Advertisement for orthosearch.org.uk
Results 1 - 50 of 379
Results per page:
Bone & Joint Open
Vol. 5, Issue 1 | Pages 37 - 45
19 Jan 2024
Alm CE Karlsten A Madsen JE Nordsletten L Brattgjerd JE Pripp AH Frihagen F Röhrl SM

Aims

Despite limited clinical scientific backing, an additional trochanteric stabilizing plate (TSP) has been advocated when treating unstable trochanteric fractures with a sliding hip screw (SHS). We aimed to explore whether the TSP would result in less post operative fracture motion, compared to SHS alone.

Methods

Overall, 31 patients with AO/OTA 31-A2 trochanteric fractures were randomized to either a SHS alone or a SHS with an additional TSP. To compare postoperative fracture motion, radiostereometric analysis (RSA) was performed before and after weightbearing, and then at four, eight, 12, 26, and 52 weeks. With the “after weightbearing” images as baseline, we calculated translations and rotations, including shortening and medialization of the femoral shaft.


Orthopaedic Proceedings
Vol. 90-B, Issue SUPP_III | Pages 516 - 516
1 Aug 2008
Khoury A Mosheiff R Peyser A Beyth S Finkelstein J Liebergall M
Full Access

Purpose: Fracture reduction (FR) during intra-medullary nailing of long bone fractures requires an extensive use of fluoroscopic radiation. Fluoroscopy based navigation system using custom FR software is introduced of which the main advantage is its ability to track simultaneously the two fracture segments during fracture reduction. The aim of this study was to test the feasibility of this system. Methods: 26 Patients 17 males and 7 females suffering from 10 tibial shaft and 14 femoral shaft fracture were operated using the FR software. Two trackers were attached to each of the main fracture segments. Image registration was done by acquiring fluoroscopic images including the fracture site and the two metaphysial areas of the long bone on both perpendicular planes. The system uses two cylinder models representing the fracture segments, each defined between two points chosen by the surgeon on the acquired images, these are tracked by the system. Fracture reduction was qualitatively evaluated as well as other features of the system. Overall radiation was registered. Results: A small number (< 10) of flouroscopic images was acquired; this decreased as we gained more experience. FR software was helpful in all the cases and accomplished good and quick reduction; it reduced the need for added radiation to 2–4 verification images. The system was utilized as well in all cases for choosing the nail point of entry, in 7 (25%) for blocking screws planning and in 4 (16%) for nail locking successfully. Conclusion: The FR software enabled and improved significantly the performance of this surgical task with a dramatic decrease in radiation and FR time. The software still lacks the fine tuning needed for best performance


Aims. The primary aim of this study was to report the radiological outcomes of patients with a dorsally displaced distal radius fracture who were randomized to a moulded cast or surgical fixation with wires following manipulation and closed reduction of their fracture. The secondary aim was to correlate radiological outcomes with patient-reported outcome measures (PROMs) in the year following injury. Methods. Participants were recruited as part of DRAFFT2, a UK multicentre clinical trial. Participants were aged 16 years or over with a dorsally displaced distal radius fracture, and were eligible for the trial if they needed a manipulation of their fracture, as recommended by their treating surgeon. Participants were randomly allocated on a 1:1 ratio to moulded cast or Kirschner wires after manipulation of the fracture in the operating theatre. Standard posteroanterior and lateral radiographs were performed in the radiology department of participating centres at the time of the patient’s initial assessment in the emergency department and six weeks postoperatively. Intraoperative fluoroscopic images taken at the time of fracture reduction were also assessed. Results. Patients treated with surgical fixation with wires had less dorsal angulation of the radius versus those treated in a moulded cast at six weeks after manipulation of the fracture; the mean difference of -4.13° was statistically significant (95% confidence interval 5.82 to -2.45). There was no evidence of a difference in radial shortening. However, there was no correlation between these radiological measurements and PROMs at any timepoint in the 12 months post-injury. Conclusion. For patients with a dorsally displaced distal radius fracture treated with a closed manipulation, surgical fixation with wires leads to less dorsal angulation on radiographs at six weeks compared with patients treated in a moulded plaster cast alone. However, the difference in dorsal angulation was small and did not correlate with patient-reported pain and function. Cite this article: Bone Jt Open 2024;5(2):132–138


Aims. Ankle fracture fixation is commonly performed by junior trainees. Simulation training using cadavers may shorten the learning curve and result in a technically superior surgical performance. Methods. We undertook a preliminary, pragmatic, single-blinded, multicentre, randomized controlled trial of cadaveric simulation versus standard training. Primary outcome was fracture reduction on postoperative radiographs. Results. Overall, 139 ankle fractures were fixed by 28 postgraduate year three to five trainee surgeons (mean age 29.4 years; 71% males) during ten months' follow-up. Under the intention-to-treat principle, a technically superior fixation was performed by the cadaveric-trained group compared to the standard-trained group, as measured on the first postoperative radiograph against predefined acceptability thresholds. The cadaveric-trained group used a lower intraoperative dose of radiation than the standard-trained group (mean difference 0.011 Gym. 2. , 95% confidence interval 0.003 to 0.019; p = 0.009). There was no difference in procedure time. Conclusion. Trainees randomized to cadaveric training performed better ankle fracture fixations and irradiated patients less during surgery compared to standard-trained trainees. This effect, which was previously unknown, is likely to be a consequence of the intervention. Further study is required. Cite this article: Bone Jt Open 2023;4(8):594–601


Bone & Joint Open
Vol. 5, Issue 6 | Pages 457 - 463
2 Jun 2024
Coviello M Abate A Maccagnano G Ippolito F Nappi V Abbaticchio AM Caiaffa E Caiaffa V

Aims. Proximal femur fractures treatment can involve anterograde nailing with a single or double cephalic screw. An undesirable failure for this fixation is screw cut-out. In a single-screw nail, a tip-apex distance (TAD) greater than 25 mm has been associated with an increased risk of cut-out. The aim of the study was to examine the role of TAD as a risk factor in a cephalic double-screw nail. Methods. A retrospective study was conducted on 112 patients treated for intertrochanteric femur fracture with a double proximal screw nail (Endovis BA2; EBA2) from January to September 2021. The analyzed variables were age, sex, BMI, comorbidities, fracture type, side, time of surgery, quality of reduction, pre-existing therapy with bisphosphonate for osteoporosis, screw placement in two different views, and TAD. The last follow-up was at 12 months. Logistic regression was used to study the potential factors of screw cut-out, and receiver operating characteristic curve to identify the threshold value. Results. A total of 98 of the 112 patients met the inclusion criteria. Overall, 65 patients were female (66.3%), the mean age was 83.23 years (SD 7.07), and the mean follow-up was 378 days (SD 36). Cut-out was observed in five patients (5.10%). The variables identified by univariate analysis with p < 0.05 were included in the multivariate logistic regression model were screw placement and TAD. The TAD was significant with an odds ratio (OR) 5.03 (p = 0.012) as the screw placement with an OR 4.35 (p = 0.043) in the anteroposterior view, and OR 10.61 (p = 0.037) in the lateral view. The TAD threshold value identified was 29.50 mm. Conclusion. Our study confirmed the risk factors for cut-out in the double-screw nail are comparable to those in the single screw. We found a TAD value of 29.50 mm to be associated with a risk of cut-out in double-screw nails, when good fracture reduction is granted. This value is higher than the one reported with single-screw nails. Therefore, we suggest the role of TAD should be reconsidered in well-reduced fractures treated with double-screw intramedullary nail. Cite this article: Bone Jt Open 2024;5(6):457–463


The Journal of Bone & Joint Surgery British Volume
Vol. 77-B, Issue 1 | Pages 158 - 159
1 Jan 1995
Shenolikar A Hoddinott C


Bone & Joint Open
Vol. 5, Issue 1 | Pages 46 - 52
19 Jan 2024
Assink N ten Duis K de Vries JPM Witjes MJH Kraeima J Doornberg JN IJpma FFA

Aims. Proper preoperative planning benefits fracture reduction, fixation, and stability in tibial plateau fracture surgery. We developed and clinically implemented a novel workflow for 3D surgical planning including patient-specific drilling guides in tibial plateau fracture surgery. Methods. A prospective feasibility study was performed in which consecutive tibial plateau fracture patients were treated with 3D surgical planning, including patient-specific drilling guides applied to standard off-the-shelf plates. A postoperative CT scan was obtained to assess whether the screw directions, screw lengths, and plate position were performed according the preoperative planning. Quality of the fracture reduction was assessed by measuring residual intra-articular incongruence (maximum gap and step-off) and compared to a historical matched control group. Results. A total of 15 patients were treated with 3D surgical planning in which 83 screws were placed by using drilling guides. The median deviation of the achieved screw trajectory from the planned trajectory was 3.4° (interquartile range (IQR) 2.5 to 5.4) and the difference in entry points (i.e. plate position) was 3.0 mm (IQR 2.0 to 5.5) compared to the 3D preoperative planning. The length of 72 screws (86.7%) were according to the planning. Compared to the historical cohort, 3D-guided surgery showed an improved surgical reduction in terms of median gap (3.1 vs 4.7 mm; p = 0.126) and step-off (2.9 vs 4.0 mm; p = 0.026). Conclusion. The use of 3D surgical planning including drilling guides was feasible, and facilitated accurate screw directions, screw lengths, and plate positioning. Moreover, the personalized approach improved fracture reduction as compared to a historical cohort. Cite this article: Bone Jt Open 2024;5(1):46–52


