Abstract
Introduction
Parathyroid hormone 1–34 (PTH) has been reported to accelerate fracture healing. Previously, we demonstrated human fracture hematoma contained osteo-/chondro-progenitor cells. To date, there has been no study investigating the effect of PTH on fracture hematoma-derived cells (HCs) in vitro.
Hypothesis
We hypothesized PTH treatment affected osteogenesis and chondrogenesis of HCs.
Materials & Methods
HCs were divided into 3 groups: control (growth medium), PTH (−) (osteogenic or chondrogenic medium (OM or CM)), and PTH (+) group (OM or CM with PTH). Cell proliferation was assessed by MTS assay. Osteogenesis was assessed by alkaline phosphatase (ALP) activity, real-time PCR, and Alizarin red S staining. Chondrogenesis was assessed by real-time PCR and Safranin-O staining.
Results
There was no significant difference in proliferation among 3 groups. ALP activity and expression levels of ALP and Runx2 in PTH (+) group were comparable with PTH (−) group. HCs in PTH (−) and PTH (+) group were strongly stained with Alizarin red S staining. The expression levels of collagen-II and -X in PTH (+) group were significantly lower than PTH (−) group. Pellets in PTH (+) group were slightly stained with Safranin-O staining.
Discussion & Conclusion
Our results revealed that PTH treatment did not affect osteogenesis and inhibited chondrogenesis of HCs. PTH treatment after fracture may positively affect other cells such as periosteum-derived cells and circulating stem cells.