by changes in serum pH or PTH. The restoration of normal ionised calcium levels after fracture coincided with the period when the callus was being calcified. Analysis of the changes in ionised calcium, phosphate and PTH suggests that PTH levels alter in response to changes in ionised calcium levels. PTH is highest immediately after fracture and lowest, often not recordable, at six weeks. The cause of the changes in the ionised calcium level has yet to be elucidated


Orthopaedic Proceedings
Vol. 88-B, Issue SUPP_III | Pages 410 - 410
1 Oct 2006
Nakamichi N
Full Access

Introduction: Since Albright first proposed the concept of diabetic osteopenia, many studies have investigated the levels of mineral bone density (BMD) and risk of osteoporosis. In this study we investigate the effect of exercise, alfacalcidol and parathyroid hormone (1–34) on bone marker, BMD and bone mechanical properties in spontaneously diabetic GK/Jcl rats. Methods: 18 week-old male GK/Jcl rats were divided into 4 groups; no treatment (NT), exercise (Ex), alfacalcidol (ALF), and parathyroid hormone (PTH). The bone mineral density (BMD) of the lumbar vertebrae (L2-L4) and the left femur was measured by dual energy X-ray absorptiometry (DXA). Serum calcium (Ca), inorganic phosphorus (Pi) and osteocalcin (OC) were measured. Urinary Ca, Po, and creatinine (Cre) were measured. Urinary deoxypyridinoline (D-Pyr) was measured and the data were corrected for urinary Cre concentration. Mechanical strength of L5 was measured by the compression test. The mechanical strength of the right femur was measured by the three-point bending test. Results: The serum Oc levels in Ex and ALF group slightly increased (mean 5%). The serum Oc in PTH group increased significantly compared with that in the NT group (mean 70%). The urinary D-Pyr/Cre in the Ex group decreased compared with that in the NT group (mean 9 %). The urinary D-Pyr/Cre in the groups treated with ALF for 3 months were significantly decreased compared with that in the NT group (mean 20%). The urinary D-Pyr/Cre in the PTH group significantly increased compared with that in the NT group (mean 10%). The BMD of the L2–L4 in ALF group increased compared with NT group (mean 12%). The BMD of the L2–L4 in PTH group significantly increased compared with NT group (mean 10%). In the ALF group, however, the mechanical strength of the lumber vertebra was significantly higher (mean 25%) than that in the NT group. In the PTH group, the compressive load of the lumber vertebra (mean 70%) and breaking strength of the femur (mean 9%) was significantly higher than that in the NT group. Discussion: Treatment of osteoporosis has so far mainly utilized anti-resorptive agents such as estrogen, calcitonin and bisphosphonate, and bone anabolic agents stimulating bone resorption would be useful especially in low-turnover type of osteoporosis such as diabetic osteopenia. ALF treatment suppressed osteoclastic bone resorption while maintaining or even stimulating bone formation, and consequently increased bone mass with a parallel improvement in the mechanical strength of bone. PTH (1–34) had strong effects for improve the mechanical strength of the spine. In conclusion, it was demonstrated that ALF and PTH differed in their potency for improving the strength of the spine. Our results of biochemical parameter analysis demonstrated that ALF caused a significant suppression of bone resorption and maintained formation. The other hand, PTH had a strong effect on stimulating the bone turnover and bone strength, whereas it could affect the bone quality and reduce the risk of the spine fracture. These results provide important clues in understanding the action mechanisms of these agents on bone metabolism in the treatment of diabetic osteopenia


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_16 | Pages 91 - 91
1 Apr 2013
Okumachi E Lee SY Niikura T Koga T Dogaki Y Waki T Kurosaka M
Full Access

Introduction. Recently, some case reports have been published, in which nonunions were successfully healed with parathyroid hormone 1–34 (PTH) administration. Previously, we demonstrated that the intervening tissue at the nonunion site contains multilineage mesenchymal progenitor cells and plays an important role during the healing process of nonunion. We investigated the effect of PTH on osteogenic differentiation of human nonunion tissue-derived cells (NCs) in vitro. Hypothesis. We hypothesized that PTH directly promoted osteogenic differentiation of NCs. Materials & Methods. NCs were isolated from 4 patients, and cultured. The cells were divided into two groups: (1) PTH (−) group: cells cultured in osteogenic medium (OM), (2) PTH (+) group: cells cultured in OM with PTH. Osteogenic differentiation potential was analyzed. Results. Real-time PCR analysis showed that gene expression levels of Runx2, ALP, OC and PTHR1 in PTH (+) group were lower than PTH (−) group at day 14. In both groups, there was no significant difference in ALP activity at days 8 and 14, and in the intensity of Alizarin red S staining at day 20. Discussion. Treatment of PTH did not lead to increase osteogenic differentiation of NCs. Nonunion healing by PTH administration may be caused by other mechanisms such as mobilization and recruitment of osteoprogenitor cells