Full Access

This prospective randomised trial aimed to assess the superiority of internal fixation of well-reduced medial malleolar fractures (displacement □2mm) compared with non-fixation, following fibular stabilisation in patients undergoing surgical management of a closed unstable ankle fracture. A total of 154 adult patients with a bi- or trimalleolar fracture were recruited from a single centre. Open injuries and vertically unstable medial malleolar fractures were excluded. Following fibular stabilisation, patients were randomised intra-operatively on a 1:1 basis to fixation or non-fixation after satisfactory fluoroscopic fracture reduction was confirmed. The primary outcome was the Olerud Molander Ankle Score (OMAS) at 12 months post-randomisation. Complications were documented over the follow-up period. The baseline group demographics and injury characteristics were comparable. There were 144 patients reviewed at the primary outcome point (94%). The median OMAS was 80 (IQR, 60-90) in the fixation group vs. 72.5 (IQR, 55-90) in the non-fixation group (p=0.165). Complication rates were comparable, although significantly more patients (n=13, 20%) in the non-fixation group developed a radiographic non-union (p<0.001). The majority (n=8/13) were asymptomatic, with one patient requiring surgical reintervention. In the non-fixation group, a superior outcome was associated with an anatomical medial malleolar fracture reduction. Internal fixation is not superior to non-fixation of well-reduced medial malleolar fractures when managing unstable ankle fractures. However, one in five patients following non-fixation developed a radiographic non-union and whilst the re-intervention rate to manage this was low, the longer-term consequences of this are unknown. The results of this trial may support selective non-fixation of anatomically reduced fractures


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_7 | Pages 3 - 3
8 May 2024
Cannon L
Full Access

Talar body fractures are high energy intraarticular injuries that are best management by anatomical reduction and secure fixation to improve outcomes. The talus is relatively inaccessible surgically and requires extensive soft tissue dissection and/or osteotomies to gain adequate open visualisation. There are a small number of case reports on arthroscopic assisted fixation in the literature. This case series reports on the technique and early outcomes of six patients all of whom presented with significant intraarticular displacement and who were managed entirely arthroscopically. The fractures were of the main body of the talus involving the ankle and subtalar joints and all had preoperative CT scans. All six patients underwent posterior ankle and subtalar arthroscopy with cannulated screws used to stabilise the fractures after reduction. Visualisation of the fracture reduction was excellent. After 10 days in a backslab, the patients were protected in a boot and encouraged to actively move their ankles. Weight bearing was permitted once union appeared complete. There were no early complications of infection, avascular necrosis or VTE. There was one patient that had a non-clinically significant migration of a screw. Two patients were lost to follow up early due to being visitors. The mean length of follow up was 12 months in the remainder. The remaining four patients all returned to their preoperative level of activity. All had demonstrable subtalar stiffness. There was no early post-traumatic arthritis. This series represents the largest so far published. The main flaw in this report is the lack of long term follow up. While this report cannot state superiority over open techniques it is a safe, effective and acceptable technique that has significant conceptual benefits


Bone & Joint Research
Vol. 9, Issue 8 | Pages 477 - 483
1 Aug 2020
Holweg P Herber V Ornig M Hohenberger G Donohue N Puchwein P Leithner A Seibert F

Aims. This study is a prospective, non-randomized trial for the treatment of fractures of the medial malleolus using lean, bioabsorbable, rare-earth element (REE)-free, magnesium (Mg)-based biodegradable screws in the adult skeleton. Methods. A total of 20 patients with isolated, bimalleolar, or trimalleolar ankle fractures were recruited between July 2018 and October 2019. Fracture reduction was achieved through bioabsorbable Mg-based screws composed of pure Mg alloyed with zinc (Zn) and calcium (Ca) ( Mg-Zn0.45-Ca0.45, in wt.%; ZX00). Visual analogue scale (VAS) and the presence of complications (adverse events) during follow-up (12 weeks) were used to evaluate the clinical outcomes. The functional outcomes were analyzed through the range of motion (ROM) of the ankle joint and the American Orthopaedic Foot and Ankle Society (AOFAS) score. Fracture reduction and gas formation were assessed using several plane radiographs. Results. The follow-up was performed after at least 12 weeks. The mean difference in ROM of the talocrural joint between the treated and the non-treated sites decreased from 39° (SD 12°) after two weeks to 8° (SD 11°) after 12 weeks (p ≤ 0.05). After 12 weeks, the mean AOFAS score was 92.5 points (SD 4.1). Blood analysis revealed that Mg and Ca were within a physiologically normal range. All ankle fractures were reduced and stabilized sufficiently by two Mg screws. A complete consolidation of all fractures was achieved. No loosening or breakage of screws was observed. Conclusion. This first prospective clinical investigation of fracture reduction and fixation using lean, bioabsorbable, REE-free ZX00 screws showed excellent clinical and functional outcomes. Cite this article: Bone Joint Res 2020;9(8):477–483


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_1 | Pages 77 - 77
2 Jan 2024
Gueorguiev B Varga P
Full Access

Intramedullary nails (IMNs) are the current gold standard for treatment of long bone diaphyseal and selected metaphyseal fractures. Their design has undergone many revisions to improve fixation techniques, conform to the bone shape with appropriate anatomic fit, reduce operative time and radiation exposure, and extend the indication of the same implant for treatment of different fracture types with minimal soft tissue irritation. The IMNs are made or either titanium alloy or stainless steel and work as load-sharing internal splints along the long bone, usually accommodating locking elements – screws and blades, often featuring angular stability and offering different configurations for multiplanar fixation – to secure secondary fracture healing with callus formation in a relative-stability environment. Bone cement augmentation of the locking elements can modulate the construct stiffness, increase the surface area at the bone-implant interface, and prevent cut-through of the locking elements. The functional requirements of IMNs are related to maintaining fracture reduction in terms of length, alignment and rotation to enhance fracture healing. The load distribution during patient's activities is along the entire bone-nail interface, with nail length and anatomic fit being important factors to avoid stress risers


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_13 | Pages 4 - 4
17 Jun 2024
Carter T Oliver W Bell K Graham C Duckworth A White T Heinz N
Full Access

Introduction. Unstable ankle fractures are routinely managed operatively. Due to soft-tissue and implant related complications, there has been recent literature reporting on the non-operative management of well-reduced medial malleolus fractures following fibular stabilisation, but with limited evidence supporting routine application. This trial assessed the superiority of internal fixation of well-reduced (displacement ≤2mm) medial malleolus fractures compared with non-fixation following fibular stabilisation. Methods and participants. Superiority, pragmatic, parallel, prospective randomised clinical trial conducted over a four year period. A total of 154 adult patients with a bi- or trimalleolar fractures were recruited from a single centre. Open injuries and vertical medial malleolar fractures were excluded. Following fibular stabilisation, patients were randomised intra-operatively on a 1:1 basis to fixation or non-fixation after satisfactory fluoroscopic fracture reduction was confirmed. The primary outcome was the Olerud Molander Ankle Score (OMAS) at one-year post-randomisation. Complications and radiographic outcomes were documented over the follow-up period. Results. Among 154 participants (mean age, 56.5 years; 119 women [77%]), 144 [94%] completed the trial. At one-year the median OMAS was 80 (IQR, 60–90) in the fixation group compared with 72.5 (IQR, 55–90) in the non-fixation group (p=0.17). Complication rates were comparable. Significantly more patients in the non-fixation group developed a radiographic non-union (20% vs 0%; p<0.001), with the majority (n=8/13) clinically asymptomatic and one patient required surgical re-intervention for this. Fracture type and reduction quality appeared to influence fracture union and patient outcome. Conclusions. In this randomised clinical trial comparing internal fixation of well-reduced medial malleolus fractures with non-fixation, following fibular stabilisation, fixation was not superior according to the primary outcome. However, 1 in 5 patients following non-fixation developed a radiographic non-union and whilst the re-intervention rate to manage this was low, the future implications require surveillance. These results may support selective non-fixation of anatomically reduced medial malleolus fractures


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_8 | Pages 40 - 40
10 May 2024
Zhang J Miller R Chuang T
Full Access

Introduction. Distal femur fractures have traditionally been stabilized with either lateral locking plate or retrograde intramedullary nail. Dual-plates and nail-plate combination fixation have the theoretical biomechanical advantage, faster union and allows patients to weight bear immediately. The aim of this study is to compare single vs combination fixation, and evaluate outcomes and complications. Method. We retrospectively reviewed all patients over 60, admitted to Christchurch Hospital, between 1st Jan 2016 and 31st Dec 2022, with an AO 33A/33B/33C distal femur fracture. Patient demographics, fracture characteristics, operation details, and follow up data were recorded. Primary outcomes are union rate, ambulatory status at discharge, and surgical complications. Secondary outcomes include quality of reduction, operation time and rate of blood transfusions. Results. 114 patients were included. (92 single fixation, 22 combination fixation). Baseline demographic data and fracture characteristics did not differ between the cohorts. There was no difference in the rate of union or time to union between the two cohorts. Combination fixation patients were allowed to weight-bear as tolerated significantly more than single fixation patients (50% vs 18.9%, p=0.003). There was no difference in length of hospital stay, transfusion, complication and mortality rates. Medial translation of the distal articular block was significantly lower in the combination fixation cohort (1.2% vs 3.4%, p=0.021). Operation time was significantly longer in the combination fixation cohort (183mins vs 134mins, p<0.001). Discussion. The results show no difference in achieving union or time to union, despite better quality of fracture reduction with dual fixation. This differs to previously published literature. The clear benefit of combination fixation is immediate weight-bearing. As expected, operation times were longer with combination fixation, however this did not translate to more complications. Conclusion. Combination fixation allows earlier weight bearing, at the cost of longer operation times


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_1 | Pages 80 - 80
2 Jan 2024
Mischler D Windolf M Gueorguiev B Varga P
Full Access

Osteosynthesis aims to maintain fracture reduction until bone healing occurs, which is not achieved in case of mechanical fixation failure. One form of failure is plastic plate bending due to overloading, occurring in up to 17% of midshaft fracture cases and often necessitating reoperation. This study aimed to replicate in-vivo conditions in a cadaveric experiment and to validate a finite element (FE) simulation to predict plastic plate bending. Six cadaveric bones were used to replicate an established ovine tibial osteotomy model with locking plates in-vitro with two implant materials (titanium, steel) and three fracture gap sizes (30, 60, 80 mm). The constructs were tested monotonically until plastic plate deformation under axial compression. Specimen-specific FE models were created from CT images. Implant material properties were determined using uniaxial tensile testing of dog bone shaped samples. The experimental tests were replicated in the simulations. Stiffness, yield, and maximum loads were compared between the experiment and FE models. Implant material properties (Young's modulus and yield stress) for steel and titanium were 184 GPa and 875 MPa, and 105 GPa and 761 MPa, respectively. Yield and maximum loads of constructs ranged between 469–491 N and 652–683 N, and 759–995 N and 1252–1600 N for steel and titanium fixations, respectively. FE models accurately and quantitatively correctly predicted experimental results for stiffness (R2=0.96), yield (R2=0.97), and ultimate load (R2=0.97). FE simulations accurately predicted plastic plate bending in osteosynthesis constructs. Construct behavior was predominantly driven by the implant itself, highlighting the importance of modelling correct material properties of metal. The validated FE models could predict subject-specific load bearing capacity of osteosyntheses in vivo in preclinical or clinical studies. Acknowledgements: This study was supported by the AO Foundation via the AOTRAUMA Network (Grant No.: AR2021_03)


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_8 | Pages 5 - 5
11 Apr 2023
Mischler D Tenisch L Schader J Dauwe J Gueorguiev B Windolf M Varga P
Full Access

Despite past advances of implant technologies, complication rates of fixations remain high at challenging sites such as the proximal humerus [1]. These may not only be owed to the implant itself but also to dissatisfactory surgical execution of fracture reduction and implant positioning. Therefore, the aim of this study was to quantify the instrumentation accuracy of a highly standardised and guided procedure and its influence on the biomechanical outcome and predicted failure risk. Preoperative planning of osteotomies creating an unstable 3-part fracture and fixation with a locking plate was performed based on CT scans of eight pairs of low-density proximal humerus samples from elderly female donors (85.2±5.4 years). 3D-printed subject-specific guides were used to osteotomise and instrument the samples according to the pre-OP plan. Instrumentation accuracies in terms of screw lengths and orientations were evaluated by comparing post-OP CT scans with the pre-OP plan. The fixation constructs were biomechanically tested until cyclic cut-out failure [2]. Failure risks of the planned and the post-OP configurations were predicted using a validated sample-specific finite element (FE) simulation approach [2] and correlated with the experimental outcomes. Small deviations were found for the instrumented screw trajectories compared to the planned configuration in the proximal-distal (0.3±1.3º) and anterior-posterior directions (-1.7±1.8º), and for screw tip to joint distances (-0.3±1.1 mm). Significantly higher failure risk was predicted for the post-OP compared to the planned configurations (p<0.01) via FE. When incorporating the instrumentation inaccuracies, the biomechanical results could be predicted well with FE (R. 2. =0.70). Despite the high instrumentation accuracy achieved using sophisticated subject-specific 3D-printed guides, even minor deviations from the pre-OP plan significantly increased the FE-predicted risk of failure. This underlines the importance of intraoperative guiding technology [3] in tandem with careful pre-OP planning to assist surgeons to achieve optimal outcomes. Acknowledgements. This study was performed with the assistance of the AO Foundation via the AOTRAUMA Network


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_12 | Pages 7 - 7
10 Jun 2024
Hill D Davis J
Full Access

Introduction. Tibial Pilon fractures are potentially limb threatening, yet standards of care are lacking from BOFAS and the BOA. The mantra of “span, scan, plan” describes staged management with external fixation to allow soft tissue resuscitation, followed by a planning CT-scan. Our aim was to evaluate how Tibial Pilon fractures are acutely managed. Methods. ENFORCE was a multi-centre retrospective observational study of the acute management of partial and complete articular Tibial Pilon fractures over a three-year period. Mechanism, imaging, fracture classification, time to fracture reduction and cast, and soft tissue damage control details were determined. Results. 656 patients (670 fractures) across 27 centres were reported. AO fracture classifications were: partial articular (n=294) and complete articular (n=376). Initial diagnostic imaging mobilities were: plain radiographs (n=602) and CT-scan (n=54), with all but 38 cases having a planning CT-scan. 526 fractures had a cast applied in the Emergency Department (91 before radiological diagnosis), with the times taken to obtain post cast imaging being: mean 2.7 hours, median 2.3 hours, range 28 mins – 14 hours). 35% (102/294) of partial articular and 57% (216/376) of complete articular (length unstable) fractures had an external fixator applied, all of which underwent a planning CT-scan. Definitive management consisted of: open reduction internal fixation (n=495), fine wire frame (n=86), spanning external fixator (n=25), intramedullary nail (n=25), other (n=18). Conclusion. The management of Tibial Pilon fractures is variable, with prolonged delays in obtaining post cast reduction radiographs, and just over half of length unstable complete articular fractures being managed with the gold standard “span, scan, plan” staged soft tissue resuscitation. A BOFAS endorsed BOAST (British Orthopaedic Association Standard for Trauma) for Tibial Pilon fractures is suggested for standardisation of the acute management of these potentially limb threatening injuries, together with setting them apart from more straightforward ankle fractures


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_9 | Pages 39 - 39
17 Apr 2023
Saiz A O'Donnell E Kellam P Cleary C Moore X Schultz B Mayer R Amin A Gary J Eastman J Routt M
Full Access

Determine the infection risk of nonoperative versus operative repair of extraperitoneal bladder ruptures in patients with pelvic ring injuries. Pelvic ring injuries with extraperitoneal bladder ruptures were identified from a prospective trauma registry at two level 1 trauma centers from 2014 to 2020. Patients, injuries, treatments, and complications were reviewed. Using Fisher's exact test with significance at P value < 0.05, associations between injury treatment and outcomes were determined. Of the 1127 patients with pelvic ring injuries, 68 (6%) had a concomitant extraperitoneal bladder rupture. All patients received IV antibiotics for an average of 2.5 days. A suprapubic catheter was placed in 4 patients. Bladder repairs were performed in 55 (81%) patients, 28 of those simultaneous with ORIF anterior pelvic ring. The other 27 bladder repair patients underwent initial ex-lap with bladder repair and on average had pelvic fixation 2.2 days later. Nonoperative management of bladder rupture with prolonged Foley catheterization was used in 13 patients. Improved fracture reduction was noted in the ORIF cohort compared to the closed reduction external fixation cohort (P = 0.04). There were 5 (7%) deep infections. Deep infection was associated with nonoperative management of bladder rupture (P = 0.003) and use of a suprapubic catheter (P = 0.02). Not repairing the bladder increased odds of infection 17-fold compared to repair (OR 16.9, 95% CI 1.75 – 164, P = 0.01). Operative repair of extraperitoneal bladder ruptures substantially decreases risk of infection in patients with pelvic ring injuries. ORIF of anterior pelvic ring does not increase risk of infection and results in better reductions compared to closed reduction. Suprapubic catheters should be avoided if possible due to increased infection risk later. Treatment algorithms for pelvic ring injuries with extraperitoneal bladder ruptures should recommend early bladder repair and emphasize anterior pelvic ORIF


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_6 | Pages 11 - 11
1 Jun 2022
Oosthuysen W McQuarrie K Crane E Madeley N Kumar CS
Full Access