The Journal of Bone & Joint Surgery British Volume
Vol. 82-B, Issue 1 | Pages 138 - 141
1 Jan 2000
Skripitz R Andreassen TT Aspenberg P

Intermittent treatment with parathyroid hormone (PTH) has an anabolic effect on both intact cancellous and cortical bone. Very little is known about the effect of the administration of PTH on the healing of fractures or the incorporation of orthopaedic implants. We have investigated the spontaneous ingrowth of callus and the formation of bone in a titanium chamber implanted at the medioproximal aspect of the tibial metaphysis of the rat. Four groups of ten male rats weighing approximately 350 g were injected with human PTH (1-34) in a dosage of 0, 15, 60 or 240 μg/kg/day, respectively, for 42 days from the day of implantation of the chamber. During the observation period the chamber became only partly filled with callus and bone and no difference in ingrowth distance into the chamber was found between the groups. The cancellous density was increased by 90%, 132% and 173% in the groups given PTH in a dosage of 15, 60 or 240 μg/kg/day, respectively. There was a linear correlation between bone density and the log PTH doses (r. 2. = 0.6). Our findings suggest that treatment with PTH may have a potential for enhancement of the incorporation of orthopaedic implants as well as a beneficial effect on the healing of fractures when it is given in low dosages


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_16 | Pages 82 - 82
1 Apr 2013
Dogaki Y Lee S Niikura T Koga T Okumachi E Waki T Kurosaka M
Full Access

Introduction. Parathyroid hormone 1–34 (PTH) has been reported to accelerate fracture healing. Previously, we demonstrated human fracture hematoma contained osteo-/chondro-progenitor cells. To date, there has been no study investigating the effect of PTH on fracture hematoma-derived cells (HCs) in vitro. Hypothesis. We hypothesized PTH treatment affected osteogenesis and chondrogenesis of HCs. Materials & Methods. HCs were divided into 3 groups: control (growth medium), PTH (−) (osteogenic or chondrogenic medium (OM or CM)), and PTH (+) group (OM or CM with PTH). Cell proliferation was assessed by MTS assay. Osteogenesis was assessed by alkaline phosphatase (ALP) activity, real-time PCR, and Alizarin red S staining. Chondrogenesis was assessed by real-time PCR and Safranin-O staining. Results. There was no significant difference in proliferation among 3 groups. ALP activity and expression levels of ALP and Runx2 in PTH (+) group were comparable with PTH (−) group. HCs in PTH (−) and PTH (+) group were strongly stained with Alizarin red S staining. The expression levels of collagen-II and -X in PTH (+) group were significantly lower than PTH (−) group. Pellets in PTH (+) group were slightly stained with Safranin-O staining. Discussion & Conclusion. Our results revealed that PTH treatment did not affect osteogenesis and inhibited chondrogenesis of HCs. PTH treatment after fracture may positively affect other cells such as periosteum-derived cells and circulating stem cells


Since the approval of parathyroid hormone (PTH) as an anabolic treatment for osteoporosis, PTH has increasingly been investigated for other potential clinical uses such as bone repair and regeneration. The microstructure of newly formed bone during distraction osteogenesis enhanced by PTH treatment has yet to be studied. Therefore, the purpose of the study was to investigate the effects of intermittent parathyroid hormone PTH (1–34) treatment on the microstructure of regenerated bone during distraction osteogenesis in rabbits. After tibial mid-diaphyseal osteotomy the callus was distracted 1 mm/day for 10 days. The rabbits were divided in to 3 groups, which daily received a PTH injection for 30 days, a saline injection for 10 days and a PTH injection for 20 days, or a saline injection for 30 days. The new-trabecular structure of the regenerate callus was assessed by micro computed tomography (μCT). In all 51 specimen obtained from the lengthened tibia were scanned and evaluated morphometrically using three different volume of interests. The investigated μCT parameters included trabecular number Tb.N*, trabecular thickness Tb.Th*, trabecular separation Tb.Sp*, bone volume fraction (BV/TV), bone volume (BV), connectivity density (CD), and degree of anisotropy (DA). The results showed that intermittent treatment with PTH during distraction osteogensis resulted in a significantly higher Tb.N*, a more isotropic trabecular orientation, a higher connectivity density, and a higher bone mass. We also found preliminary evidence suggesting that the newly regenerated calluses treated with PTH were more mature than the non-treated calluses. In conclusion: the study demonstrated that treatment with PTH resulted in an enhanced microstructure of the newly regenerated bone indicating that PTH has a potential role as a stimulating agent for distraction osteogenesis


The Journal of Bone & Joint Surgery British Volume
Vol. 55-B, Issue 4 | Pages 892 - 892
1 Nov 1973
Chalmers J


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_16 | Pages 16 - 16
1 Apr 2013
Grosso MJ Courtland HW Yang X Sutherland J Fahlgren A Ross PF van der Meulen MMC Bostrom MP
Full Access