The surgical care of extra-articular distal tibial fractures remains controversial. This study looks at the radiological outcomes of distal tibial fractures treated with either a direct medial or anterolateral plate, with or without plating of the fibula, to assess the outcome and complications associated with these 2 approaches. This is a retrospective review of 80 patients with distal tibial extra-articular fractures, treated with an open reduction and plating, between 2008 and 2019 at Glasgow Royal Infirmary. Case notes and x-rays were reviewed. Of those tibial fractures fixed with only a medial plate, 78% united (28/36), 5% (2/36) had a non-union and 17% (6/36) a malunion. In the group treated with a combination of medial tibial and fibular plating, the figures were; 71% (15/21), 19% (4/21) and 10% (2/21). However, in the group treated with anterolateral plating of the tibia alone, only 53% (8/15) united, with a 20% (3/15) non-union and 13% (2/15) malunion rate. Additionally in this group, there were 2 patients (13%) with loss of fracture reduction within the first two months of fracture fixation, requiring revision surgery. Interestingly, of the 8 patients treated with anterolateral tibial and fibular plating, 88% (7/8) showed full union and only one (12%) had a non-union, with no malunions is this group. It would appear that medial tibial and a combination of medial tibial and fibular plating, have superior outcomes compared to anterolateral plating. Results suggest, if anterolateral plating is done, this should be augmented by fixation of the fibular fracture as well


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_12 | Pages 83 - 83
1 Dec 2022
Bornes T Kubik J Klinger C Altintas B Dziadosz D Ricci W
Full Access

Tibial plateau fracture reduction involves restoration of alignment and articular congruity. Restorations of sagittal alignment (tibial slope) of medial and lateral condyles of the tibial plateau are independent of each other in the fracture setting. Limited independent assessment of medial and lateral tibial plateau sagittal alignment has been performed to date. Our objective was to characterize medial and lateral tibial slopes using fluoroscopy and to correlate X-ray and CT findings. Phase One: Eight cadaveric knees were mounted in extension. C-arm fluoroscopy was used to acquire an AP image and the C-arm was adjusted in the sagittal plane from 15° of cephalad tilt to 15 ° of caudad tilt with images captured at 0.5° increments. The “perfect AP” angle, defined as the angle that most accurately profiled the articular surface, was determined for medial and lateral condyles of each tibia by five surgeons. Given that it was agreed across surgeons that more than one angle provided an adequate profile of each compartment, a range of AP angles corresponding to adequate images was recorded. Phase Two: Perfect AP angles from Phase One were projected onto sagittal CT images in Horos software in the mid-medial compartment and mid-lateral compartment to determine the precise tangent subchondral anatomic structures seen on CT to serve as dominant bony landmarks in a protocol generated for calculating medial and lateral tibial slopes on CT. Phase Three: 46 additional cadaveric knees were imaged with CT. Tibial slopes were determined in all 54 specimens. Phase One: Based on the perfect AP angle on X-ray, the mean medial slope was 4.2°+/-2.6° posterior and mean lateral slope was 5.0°+/-3.8° posterior in eight knees. A range of AP angles was noted to adequately profile each compartment in all specimens and was noted to be wider in the lateral (3.9°+/-3.8°) than medial compartment (1.8°+/-0.7° p=0.002). Phase Two: In plateaus with a concave shape, the perfect AP angle on X-ray corresponded with a line between the superiormost edges of the anterior and posterior lips of the plateau on CT. In plateaus with a flat or convex shape, the perfect AP angle aligned with a tangent to the subchondral surface extending from center to posterior plateau on CT. Phase Three: Based on the CT protocol created in Phase Two, mean medial slope (5.2°+/-2.3° posterior) was significantly less than lateral slope (7.5°+/-3.0° posterior) in 54 knees (p<0.001). In individual specimens, the difference between medial and lateral slopes was variable, ranging from 6.8° more laterally to 3.1° more medially. In a paired comparison of right and left knees from the same cadaver, no differences were noted between sides (medial p=0.43; lateral p=0.62). On average there is slightly more tibial slope in the lateral plateau than medial plateau (2° greater). However, individual patients may have substantially more lateral slope (up to 6.8°) or even more medial slope (up to 3.1°). Since tibial slope was similar between contralateral limbs, evaluating slope on the uninjured side provides a template for sagittal plane reduction of tibial plateau fractures


Bone & Joint Open
Vol. 2, Issue 8 | Pages 611 - 617
10 Aug 2021
Kubik JF Bornes TD Klinger CE Dyke JP Helfet DL

Aims. Surgical treatment of young femoral neck fractures often requires an open approach to achieve an anatomical reduction. The application of a calcar plate has recently been described to aid in femoral neck fracture reduction and to augment fixation. However, application of a plate may potentially compromise the regional vascularity of the femoral head and neck. The purpose of this study was to investigate the effect of calcar femoral neck plating on the vascularity of the femoral head and neck. Methods. A Hueter approach and capsulotomy were performed bilaterally in six cadaveric hips. In the experimental group, a one-third tubular plate was secured to the inferomedial femoral neck at 6:00 on the clockface. The contralateral hip served as a control with surgical approach and capsulotomy without fixation. Pre- and post-contrast MRI was then performed to quantify signal intensity in the femoral head and neck. Qualitative assessment of the terminal arterial branches to the femoral head, specifically the inferior retinacular artery (IRA), was also performed. Results. Quantitative MRI revealed a mean reduction of 1.8% (SD 3.1%) of arterial contribution in the femoral head and a mean reduction of 7.1% (SD 10.6%) in the femoral neck in the plating group compared to non-plated controls. Based on femoral head quadrant analysis, the largest mean decrease in arterial contribution was in the inferomedial quadrant (4.0%, SD 6.6%). No significant differences were found between control and experimental hips for any femoral neck or femoral head regions. The inferior retinaculum of Weitbrecht (containing the IRA) was directly visualized in six of 12 specimens. Qualitative MRI assessment confirmed IRA integrity in all specimens. Conclusion. Calcar femoral neck plating at the 6:00 position on the clockface resulted in minimal decrease in femoral head and neck vascularity, and therefore it may be considered as an adjunct to laterally-based fixation for reduction and fixation of femoral neck fractures, especially in younger patients. Cite this article: Bone Jt Open 2021;2(8):611–617


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_11 | Pages 33 - 33
1 Nov 2022
Haleem S Choudri J Parker M
Full Access

Abstract. Introduction. The management of hip fractures has advanced on all aspects from prevention, specialised hip fracture units, early operative intervention and rehabilitation in line with increasing incidence in an aging population. Accurate data analysis on the incidence and trends of hip fractures is imperative to guide future management planning. Methods. A review of all articles published on mortality after hip fracture over a twenty year period (1999–2018) was undertaken to determine any changes that had occurred in the demographics and mortality over this period. This article complements and expands upon the findings of a previous article by the authors assessing a four decade period (1959 – 1998) and attempts to present trends and geographical variations over sixty years. Results. The mean age of patients sustaining hip fractures has increased from 73 years (1960s) to 81 years (2000s) to 82 years (2010s). Over the six decade period one-year mortality has reduced from 27% (1960s) to 20% (2010s). The proportion of female hip fractures has decreased from 84% (1960s) to 70% in 2010s. Intracapsular fractures have drecreased from 54% (1970s) to 49% (2000s) and 48% (2010s). Conclusion. Our study indicates that progress has been made with preventative planning, medical management, specialised orthogeriatric units and surgical expediency all playing a role in the improvements in mean age of hip fracture and reduction in mortality rates. While geographical variations do still exist there has been an increase in the study of hip fractures globally indicating increased attention and commitment to an


Bone & Joint Research
Vol. 8, Issue 10 | Pages 502 - 508
1 Oct 2019
Mao W Ni H Li L He Y Chen X Tang H Dong Y

Objectives. Different criteria for assessing the reduction quality of trochanteric fractures have been reported. The Baumgaertner reduction quality criteria (BRQC) are relatively common and the Chang reduction quality criteria (CRQC) are relatively new. The objectives of the current study were to compare the reliability of the BRQC and CRQC in predicting mechanical complications and to investigate the clinical implications of the CRQC. Methods. A total of 168 patients were assessed in a retrospective observational study. Clinical information including age, sex, fracture side, American Society of Anesthesiologists (ASA) classification, tip-apex distance (TAD), fracture classification, reduction quality, blade position, BRQC, CRQC, bone quality, and the occurrence of mechanical complications were used in the statistical analysis. Results. A total of 127 patients were included in the full analysis, and mechanical complications were observed in 26 patients. The TAD, blade position, BRQC and CRQC were significantly associated with mechanical complications in the univariate analysis. Only the TAD (p = 0.025) and the CRQC (p < 0.001) showed significant results in the multivariate analysis. In the comparison of the receiver operating characteristic curves, the CRQC also performed better than the BRQC. Conclusion. The CRQC are reliable in predicting mechanical complications and are more reliable than the BRQC. Future studies could use the CRQC to assess fracture reduction quality. Intraoperatively, the surgeon should refer to the CRQC to achieve good reduction in trochanteric fractures. Cite this article: Bone Joint Res 2019;8:502–508


The Bone & Joint Journal
Vol. 102-B, Issue 9 | Pages 1229 - 1241
14 Sep 2020
Blom RP Hayat B Al-Dirini RMA Sierevelt I Kerkhoffs GMMJ Goslings JC Jaarsma RL Doornberg JN