Improving periprosthetic bone is essential for implant fixation and reducing peri-implant fracture risk. This studied examined the individual and combined effects of iPTH and mechanical loading at the cellular, molecular, and tissue level for periprosthetic cancellous bone. Adult rabbits had a porous titanium implant inserted bilaterally on the cancellous bone beneath a mechanical loading device on the distal lateral femur. The right femur was loaded daily, the left femur received a sham loading device, and half of the rabbits received daily PTH. Periprosthetic bone was processed up to 28 days for qPCR, histology, and uCT analysis. We observed an increase in cellular and molecular markers of osteoblast activity and decrease in adipocytic markers for both treatments, with small additional effects in the combined group. Loading and iPTH led to a decrease and increase, respectively, in osteoclast number, acting through changes in RANKL/OPG expression. Changes in SOST and beta-catenin mRNA levels suggested an integral role for the Wnt pathway. We observed strong singular effects on BV/TV of both loading (1.53 fold) and iPTH (1.54 fold). Combined treatment showed a small additive effect on bone volume. In conclusion, loading and iPTH act through a pro-osteoblastic/anti-adipocytic response and through control of bone turnover via changes in the RANKL/OPG pathway. These changes led to a small additional, but not synergistic, increase in bone volume with the combined therapy.


Orthopaedic Proceedings
Vol. 88-B, Issue SUPP_I | Pages 31 - 32
1 Mar 2006
Skripitz R Werner A Ruther W Aspenberg P
Full Access

The aim of our study was to evaluate if PTH is able to increase the trabecular density of osteoporotic bone at the site of an implant and whether the anabolic effect of PTH at this side is stronger then the effect of an osteoclast inhibitor like alendronate.

48 cement rod was inserted in the tibia of 48 female rats, of which 36 had been ovariectomized. The cement rods, which served as implants, were made of Palacos R bone cement. After implantation, the 36 ovariectomized rats were divided in 3 groups. One was injected subcutaneusly with PTH (1–34) at a dose of 60 g/kg BW. The second was injected with alendronate at a dose of 205 g/kg BW. The third with vehicle only. The remaining 12 sham operated rats were also injected with vehicle only. All injections were given three times a week and the rats were killed 2 weeks after implantation.

The tibial segments around the hole of the rods were prepared histologically. Thus the surfaces which had been in contact with the rod appeared as straight lines and could be analyzed histomorphometricly. The trabecular density of the bone closest to the implant was measured. One femur of all animals was used for measurement by DEXA.

There was a substantial increase in the trabecular density close to the rods with PTH treatment (Anova p=0.002). PTH lead to a trabecular density of 89%, where as the ovariectomized animals revealed a trabecular density of 58% and the sham operated control of 68%. No significant increase of implant related trabecular density could be found in the alendronate treated group. In this group a density of 72% was established. DEXA showed the expected differences in bone mineral content (Anova p=0.001).

In this study, intermittent PTH treatment increased implant-related trabecular density in osteoporotic bone after 2 weeks. No such positive effect could be found with alendronate treatment at such a short period of time. We think the reason for this phenomenon could be the early onset of the anabolic PTH effect on regenerating bone, whereas alendronate is thought to only inhibit bone resorption, which might lead to a later effect.

The early onset of PTH effects even in osteoporotic bone suggests that intermittent PTH treatment might lead to an increased micro-interlock between implant and bone and might therefore be considered as a possible drug to enhance incorporation of orthopedic implants.


Introduction: Aim of this prospective study was the evaluation of the impact of TKA on the serum level of I-PTH, as continuously elevated levels of the latter may potentially play a negative role in an orthopaedic implant’s incorporation process.

Methods: The study-group was formed by 119 post-menopausal women suffering from end-stage idiopathic knee osteoarthritis scheduled to undergo TKA. Another 110 women that underwent elective non-orthopaedic operations were used as a control-group. The serum levels of I-PTH, Ca, P & creatinine were evaluated and the clearance of creatinine was calculated one day preoperatively and on the seventh postoperative day. Patients with abnormal preoperative values, suffering from endocrinopathies, rheumatoid or other secondary arthritis, osteoporosis or diseases interfering with bone homeostasis, as well as patients receiving medication affecting bone metabolism, were excluded. None had suffered any fracture or underwent any orthopaedic operation during the 36 months prior to her enrollment.

Results: The two groups were statistically comparable [age (p=0.72), weight (p=0.43), duration of menopause (p=0.31), serum creatinine level (p=0.49), creatinine clearance (p=0.74), preoperative serum I-PTH value (p=0.67)]. Sixteen patients of the study- (13.4%) and one of the control-group had abnormally elevated post-operative I-PTH values. Further analysis showed a statistically non-significant trend towards decrease in the post-operative I-PTH values of the study-group (p=0.16) compared with the control-group’s results were the I-PTH values remained statistically unchanged (p=0.55). No statistically significant difference was found in the postoperative serum I-PTH values between the two groups (p=0.21). The patients’ weight (p=0.76), age (p=0.77), serum creatinine (p=0.92) and creatinine clearance (p=0.96) did not have a statistically significant impact on the observed alteration of I-PTH values after TKA (study-group).