Aims. The primary aim of this study was to address the hypothesis that fracture morphology might be more important than posterior malleolar fragment size in rotational type posterior malleolar ankle fractures (PMAFs). The secondary aim was to identify clinically important predictors of outcome for each respective PMAF-type, to challenge the current dogma that surgical decision-making should be based on fragment size. Methods. This observational prospective cohort study included 70 patients with operatively treated rotational type PMAFs, respectively: 23 Haraguchi Type I (large posterolateral-oblique), 22 Type II (two-part posterolateral and posteromedial), and 25 (avulsion-) Type III. There was no standardized protocol on how to address the PMAFs and CT-imaging was used to classify fracture morphology and quality of postoperative syndesmotic reduction. Quantitative 3D-CT (Q3DCT) was used to assess the quality of fracture reduction, respectively: the proportion of articular involvement; residual intra-articular: gap, step-off, and 3D-displacement; and residual gap and step-off at the fibular notch. These predictors were correlated with the Foot and Ankle Outcome Score (FAOS) at two-years follow-up. Results. Bivariate analyses revealed that fracture morphology (p = 0.039) as well as fragment size (p = 0.007) were significantly associated with the FAOS. However, in multivariate analyses, fracture morphology (p = 0.001) (but not fragment size (p = 0.432)) and the residual intra-articular gap(s) (p = 0.009) were significantly associated. Haraguchi Type-II PMAFs had poorer FAOS scores compared with Types I and III. Multivariate analyses identified the following independent predictors: step-off in Type I; none of the Q3DCT-measurements in Type II, and quality of syndesmotic reduction in small-avulsion Type III PMAFs. Conclusion. PMAFs are three separate entities based on fracture morphology, with different predictors of outcome for each PMAF type. The current debate on whether or not to fix PMAFs needs to be refined to determine which morphological subtype benefits from fixation. In PMAFs, fracture morphology should guide treatment instead of fragment size. Cite this article: Bone Joint J 2020;102-B(9):1229–1241


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_10 | Pages 12 - 12
1 Oct 2022
Fes AF Leal AC Alier A Pardos SL Redó MLS Verdié LP Diaz SM Pérez-Prieto D
Full Access

Aim. The most frequent mechanical failure in the osteosynthesis of intertrochanteric fractures is the cut-out. Fracture pattern, reduction quality, tip-apex distance or the position of the cervico-cephalic screw are some of the factors that have been associated with higher cut-out rates. To date, it has not been established whether underlying bacterial colonization or concomitant infection may be the cause of osteosynthesis failure in proximal femur fractures (PFF). The primary objective of this study is to assess the incidence of infection in patients with cut-out after PFF osteosynthesis. Method. Retrospective cohort study on patients with cut-out after PFF osteosynthesis with endomedullary nail, from January 2007 to December 2020. Demographic data of patients (such as sex, age, ASA), fracture characteristics (pattern, laterality, causal mechanism) and initial surgery parameters were collected (time from fall to intervention, duration of surgery, intraoperative complications). Radiographic parameters were also analyzed (tip-apex distance and Chang criteria). In all cut-out cases, 5 microbiological cultures and 1 anatomopathological sample were taken and the osteosynthesis material was sent for sonication. Fracture-related infection (FRI) was diagnosed based on Metsemakers et al (2018) and McNally et al (2020) diagnostic criteria. Results. Of the 67 cut-out cases, 16 (23.9%) presented clinical, analytical or microbiological criteria of infection. Of these sixteen patients, only in 3 of them the presence of an underlying infection was suspected preoperatively. A new osteosynthesis was performed in 24 cases (35.8%) and a conversion to arthroplasty in the remaining 43 (64.2%). A comparative analysis was performed between cases with and without infection. The groups were comparable in terms of demographic data and postoperative radiological data (using Chang criteria and tip-apex distance). Patients with underlying infection had a higher rate of surgical wound complication (56.3% vs 22%, p = 0.014), higher rates of leukocytes counts (11.560 vs 7.890, p = 0.023) and time to surgery (5.88 vs 3.88 days, p = 0.072). Conclusions. One out of four osteosynthesis failure in PFF is due to underlying FRI and in almost 20% were not unsuspected before surgery. In PFF osteosynthesis failures, underlying infection should be taken into account as a possible etiological factor and thus a preoperative and intraoperative infection study should be always performed


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_6 | Pages 15 - 15
1 May 2021
Debuka E Peterson N Fischer B Birkenhead P Narayan B Giotakis N Thorpe P Graham S
Full Access

Introduction. Methoxyflurane can cause hepatotoxicity and nephrotoxicity at anaesthetic doses but has excellent analgesic properties and no nephrotoxic effects in patients without preexisting disease. Approved for use in the UK and Ireland in 2015, it is currently being used in emergency departments for analgesia during fracture reduction. During the Covid emergency, with theatre access severely restricted and many patients unwilling to use inhaled Nitrous oxide, Penthrox had the potential to provide adequate pain relief to aid frame removals and minor procedures in the clinic. Materials and Methods. Patients presenting to the Limb Reconstruction Unit Elective clinic and requiring frame removal or minor procedures were included in the study. Patients with renal, cardiac or hepatic disease, history of sensitivity to fluorinated anaesthetic agents and those on any nephrotoxic or enzyme inducing drugs were excluded. Verbal consent was obtained, the risks and benefits explained and the procedure was done in a side room in the clinic. Besides patient and procedure details, the Visual Analog Score and Richmond Agitation Scale was noted and patient's satisfaction documented. The results were presented as numbers, means and averages. Results. A total of 39 patients were included in the study of which 17 had Ilizarov frames removed, 10 had Hexapod Removals, 9 had heel rings removed and 3 others had an ex fix removed. Eleven patients required/ requested extra pain relief in the form of oral analgesia. All patients were satisfied or very satisfied with the experience. One patient had a wire jam during removal and required a GA for removal. Conclusions. Patient satisfaction was very high (>95%) with good results and allowed frame removals and minor procedures to be done in the clinic during the Covid pandemic. It also cut expenses and has potential for regular future use


Bone & Joint Research
Vol. 9, Issue 6 | Pages 314 - 321
1 Jun 2020
Bliven E Sandriesser S Augat P von Rüden C Hackl S

Aims. Evaluate if treating an unstable femoral neck fracture with a locking plate and spring-loaded telescoping screw system would improve construct stability compared to gold standard treatment methods. Methods. A 31B2 Pauwels’ type III osteotomy with additional posterior wedge was cut into 30 fresh-frozen femur cadavers implanted with either: three cannulated screws in an inverted triangle configuration (CS), a sliding hip screw and anti-rotation screw (SHS), or a locking plate system with spring-loaded telescoping screws (LP). Dynamic cyclic compressive testing representative of walking with increasing weight-bearing was applied until failure was observed. Loss of fracture reduction was recorded using a high-resolution optical motion tracking system. Results. LP constructs demonstrated the highest mean values for initial stiffness and failure load. LP and SHS constructs survived on mean over 50% more cycles and to loads 450 N higher than CS. During the early stages of cyclic loading, mean varus collapse of the femoral head was 0.5° (SD 0.8°) for LP, 0.7° (SD 0.7°) for SHS, and 1.9° (SD 2.3°) for CS (p = 0.071). At 30,000 cycles (1,050 N) mean femoral neck shortening was 1.8 mm (SD 1.9) for LP, 2.0 mm (SD 0.9) for SHS, and 3.2 mm (SD 2.5) for CS (p = 0.262). Mean leg shortening at construct failure was 4.9 mm (SD 2.7) for LP, 8.9 mm (SD 3.2) for SHS, and 7.0 mm (SD 4.3) for CS (p = 0.046). Conclusion. Use of the LP system provided similar (hip screw) or better (cannulated screws) biomechanical performance as the current gold standard methods suggesting that the LP system could be a promising alternative for the treatment of unstable fractures of the femoral neck. Cite this article: Bone Joint Res 2020;9(6):314–321


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_6 | Pages 54 - 54
1 May 2021
Debuka E Wilson G Philpott M Thorpe P Narayan B
Full Access

Introduction. IM (Intra Medullary) nail fixation is the standard treatment for diaphyseal femur fractures and also for certain types of proximal and distal femur fractures. Despite the advances in the tribology for the same, cases of failed IM nail fixation continue to be encountered routinely in clinical practice. Common causes are poor alignment or reduction, insufficient fixation and eventual implant fatigue and failure. This study was devised to study such patients presenting to our practice and develop a predictive model for eventual failure. Materials and Methods. 57 patients who presented with failure of IM nail fixation (± infection) between Jan 2011 – Jun 2020 were included in the study and hospital records and imaging reviewed. Those fixed with any other kinds of metalwork were excluded. Classification for failure of IM nails – Type 1: Failure with loss of contact of lag screw threads in the head due to backing out and then rotational instability, Type 2A: Failure of the nail at the nail and lag screw junction, Type 2B: Failure of the screws at the nail lag screw junction, Type 3: Loosening at the distal locking sites with or without infection. X-rays reviewed and causes/site of failure noted. Results. Total patients - 57. Demography - Average age - 58.9 years, 22 Males and 35 females. Eleven patients were noted to have an infection at the fracture site that needed oral or IV antibiotics.16 patients - at least 1 cerclage wire for fracture reduction and fixation + IM Nail. Subtrochanteric fractures (42/57) were the most common to fail. In those fractures with postero-medial comminution, locking of the lag screw in position thus preventing backout can prevent failure. In type 2 failures, preventing varus fixation by early open reduction and temporary fixation with plates and screws can achieve improved results. Those with type 3 failures with periosteal reaction should be considered to be infected until proven otherwise. Conclusions. This classification for failure of IM nails in the femur can be used as a predictive model for failures and allow early recognition and intervention to tackle them