Discussion/Conclusion: The serum levels of I-PTH slightly decrease following TKA. This may attributed to the necrosis or apoptosis initiated immediately after implantation, leading to increased bone resorption and increased serum calcium concentrations that may well decrease the endogenous PTH production. Another possible explanation is the temporary immobilization of the patients undergoing TKA. A substantial number of our study-group’s women had abnormally elevated post-operative I-PTH values. Regardless of what actually caused it, the negative impact of continuously elevated PTH on bone formation, may interfere with the implant’s incorporation procedure, hence the evaluation of serum I-PTH before and after TKA is strongly recommended.


Bone & Joint Open
Vol. 5, Issue 2 | Pages 94 - 100
5 Feb 2024
Mancino F Kayani B Gabr A Fontalis A Plastow R Haddad FS

Anterior cruciate ligament (ACL) injuries are among the most common and debilitating knee injuries in professional athletes with an incidence in females up to eight-times higher than their male counterparts. ACL injuries can be career-threatening and are associated with increased risk of developing knee osteoarthritis in future life. The increased risk of ACL injury in females has been attributed to various anatomical, developmental, neuromuscular, and hormonal factors. Anatomical and hormonal factors have been identified and investigated as significant contributors including osseous anatomy, ligament laxity, and hamstring muscular recruitment. Postural stability and impact absorption are associated with the stabilizing effort and stress on the ACL during sport activity, increasing the risk of noncontact pivot injury. Female patients have smaller diameter hamstring autografts than males, which may predispose to increased risk of re-rupture following ACL reconstruction and to an increased risk of chondral and meniscal injuries. The addition of an extra-articular tenodesis can reduce the risk of failure; therefore, it should routinely be considered in young elite athletes. Prevention programs target key aspects of training including plyometrics, strengthening, balance, endurance and stability, and neuromuscular training, reducing the risk of ACL injuries in female athletes by up to 90%. Sex disparities in access to training facilities may also play an important role in the risk of ACL injuries between males and females. Similarly, football boots, pitches quality, and football size and weight should be considered and tailored around females’ characteristics. Finally, high levels of personal and sport-related stress have been shown to increase the risk of ACL injury which may be related to alterations in attention and coordination, together with increased muscular tension, and compromise the return to sport after ACL injury. Further investigations are still necessary to better understand and address the risk factors involved in ACL injuries in female athletes. Cite this article: Bone Jt Open 2024;5(2):94–100


Bone & Joint Research
Vol. 8, Issue 12 | Pages 573 - 581
1 Dec 2019
de Quadros VP Tobar N Viana LR dos Santos RW Kiyataka PHM Gomes-Marcondes MCC

Objectives. Insufficient protein ingestion may affect muscle and bone mass, increasing the risk of osteoporotic fractures in the elderly, and especially in postmenopausal women. We evaluated how a low-protein diet affects bone parameters under gonadal hormone deficiency and the improvement led by hormone replacement therapy (HRT) with 17β-oestradiol. Methods. Female Wistar rats were divided into control (C), ovariectomized (OVX), and 17β-oestradiol-treated ovariectomized (OVX-HRT) groups, which were fed a control or an isocaloric low-protein diet (LP; 6.6% protein; seven animals per group). Morphometric, serum, and body composition parameters were assessed, as well as bone parameters, mechanical resistance, and mineralogy. Results. The results showed that protein restriction negatively affected body chemical composition and bone metabolism by the sex hormone deficiency condition in the OVX group. The association between undernutrition and hormone deficiency led to bone and muscle mass loss and increased the fragility of the bone (as well as decreasing relative femoral weight, bone mineral density, femoral elasticity, peak stress, and stress at offset yield). Although protein restriction induced more severe adverse effects compared with the controls, the combination with HRT showed an improvement in minimizing these damaging effects, as it was seen that HRT had some efficacy in maintaining muscle and bone mass, preserving the bone resistance and minimizing some deleterious processes during the menopause. Conclusion. Protein restriction has adverse effects on metabolism, leading to more severe menopausal symptoms, and HRT could minimize these effects. Therefore, special attention should be given to a balanced diet during menopause and HRT. Cite this article: Bone Joint Res 2019;8:573–581


Bone & Joint 360
Vol. 13, Issue 2 | Pages 44 - 46
1 Apr 2024

The April 2024 Research Roundup. 360. looks at: Prevalence and characteristics of benign cartilaginous tumours of the shoulder joint; Is total-body MRI useful as a screening tool to rule out malignant progression in patients with multiple osteochondromas?; Effects of vancomycin and tobramycin on compressive and tensile strengths of antibiotic bone cement: a biomechanical study; Biomarkers for early detection of Charcot arthropathy; Strong association between growth hormone therapy and proximal tibial physeal avulsion fractures in children and adolescents; UK pregnancy in orthopaedics (UK-POP): a cross-sectional study of UK female trauma and orthopaedic surgeons and their experiences of pregnancy; Does preoperative weight loss change the risk of adverse outcomes in total knee arthroplasty by initial BMI classification?


Bone & Joint Research
Vol. 11, Issue 12 | Pages 873 - 880
1 Dec 2022
Watanabe N Miyatake K Takada R Ogawa T Amano Y Jinno T Koga H Yoshii T Okawa A

Aims. Osteoporosis is common in total hip arthroplasty (THA) patients. It plays a substantial factor in the surgery’s outcome, and previous studies have revealed that pharmacological treatment for osteoporosis influences implant survival rate. The purpose of this study was to examine the prevalence of and treatment rates for osteoporosis prior to THA, and to explore differences in osteoporosis-related biomarkers between patients treated and untreated for osteoporosis. Methods. This single-centre retrospective study included 398 hip joints of patients who underwent THA. Using medical records, we examined preoperative bone mineral density measures of the hip and lumbar spine using dual energy X-ray absorptiometry (DXA) scans and the medications used to treat osteoporosis at the time of admission. We also assessed the following osteoporosis-related biomarkers: tartrate-resistant acid phosphatase 5b (TRACP-5b); total procollagen type 1 amino-terminal propeptide (total P1NP); intact parathyroid hormone; and homocysteine. Results. The prevalence of DXA-proven hip osteoporosis (T-score ≤ -2.5) among THA patients was 8.8% (35 of 398). The spinal osteoporosis prevalence rate was 4.5% (18 of 398), and 244 patients (61.3%; 244 of 398) had osteopenia (-2.5 < T-score ≤ -1) or osteoporosis of either the hip or spine. The rate of pharmacological osteoporosis treatment was 22.1% (88 of 398). TRACP-5b was significantly lower in the osteoporosis-treated group than in the untreated group (p < 0.001). Conclusion. Osteoporosis is common in patients undergoing THA, but the diagnosis and treatment for osteoporosis were insufficient. The lower TRACP-5b levels in the osteoporosis-treated group — that is, osteoclast suppression — may contribute to the reduction of the postoperative revision rate after THA. Cite this article: Bone Joint Res 2022;11(12):873–880


The Bone & Joint Journal
Vol. 105-B, Issue 10 | Pages 1033 - 1037
1 Oct 2023
Mancino F Gabr A Plastow R Haddad FS

The anterior cruciate ligament (ACL) is frequently injured in elite athletes, with females up to eight times more likely to suffer an ACL tear than males. Biomechanical and hormonal factors have been thoroughly investigated; however, there remain unknown factors that need investigation. The mechanism of injury differs between males and females, and anatomical differences contribute significantly to the increased risk in females. Hormonal factors, both endogenous and exogenous, play a role in ACL laxity and may modify the risk of injury. However, data are still limited, and research involving oral contraceptives is potentially associated with methodological and ethical problems. Such characteristics can also influence the outcome after ACL reconstruction, with higher failure rates in females linked to a smaller diameter of the graft, especially in athletes aged < 21 years. The addition of a lateral extra-articular tenodesis can improve the outcomes after ACL reconstruction and reduce the risk of failure, and it should be routinely considered in young elite athletes. Sex-specific environmental differences can also contribute to the increased risk of injury, with more limited access to and availablility of advanced training facilities for female athletes. In addition, football kits are designed for male players, and increased attention should be focused on improving the quality of pitches, as female leagues usually play the day after male leagues. The kit, including boots, the length of studs, and the footballs themselves, should be tailored to the needs and body shapes of female athletes. Specific physiotherapy programmes and training protocols have yielded remarkable results in reducing the risk of injury, and these should be extended to school-age athletes. Finally, psychological factors should not be overlooked, with females’ greater fear of re-injury and lack of confidence in their knee compromising their return to sport after ACL injury. Both intrinsic and extrinsic factors should be recognized and addressed to optimize the training programmes which are designed to prevent injury, and improve our understanding of these injuries. Cite this article: Bone Joint J 2023;105-B(10):1033–1037


Bone & Joint Research
Vol. 10, Issue 10 | Pages 659 - 667
1 Oct 2021
Osagie-Clouard L Meeson R Sanghani-Kerai A Bostrom M Briggs T Blunn G