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_6 | Pages 12 - 12
1 May 2021
Elsheikh A Elsayed A Kandel W Nayagam S
Full Access

Introduction. Femoral shaft fractures in children is a serious injury that needs hospitalization, with a high prevalence in the age group 6–8 years old. Various treatment options are available and with a comparable weight of evidence. Submuscular plating provides a dependable solution, especially in length-unstable fractures and heavier kids. We present a novel technique to facilitate and control the reduction intraoperatively, which would allow for easier submuscular plate application. Materials and Methods. We have retrospectively reviewed four boys and three girls; all were operated in one centre. Polyaxial clamps and rods were applied to the sagittally-oriented bone screws, the reduction was done manually, and the clamps were tightened after achieving the proper alignment in the anteroposterior and lateral fluoroscopy views. The submuscular plate was applied as described, then clamps and bone screws were removed. Results. The mean age at surgery was 13 years (range, 9–14). The mean body weight was 43.3 kg (range, 30–66). There were five mid-shaft fractures, one proximal third and one distal third. There were Four type A fractures, two type B and one type C. Four patients had road traffic accidents while three had direct trauma. The mean preoperative haemoglobin concentration 12.5 g/dl (range 11.3–13 g/dl). No blood transfusion was needed intraoperatively or postoperatively. The operative time averaged 122 minutes, and the mean hospital stay was one (range 1–4 days). The patients reported no pain at a mean of 1.5 weeks (range, one-three weeks). All fractures united at a mean of 8.7 weeks (range 6–12 weeks). No wound healing problems nor deep infections happened. The knee joint range of motion was full in all patients at six weeks postoperatively. There was no mechanical irritation from the inserted plate. At the final follow-up, all fractures united without malalignment nor length discrepancy. Conclusions. External fixator-assisted internal fixation of pediatric femoral fractures would facilitate the accuracy and control of fracture reduction and allow minimally invasive percutaneous osteosynthesis. Our study has shown a decrease in operative time, and an accompanying reduction in length of inpatient stay, prolonged need for analgesia and post-operative rehabilitation


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_11 | Pages 49 - 49
1 Dec 2020
Makelov B Gueorguiev B Apivatthakakul T
Full Access

Introduction. Being challenging, multifragmentary proximal tibial fractures in patients with severe soft tissue injuries and/or short stature can be treated using externalized locked plating. A recent finite element study, investigating the fixation stability of plated unstable tibial fractures with 2-mm, 22-mm and 32-mm plate elevation under partial and full weight-bearing, reported that from a virtual biomechanical point of view, externalized plating seems to provide appropriate relative stability for secondary bone healing under partial weight-bearing during the early postoperative phase. The aim of the current study was to evaluate the clinical outcomes of using a LISS plate as a definitive external fixator for the treatment of multifragmentary proximal tibial fractures. Methods. Following appropriate indirect reduction, externalized locked plating was performed and followed up in 12 patients with multifragmentary proximal tibial fractures with simple intraarticular involvement and injured soft tissue envelope. Results. Among all patients, the average follow up period was 22 months (range14–48 months), revealing uneventful healing in all of them. Time to fracture union was 21.8 weeks on average (range 16–28weeks). The mean HSS knee score was 87 (range 72–98) at 4 weeks postoperatively and 97 (range 88–100) at the final follow up. The average AOFAS score was 92 (range 84–100) at 4 weeks postoperatively and 98 (range 94–100) at the final follow up. Conclusions. Externalized locked plating seems to be a successful surgical alternative treatment in selected cases with unstable proximal tibial fractures and severe soft tissue injury, following appropriate indirect fracture reduction


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_8 | Pages 75 - 75
1 Aug 2020
Axelrod D Al-Asiri J Johal H Sarraj M
Full Access

The purpose of this project was to evaluate North American trauma surgeon preferences regarding patient positioning for antegrade fixation of mid shaft femoral shaft fractures. This project was a cross sectional survey taken of orthopaedic fellows and staff surgeons, belonging to three organizations across North America. An estimated sample size was calculated a priori, while various online techniques were utilized to reduce non responder and fatigue bias. The survey was distributed multiple times to optimize yield. Two hundred twelve (212) participants responded in full, 134 (56%) of whom practiced in Canada. The majority of surgeons worked in level one trauma centres (74%), while 72% treated more than one femoral shaft fracture per week. The most common patient position for mid shaft fixation amongst all surgeons was lateral positioning with manual traction (68%), however community surgeons were significantly more likely to use a fracture table. The most common difficulties faced with using a fracture table were inability to achieve fracture reduction and peroneal nerve palsies. The majority (64%) of surgeons quoted a complication rate with fracture tables of greater than 1 per 100 cases. Lateral position with use of manual traction is the preferred set up for antegrade fixation of femoral shaft fracture in this large North American cohort of trauma surgeons. However, a large subset of community and non academic surgeons still prefer use of the fracture table. Amongst all respondents, a high rate of fracture table complications, including malreduction, were quoted. To date, there is no prospective data comparing these two options for patient positioning, and a randomized controlled trial may be an appropriate next step


Bone & Joint Open
Vol. 1, Issue 7 | Pages 376 - 382
10 Jul 2020
Gill JR Vermuyten L Schenk SA Ong JCY Schenk W

Aims. The aim of this study is to report the results of a case series of olecranon fractures and olecranon osteotomies treated with two bicortical screws. Methods. Data was collected retrospectively for all olecranon fractures and osteotomies fixed with two bicortical screws between January 2008 and December 2019 at our institution. The following outcome measures were assessed; re-operation, complications, radiological loss of reduction, and elbow range of flexion-extension. Results. Bicortical screw fixation was used to treat 17 olecranon fractures and ten osteotomies. The mean age of patients being treated for olecranon fracture and osteotomy were 48.6 years and 52.7 years respectively. Overall, 18% of olecranon fractures were classified as Mayo type I, 71% type II, and 12% type III. No cases of fracture or osteotomy required operative re-intervention. There were two cases of loss of fracture reduction which occurred in female patients ≥ 75 years of age with osteoporotic bone. In both cases, active extension and a functional range of movement was maintained and so the loss of reduction was managed non-operatively. For the fracture fixation cohort, at final follow-up mean elbow extension and flexion were -5. °. ± 5. °. and 136. °. ± 7. °. , with a mean arc of motion of 131. °. ± 11. °. . Conclusion. This series has shown that patients regain near full range of elbow flexion-extension and complication rates are low following bicortical screw fixation of olecranon fractures and osteotomy. Cite this article: Bone Joint Open 2020;1-7:376–382


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_11 | Pages 37 - 37
1 Dec 2020
Yıldırımkaya B Söylemez MS Uçar BY Akpınar F
Full Access

Introduction and Purpose. Metacarpal fractures constitute approximately one third of all hand fractures. The majority of these fractures are treated by conservative non-surgical methods. The aim of this study is to obtain the appropriate anatomical alignment of the fracture with dynamic metacarpal stabilization splint (DMSS) and to maintain the proper bone anatomy until the union is achieved. In addition, by comparing this method with short arm plaster splint (SAPS) application, it is aimed to evaluate whether patients are superior in terms of comfort, range of motion (ROM) and grip strength. Materials and Methods. In our study, SAPS or DMSS was applied to the patients with 5th metacarpal neck fracture randomly after fracture reduction and followed for 3 months. A total of 119 patients with appropriate criteria were included in the study. Radiological alignment of the fracture and amount of joint movements were evaluated during follow-up. Grip strength was evaluated with Jamar dynamometer. EQ-5D-5L and VAS scores were used for clinical evaluation. Results. 103 patients completed their follow-up. 51 patients were treated with SAPS and 52 patients were treated with DMSS. The mean age of the SAPS was 29.5 (SD ± 9.4; 16–53 years) and the mean age of the DMSS group was 27.8 (SD ± 11.6; 16–63). Pressure sores was seen in 5 patients in the DMSS group, while no pressure sore was seen in the SAPS (p = 0.008). There was no significant difference between the two groups in the VAS scores at all times. There was no significant difference between the mean dorsal cortical angulation (DCA) before the reduction, after the reduction and at the third month follow-ups. There was no statistically significant difference between the length of metacarps at first admittion before reduction, after reduction and at third month follow-ups. When the grip strength of the two groups were compared as a percentage, the grip strength of the patients in the DMSS group was found to be higher at 1st month, 2nd month and 3rd month (p <0.001). When the ROM values of the patients were evaluated, DMSS group had a higher degree of ROM in the first month compared to the SAPS group (p <0.001). No statistically significant difference was detected among groups at third month in the ROM of the IP and MP joints. However, wrist ROM was statistically higher in DMSS group at 3rd month (p <0.05). There was a statistically significant difference between EuroQol scores in favor of DMSA group (p <0.05). Discussion and Conclusion. In stable 5th metacarpal neck fractures, DMSA is as effective as SAPS to maintain bone anatomy. In addition, DMSA can be preferred for fixation plaster splint or circular plaster applications for the prevention of reduction in boxer fractures, with the advantage of having high clinical scores, which is an indication of early acquisition of grip strength, ease of use and patient comfort


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_6 | Pages 93 - 93
1 Jul 2020
Gueorguiev B Hadzhinikolova M Zderic I Ciric D Enchev D Baltov A Rusimov L Richards G Rashkov M
Full Access

Distal radius fractures have an incidence rate of 17.5% among all fractures. Their treatment in case of comminution, commonly managed by volar locking plates, is still challenging. Variable-angle screw technology could counteract these challenges. Additionally, combined volar and dorsal plate fixation is valuable for treatment of complex fractures at the distal radius. Currently, biomechanical investigation of the competency of supplemental dorsal plating is scant. The aim of this study was to investigate the biomechanical competency of double-plated distal radius fractures in comparison to volar locking plate fixation. Complex intra-articular distal radius fractures AO/OTA 23-C 2.1 and C 3.1 were created by means of osteotomies, simulating dorsal defect with comminution of the lunate facet in 30 artificial radii, assigned to 3 study groups with 10 specimens in each. The styloid process of each radius was separated from the shaft and the other articular fragments. In group 1, the lunate facet was divided to 3 equally-sized fragments. In contrast, the lunate in group 2 was split in a smaller dorsal and a larger volar fragment, whereas in group 3 was divided in 2 equal fragments. Following fracture reduction, each specimen was first instrumented with a volar locking plate and non-destructive quasi-static biomechanical testing under axial loading was performed in specimen's inclination of 40° flexion, 40° extension and 0° neutral position. Mediolateral radiographs were taken under 100 N loads in flexion and extension, as well as under 150 N loads in neutral position. Subsequently, all biomechanical tests were repeated after supplemental dorsal locking plate fixation of all specimens. Based on machine and radiographic data, stiffness and angular displacement between the shaft and lunate facet were determined. Stiffness in neutral position (N/mm) without/with dorsal plating was on average 164.3/166, 158.5/222.5 and 181.5/207.6 in groups 1–3. It increased significantly after supplementary dorsal plating in groups 2 and 3. Predominantly, from biomechanical perspective supplemental dorsal locked plating increases fixation stability of unstable distal radius fractures after volar locked plating. However, its effect depends on the fracture pattern at the distal radius


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_20 | Pages 18 - 18
1 Dec 2017
Boudissa M Oliveri H Chabanas M Merloz P Tonetti J
Full Access

Several preoperative planning tools in computer-assisted surgery in acetabular fractures have been proposed. Moreover, all these preoperative planning tools are based on geometrical repositioning with their own limitations. The aim of this study was to evaluate the value of our prototype virtual planning tool using a rigid biomechanical model to predict failure in fracture reduction. Between November of 2015 and June of 2016, 10 patients were operated by the main author for acetabular fracture in our institution. To validate our biomechanical model planning tool, biomechanical simulation was performed for each patient immediately after the surgery. Reduction quality was assessed on post-operative CT scans. A 3D model of the acetabular fracture was build out of the CT images using the non-commercial software Itksnap. Then a biomechanical model implemented within the non-commercial Artisynth framework was used to perform virtual reduction. Surgical approach and surgical strategy according to the operative report were simulated. The simulated reductions and the surgical reductions were compared. The same reductions were obtained during surgery and biomechanical simulation in the 10 cases. For 7 cases, reduction was achieved by anterior surgical approach and so was the simulation. For 3 cases, reduction was achieved by posterior surgical approach and so was the simulation. The biomechanical simulation found similar results using the same surgical strategy with 9 anatomical reductions (90%) and one imperfect reduction (10%). The mean duration to perform acetabular planning surgery was 24 +/− 9 min [16–38]. Our virtual planning tool using a rigid biomechanical model can predict success or failure in fracture reduction according to the surgical approach and the surgical strategy


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_21 | Pages 52 - 52
1 Dec 2016
Abou-Ghaida M Johnston G Stewart S
Full Access

Displaced distal radial fractures in adults are commonplace. Acknowledging that satisfactory radiographic parameters typically will beget satisfactory functional outcomes, management of these fractures includes a reduction followed by either cast/splint immobilisation or internal fixation. While we can generally rely on internal fixation to maintain the reduction the same is not true of cast immobilisation. There are, however, limited data defining the fate of a fracture reduction in those treated in a cast and up to the time of radial union. Traditional practice is to recommend six weeks of immobilisation. Our goal was to detail the radiographic patterns of change in the radiographic parameters of radial inclination (RI), ulnar variance (UV) and radial tilt (RT) over the first twelve weeks in women fifty years old and older who had sustained a displaced distal radial fracture. We examined serial standard PA and lateral distal radius radiographs of 647 women treated by closed reduction and casting for a displaced fracture of the distal radius. Measurements of RI, UV and RT from standardised radiographs were made immediately post-reduction as well as, as often as possible/feasible, at 1,2,3,6,9 and 12 weeks post fracture. All measurements were made by the senior author (accuracy range: 2 degrees for RI, 1 mm for UV and 4 degrees for RT, in 75% of cases). The primary outcome measure was the change in fracture position over time. Secondary outcomes included changes related to age group; known bone density; the relation to associated ulnar fractures; and independence of the variables of RI, UV and RT. The mean immediate post-reduction values for RI, UV and RT were 21 degrees, 1.5 mm, and −6 degrees, respectively. These all changed in the first six weeks, and did not in the second six week period. The mean change in RI was 3 degrees, 60% of the change occurring in the first week post-reduction; only 0.3 degrees of change was noted beyond three weeks. The mean UV increased by 2.2 mm over the first 6 weeks, 23% in the first week post reduction. The mean RT change of 7.7 degrees was also gradual over the first 6 weeks, with no significant change afterwards. The RI changes identified were not influenced by patient age, while UV and RT changes were greater in older groups. Those fractures of the distal radius associated with a distal ulnar shaft or neck fracture did not lose radial inclination over the study period. We have defined patterns of loss of reduction that commonly occur post reduction of a displaced distal radius fracture in women fifty years and older. Such patterns ought to guide our closed management of distal radial fractures, whether by altering the duration or method of casting. Women fifty years old and older, and physicians alike, must be advised that conventional casting post distal radial fracture reduction unreliably maintains fracture reduction


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_7 | Pages 29 - 29
1 Jul 2020
Larrive S Larouche P Jelic T Rodger R Leiter J MacDonald PB
Full Access

Musculoskeletal ultrasound (MSK-US) can have many uses for orthopaedic surgeons, such as assisting in clinical diagnosis for muscle, tendon and ligament injuries, providing direct guidance for joint injections, or assessing the adequacy of a reduction in the emergency department. However, proficiency in sonography is not a requirement for Royal College certification, and orthopaedic trainees are rarely exposed to this modality. The purpose of this project was to assess the usefulness in clinical education of a newly implemented MSK-US course in an orthopaedic surgery program. A MSK-US course for orthopaedic surgery residents was developed by an interdisciplinary team involving a paediatric orthopaedic surgeon, an emergency physician with a fellowship in point-of-care ultrasonography, and an orthopaedic surgery resident. Online videos were created to be viewed by residents prior to a half-day long practical course. The online portion covered the basics of ultrasonography, as well as the normal and abnormal appearance of musculoskeletal structures, while the practical portion applied those principles to the examination, injection, and aspiration of joints, and ultrasound-guided fracture reduction. An online survey covering the level of training of the resident and their previous use of ultrasound (total hours) was filled by the participants prior to the course. Resident's knowledge acquisition was measured with a written pre-course, same-day post-course and six-month follow-up tests. Residents were also scored on a practical shoulder examination immediately after the course and at six-month follow-up. An online survey was also sent to evaluate residents' satisfaction with different aspects of the course (NAS). Change in test scores were calculated using an ANOVA and a Wilcoxon signed-rank test. Ten orthopaedic surgery residents underwent the MSK-US curriculum. Pre-course interest to MSK-US was moderate (65%) and prior exposure was low (1.5 hours mean total experience). MSK-US has been previously mostly observed in the emergency department and sports orthopaedic clinic. Satisfaction with the online curriculum, hands-on practice session and general quality of the course were high (8.78, 8.70 and 8.60/10 respectively). Written test scores improved significantly from 50.7 ± 17% to 84 ± 10.7% immediately after the course (p < 0 .001) and suffered no significant drop at six months (score 75 ± 8.7%, p=0.303). Average post-course practical exam score was 78.8 ± 3.1% and decreased to 66.2 ± 11.3% at six months (p=0.012). Residents significantly improved their subjective comfort level with all aspects of ultrasound use at six months (p=0.007–0.018) but did not significantly increase clinical usage frequency. A MSK-US curriculum was successfully developed and implemented using an interdisciplinary approach. The course was rated high quality and succeeded in improving the residents' knowledge, skills, and comfort with MSK-US. This improvement was maintained at six months on the written test, but did not result in higher frequency of use by the residents


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_20 | Pages 55 - 55
1 Dec 2017
Andreß S Eck U Becker C Greiner A Rubenbauer B Linhart C Weidert S
Full Access