Aims. A growing number of fractures progress to delayed or nonunion, causing significant morbidity and socioeconomic impact. Localized delivery of stem cells and subcutaneous parathyroid hormone (PTH) has been shown individually to accelerate bony regeneration. This study aimed to combine the therapies with the aim of upregulating fracture healing. Methods. A 1.5 mm femoral osteotomy (delayed union model) was created in 48 female juvenile Wistar rats, aged six to nine months, and stabilized using an external fixator. At day 0, animals were treated with intrafracture injections of 1 × 10. 6. cells/kg bone marrow mesenchymal stem cells (MSCs) suspended in fibrin, daily subcutaneous injections of high (100 μg/kg) or low (25 μg/kg) dose PTH 1-34, or a combination of PTH and MSCs. A group with an empty gap served as a control. Five weeks post-surgery, the femur was excised for radiological, histomorphometric, micro-CT, and mechanical analysis. Results. Combination therapy treatment led to increased callus formation compared to controls. In the high-dose combination group there was significantly greater mineralized tissue volume and trabecular parameters compared to controls (p = 0.039). This translated to significantly improved stiffness (and ultimate load to failure (p = 0.049). The high-dose combination therapy group had the most significant improvement in mean modified Radiographic Union Score for Tibia fractures (RUST) compared to controls (13.8 (SD 1.3) vs 5.8 (SD 0.5)). All groups demonstrated significant increases in the radiological scores – RUST and Allen score – histologically compared to controls. Conclusion. We demonstrate the beneficial effect of localized MSC injections on fracture healing combined with low- or high-dose teriparatide, with efficacy dependent on PTH dose. Cite this article: Bone Joint Res 2021;10(10):659–667


Bone & Joint Research
Vol. 11, Issue 3 | Pages 162 - 170
14 Mar 2022
Samvelyan HJ Huesa C Cui L Farquharson C Staines KA

Aims. Osteoarthritis (OA) is the most prevalent systemic musculoskeletal disorder, characterized by articular cartilage degeneration and subchondral bone (SCB) sclerosis. Here, we sought to examine the contribution of accelerated growth to OA development using a murine model of excessive longitudinal growth. Suppressor of cytokine signalling 2 (SOCS2) is a negative regulator of growth hormone (GH) signalling, thus mice deficient in SOCS2 (Socs2. -/-. ) display accelerated bone growth. Methods. We examined vulnerability of Socs2. -/-. mice to OA following surgical induction of disease (destabilization of the medial meniscus (DMM)), and with ageing, by histology and micro-CT. Results. We observed a significant increase in mean number (wild-type (WT) DMM: 532 (SD 56); WT sham: 495 (SD 45); knockout (KO) DMM: 169 (SD 49); KO sham: 187 (SD 56); p < 0.001) and density (WT DMM: 2.2 (SD 0.9); WT sham: 1.2 (SD 0.5); KO DMM: 13.0 (SD 0.5); KO sham: 14.4 (SD 0.7)) of growth plate bridges in Socs2. -/-. in comparison with WT. Histological examination of WT and Socs2. -/-. knees revealed articular cartilage damage with DMM in comparison to sham. Articular cartilage lesion severity scores (mean and maximum) were similar in WT and Socs2. -/-. mice with either DMM, or with ageing. Micro-CT analysis revealed significant decreases in SCB thickness, epiphyseal trabecular number, and thickness in the medial compartment of Socs2. -/-. , in comparison with WT (p < 0.001). DMM had no effect on the SCB thickness in comparison with sham in either genotype. Conclusion. Together, these data suggest that enhanced GH signalling through SOCS2 deletion accelerates growth plate fusion, however this has no effect on OA vulnerability in this model. Cite this article: Bone Joint Res 2022;11(3):162–170


Bone & Joint Research
Vol. 6, Issue 7 | Pages 452 - 463
1 Jul 2017
Wang G Sui L Gai P Li G Qi X Jiang X

Objectives. Osteoporosis has become an increasing concern for older people as it may potentially lead to osteoporotic fractures. This study is designed to assess the efficacy and safety of ten therapies for post-menopausal women using network meta-analysis. Methods. We conducted a systematic search in several databases, including PubMed and Embase. A random-effects model was employed and results were assessed by the odds ratio (OR) and corresponding 95% confidence intervals (CI). Furthermore, with respect to each outcome, each intervention was ranked according to the surface under the cumulative ranking curve (SUCRA) value. Results. With respect to preventing new vertebral fractures (NVF), all ten drugs outperformed placebo, and etidronate proved to be the most effective treatment (OR 0.24, 95% CI 0.14 to 0.39). In addition, zoledronic acid and parathyroid hormone ranked higher compared with the other drugs. With respect to preventing clinical vertebral fractures (CVF), zoledronic acid proved to be the most effective drug (OR = 0.25, 95% CI 0.08 to 0.92), with denosumab as a desirable second option (OR = 0.48, 95% CI 0.22 to 0.96), when both were compared with placebo. As for adverse events (AE) and severe adverse events (SAE), no significant difference was observed. According to SUCRA, etidronate ranked first in preventing CVF; parathyroid hormone and zoledronic acid ranked highly in preventing NVF and CVF. Raloxifene was safe with a high rank in preventing AEs and SAEs though performed unsatisfactorily in efficacy. Conclusions. This study suggests that, taking efficacy and safety into account, parathyroid hormone and zoledronic acid had the highest probability of satisfactory performance in preventing osteoporotic fractures. Cite this article: G. Wang, L. Sui, P. Gai, G. Li, X. Qi, X. Jiang. The efficacy and safety of vertebral fracture prevention therapies in post-menopausal osteoporosis treatment: Which therapies work best? a network meta-analysis. Bone Joint Res 2017;6:452–463. DOI: 10.1302/2046-3758.67.BJR-2016-0292.R1


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_4 | Pages 44 - 44
1 Mar 2021
Spezia M Macchi M Elli S Schiaffini G Chisari E
Full Access

Adipose tissue releases several bioactive peptides and hormones, like adipokines that promote a low inflammatory systemic state. Inflammation, affecting the tendon homeostasis, could play a role in tendon disease development as well as in the healing process. Obese patients show a dysregulated level of adipokines and considering the higher mechanical demand, this relates to higher incidence of tendinopathies among these subjects. A systematic review was performed searching PubMed, Embase and Cochrane Library databases. Inclusion criteria were studies of any level of evidence published in peer-reviewed journals reporting clinical or preclinical results. Evaluated data were extracted and critically analysed. PRISMA guidelines were applied, and risk of bias was assessed, as was the methodological quality of the included studies. We excluded all the articles with high risk of bias and/or low quality after the assessment. After applying the previously described criteria, we included 12 articles assessed as medium or high quality. Leptin, others adipokines and in general changes in the hormones delicate equilibrium affect the tendon either qualitatively and/or quantitatively. The evidence still lacks consensus on their role which is probably involved in both anabolic and catabolic pathways. The role of adipokines in the structure and healing of tendons is still debated. Further studies are needed to clarify the relation between deregulated levels of adipokines and the development of tendinopathy. A better understanding of the molecular interactions could allow us to individuate future therapeutic targets


The Journal of Bone & Joint Surgery British Volume
Vol. 91-B, Issue 9 | Pages 1249 - 1251
1 Sep 2009
Huang K Yang R Hsieh C

Breast cancer is generally managed surgically with adjuvant agents which include hormone therapy, chemotherapy, radiotherapy and bisphosphonate therapy. However, some of these adjuvant therapies may cause adverse events, including wound infection, neutropenia, bone marrow suppression and fever. The simultaneous presentation of osteonecrosis and osteomyelitis has not previously been described in patients with breast cancer undergoing hormone therapy and chemotherapy. We report a patient with breast cancer who developed bone infarcts in both legs as well as osteomyelitis in the right distal tibia after treatment which included a modified radical mastectomy, hormone therapy and chemotherapy. Simultaneous osteonecrosis and osteomyelitis should be considered in patients with breast cancer who are receiving chemotherapy and hormone therapy who present with severe bone pain, especially if there have been infective episodes during treatment


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_8 | Pages 85 - 85
11 Apr 2023
Williamson A Bateman L Kelly D Le Maitre C Aberdein N
Full Access

The effect of high-fat diet and testosterone replacement therapy upon bone remodelling was investigated in orchiectomised male APOE-/- mice. Mice were split in to three groups: sham surgery + placebo treatment (control, n=9), orchiectomy plus placebo treatment (n=8) and orchiectomy plus testosterone treatment (n=10). Treatments were administered via intramuscular injection once a fortnight for 17 weeks before sacrifice at 25 weeks of age. Tibiae were scanned ex-vivo using µCT followed by post-analysis histology and immunohistochemistry. Previously presented µCT data demonstrated orchiectomised, placebo treated mice exhibited significantly reduced trabecular bone volume, number, thickness and BMD compared to control mice despite no significant differences in body weight. Trabecular parameters were rescued back to control levels in orchiectomised mice treated with testosterone. No significant differences were observed in the cortical bone. Assessment of TRAP stained FFPE sections revealed no significant differences in osteoclast or osteoblast number along the endocortical surface. IHC assessment of osteoprotegerin (OPG) expression in osteoblasts is to be quantified alongside markers of osteoclastogenesis including RANK and RANKL. Results support morphological analysis of cortical bone where no change in cortical bone volume or density between groups is in line with no significant change in osteoblast or osteoclast number and percentage across all three groups. Future work will include further IHC assessment of bone remodelling and adiposity, as well as utilisation of mechanical testing to establish the effects of observed morphological differences in bone upon mechanical properties. Additionally, the effects of hormone treatments upon murine-derived bone cells will be investigated to provide mechanistic insights


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_9 | Pages 13 - 13
17 Apr 2023
Andreani L Vozzi G Petrini M Di Stefano R Trincavelli M Mani O Olivieri M Bizzocchi F Creati G Capanna R
Full Access

Traumatic acute or chronic tendon injuries are a wide clinical problem in modern society, resulting in important economic burden to the health system and poor quality of life in patients. Due to the low cellularity and vascularity of tendon tissue the repair process is slow and inefficient, resulting in mechanically, structurally, and functionally inferior tissue. Tissue engineering and regenerative medicine are promising alternatives to the natural healing process for tendon repair, especially in the reconstruction of large damaged tissues. The aim of TRITONE project is to develop a smart, bioactive implantable 3D printed scaffold, able to reproduce the structural and functional properties of human tendon, using FDA approved materials and starting from MSC and their precursor, MPC cell mixtures from human donors. Total cohort selected in the last 12 months was divided in group 1 (N=20) of subjects with tendon injury and group 2 (N=20) of healthy subject. Groups were profiled and age and gender matched. Inclusion criteria were age>18 years and presence of informed consent. Ongoing pregnancy, antihypertensive treatment, cardiovascular diseases, ongoing treatment with anti-aggregants, acetylsalicylic-acid or lithium and age<18 years were exclusion criteria. Firstly, we defined clinical, biological, nutritional life style and genetic profile of the cohort. The deficiency of certain nutrients and sex hormonal differences were correlated with tendon-injured patients. It was established the optimal amount of MPC/MSC human cell (collected from different patients during femoral neck osteotomy). Finally, most suitable biomaterials for tendon regeneration and polymer tendon-like structure were identified. Hyaluronic acid, chemical surface and soft-molecular imprinting (SOFT-MI) was used to functionalize the scaffold. These preliminary results are promising. It will be necessary to enroll many more patients to identify genetic status connected with the onset of tendinopathy. The functional and structural characterization of smart bioactive tendon in dynamic environment will represent the next project step


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_7 | Pages 29 - 29
4 Apr 2023
Bolam S Konar S Zhu M Workman J Lim K Woodfield T Monk P Coleman B Cornish J Munro J Musson D
Full Access

Re-rupture rates after rotator cuff repair remain high because of inadequate biological healing at the tendon-bone interface. Single-growth factor therapies to augment healing at the enthesis have so far yielded inconsistent results. An emerging approach is to combine multiple growth factors over a spatiotemporal distribution that mimics normal healing. We propose a novel combination treatment of insulin-like growth factor 1 (IGF-1), transforming growth factor β1 (TGF-β1) and parathyroid hormone (PTH) incorporated into a controlled-release tyraminated poly-vinyl-alcohol hydrogel to improve healing after rotator cuff repair. We aimed to evaluate this growth factor treatment in a rat chronic rotator cuff tear model. A total of 30 male Sprague-Dawley rats underwent unilateral supraspinatus tenotomy. Delayed rotator cuff repairs were then performed after 3 weeks, to allow tendon degeneration that resembles the human clinical scenario. Animals were randomly assigned to: [1] a control group with repair alone; or [2] a treatment group in which the hydrogel was applied at the repair site. All animals were euthanized 12 weeks after rotator cuff surgery and the explanted shoulders were analyzed for biomechanical strength and histological quality of healing at the repair site. In the treatment group had significantly higher stress at failure (73% improvement, P=0.003) and Young's modulus (56% improvement, P=0.028) compared to the control group. Histological assessment revealed improved healing with significantly higher overall histological scores (10.1 of 15 vs 6.55 of 15, P=0.032), and lower inflammation and vascularity. This novel combination growth factor treatment improved the quality of healing and strength of the repaired enthesis in a chronic rotator cuff tear model. Further optimization and tailoring of the growth factors hydrogel is required prior to consideration for clinical use in the treatment of rotator cuff tears. This novel treatment approach holds promise for improving biological healing of this clinically challenging problem


Bone & Joint Research
Vol. 4, Issue 3 | Pages 38 - 44
1 Mar 2015
Thornton GM Reno CR Achari Y Morck DW Hart DA

Objectives. Ligaments which heal spontaneously have a healing process that is similar to skin wound healing. Menopause impairs skin wound healing and may likewise impair ligament healing. Our purpose in this study was to investigate the effect of surgical menopause on ligament healing in a rabbit medial collateral ligament model. Methods. Surgical menopause was induced with ovariohysterectomy surgery in adult female rabbits. Ligament injury was created by making a surgical gap in the midsubstance of the medial collateral ligament. Ligaments were allowed to heal for six or 14 weeks in the presence or absence of oestrogen before being compared with uninjured ligaments. Molecular assessment examined the messenger ribonucleic acid levels for collagens, proteoglycans, proteinases, hormone receptors, growth factors and inflammatory mediators. Mechanical assessments examined ligament laxity, total creep strain and failure stress. Results. Surgical menopause in normal medial collateral ligaments initiated molecular changes in all the categories evaluated. In early healing medial collateral ligaments, surgical menopause resulted in downregulation of specific collagens, proteinases and inflammatory mediators at 6 weeks of healing, and proteoglycans, growth factors and hormone receptors at 14 weeks of healing. Surgical menopause did not produce mechanical changes in normal or early healing medial collateral ligaments. With or without surgical menopause, healing ligaments exhibited increased total creep strain and decreased failure stress compared with uninjured ligaments. Conclusions. Surgical menopause did not affect the mechanical properties of normal or early healing medial collateral ligaments in a rabbit model. The results in this preclinical model suggest that menopause may result in no further impairment to the ligament healing process. . Cite this article: Bone Joint Res 2015;4:38–44