Achieving precise open reduction and fixation of acetabular fractures by using a plate osteosynthesis is a complex procedure. Increasing availability of affordable 3D printing devices and services now allow to actually print physical models of the patient's anatomy by segmenting the patient's CT image. The data processing and printing of the model however still take too much time and usually the resulting model is rigid and doesn't allow fracture reduction on the model itself. Our proposed solution automatically detects relevant structures such as the fracture gaps and cortical bone while eliminating irrelevant structures such as debris and cancellous bone. This is done by approximating a sphere to the exterior surface of a classic segmented STL model. Stepwise, these approximated vertices are projected deeper into any structure such as the acetabular socket or fractures, following a specific set of rules. The resulting surface model finally is adapted precisely to the primary segmented model. Creating an enhanced surface reconstruction model from the primary model took a median time of 42 sec. The whole workflow from DICOM to enhanced printable 3D file took a median time of 13:25 min. The median time and material needed for the prints without the process was 32:25:36 h and 241,04 g, with the process 09:41:33 h and 65,89 g, which is 70% faster. The price of material was very low with a median of 2,18€ per case. Moreover, fracture reduction becomes possible, allowing a dry-run of the procedure and allowing more precise plate placement. Pre-contouring of osteosynthesis plates by using these 3D printouts was done for eleven patients prior to surgery. These printouts were validated to be accurate by three experiences surgeons and compared to classic segmented models regarding printing time, material cost and reduction ability. The pre-contouring of the plates was safely achievable. Our results show that improving the operative treatment with the help of enhanced 3D printed fracture models seems feasible and needs comparably little time and cost, thus making it a technique that can easily integrated into the clinical workflow


The Bone & Joint Journal
Vol. 104-B, Issue 11 | Pages 1225 - 1233
1 Nov 2022
Png ME Petrou S Achten J Ooms A Lamb SE Hedley H Dias J Costa ML

Aims

The aim of this study was to compare the cost-effectiveness of surgical fixation with Kirschner (K-)wire ersus moulded casting after manipulation of a fracture of the distal radius in an operating theatre setting.

Methods

An economic evaluation was conducted based on data collected from the Distal Radius Acute Fracture Fixation Trial 2 (DRAFFT2) multicentre randomized controlled trial in the UK. Resource use was collected at three, six, and 12 months post-randomization using trial case report forms and participant-completed questionnaires. Cost-effectiveness was reported in terms of incremental cost per quality-adjusted life year (QALY) gained from an NHS and personal social services perspective. Sensitivity analyses were conducted to examine the robustness of cost-effectiveness estimates, and decision uncertainty was handled using confidence ellipses and cost-effectiveness acceptability curves.


The Bone & Joint Journal
Vol. 105-B, Issue 2 | Pages 112 - 123
1 Feb 2023
Duckworth AD Carter TH Chen MJ Gardner MJ Watts AC

Despite being one of the most common injuries around the elbow, the optimal treatment of olecranon fractures is far from established and stimulates debate among both general orthopaedic trauma surgeons and upper limb specialists. It is almost universally accepted that stable non-displaced fractures can be safely treated nonoperatively with minimal specialist input. Internal fixation is recommended for the vast majority of displaced fractures, with a range of techniques and implants to choose from. However, there is concern regarding the complication rates, largely related to symptomatic metalwork resulting in high rates of implant removal. As the number of elderly patients sustaining these injuries increases, we are becoming more aware of the issues associated with fixation in osteoporotic bone and the often fragile soft-tissue envelope in this group. Given this, there is evidence to support an increasing role for nonoperative management in this high-risk demographic group, even in those presenting with displaced and/or multifragmentary fracture patterns. This review summarizes the available literature to date, focusing predominantly on the management techniques and available implants for stable fractures of the olecranon. It also offers some insights into the potential avenues for future research, in the hope of addressing some of the pertinent questions that remain unanswered.

Cite this article: Bone Joint J 2023;105-B(2):112–123.


The Bone & Joint Journal
Vol. 106-B, Issue 9 | Pages 1008 - 1014
1 Sep 2024
Prijs J Rawat J ten Duis K Assink N Harbers JS Doornberg JN Jadav B Jaarsma RL IJpma FFA

Aims

Paediatric triplane fractures and adult trimalleolar ankle fractures both arise from a supination external rotation injury. By relating the experience of adult to paediatric fractures, clarification has been sought on the sequence of injury, ligament involvement, and fracture pattern of triplane fractures. This study explores the similarities between triplane and trimalleolar fractures for each stage of the Lauge-Hansen classification, with the aim of aiding reduction and fixation techniques.

Methods

Imaging data of 83 paediatric patients with triplane fractures and 100 adult patients with trimalleolar fractures were collected, and their fracture morphology was compared using fracture maps. Visual fracture maps were assessed, classified, and compared with each other, to establish the progression of injury according to the Lauge-Hansen classification.


The Bone & Joint Journal
Vol. 105-B, Issue 4 | Pages 361 - 364
15 Mar 2023
Vallier HA

Benefits of early stabilization of femoral shaft fractures, in mitigation of pulmonary and other complications, have been recognized over the past decades. Investigation into the appropriate level of resuscitation, and other measures of readiness for definitive fixation, versus a damage control strategy have been ongoing. These principles are now being applied to fractures of the thoracolumbar spine, pelvis, and acetabulum. Systems of trauma care are evolving to encompass attention to expeditious and safe management of not only multiply injured patients with these major fractures, but also definitive care for hip and periprosthetic fractures, which pose a similar burden of patient recumbency until stabilized. Future directions regarding refinement of patient resuscitation, assessment, and treatment are anticipated, as is the potential for data sharing and registries in enhancing trauma system functionality.

Cite this article: Bone Joint J 2023;105-B(4):361–364.


Bone & Joint 360
Vol. 11, Issue 6 | Pages 37 - 40
1 Dec 2022

The December 2022 Trauma Roundup360 looks at: Anterior approach for acetabular fractures using anatomical plates; Masquelet–Ilizarov for the management of bone loss post debridement of infected tibial nonunion; Total hip arthroplasty – better results after low-energy displaced femoral neck fracture in young patients; Unreamed intramedullary nailing versus external fixation for the treatment of open tibial shaft fractures in Uganda: a randomized clinical trial; The Open-Fracture Patient Evaluation Nationwide (OPEN) study: the management of open fracture care in the UK; Cost-utility analysis of cemented hemiarthroplasty versus hydroxyapatite-coated uncemented hemiarthroplasty; Unstable ankle fractures: fibular nail fixation compared to open reduction and internal fixation; Long-term outcomes of randomized clinical trials: wrist and calcaneus; ‘HeFT’y follow-up of the UK Heel Fracture Trial.


Bone & Joint 360
Vol. 11, Issue 6 | Pages 42 - 45
1 Dec 2022

The December 2022 Children’s orthopaedics Roundup360 looks at: Immobilization of torus fractures of the wrist in children (FORCE): a randomized controlled equivalence trial in the UK; Minimally invasive method in treatment of idiopathic congenital vertical talus: recurrence is uncommon; “You’re O.K. Anaesthesia”: closed reduction of displaced paediatric forearm and wrist fractures in the office without anaesthesia; Trunk range of motion and patient outcomes after anterior vertebral body tethering versus posterior spinal fusion: comparison using computerized 3D motion capture technology; Selective dorsal rhizotomy for individuals with spastic cerebral palsy; Scheuermann’s kyphosis and posterior spinal fusion; All-pedicle-screw constructs in skeletally immature patients with severe idiopathic early-onset scoliosis; Proximal femoral screw hemiepiphysiodesis in children with cerebral palsy.


Bone & Joint Open
Vol. 4, Issue 9 | Pages 713 - 719
19 Sep 2023
Gregersen MG Justad-Berg RT Gill NEQ Saatvedt O Aas LK Molund M

Aims

Treatment of Weber B ankle fractures that are stable on weightbearing radiographs but unstable on concomitant stress tests (classified SER4a) is controversial. Recent studies indicate that these fractures should be treated nonoperatively, but no studies have compared alternative nonoperative options. This study aims to evaluate patient-reported outcomes and the safety of fracture treatment using functional orthosis versus cast immobilization.

Methods

A total of 110 patients with Weber B/SER4a ankle fractures will be randomized (1:1 ratio) to receive six weeks of functional orthosis treatment or cast immobilization with a two-year follow-up. The primary outcome is patient-reported ankle function and symptoms measured by the Manchester-Oxford Foot and Ankle Questionnaire (MOxFQ); secondary outcomes include Olerud-Molander Ankle Score, radiological evaluation of ankle congruence in weightbearing and gravity stress tests, and rates of treatment-related adverse events. The Regional Committee for Medical and Health Research (approval number 277693) has granted ethical approval, and the study is funded by South-Eastern Norway Regional Health Authority (grant number 2023014).


Bone & Joint Open
Vol. 5, Issue 3 | Pages 252 - 259
28 Mar 2024
Syziu A Aamir J Mason LW

Aims

Posterior malleolar (PM) fractures are commonly associated with ankle fractures, pilon fractures, and to a lesser extent tibial shaft fractures. The tibialis posterior (TP) tendon entrapment is a rare complication associated with PM fractures. If undiagnosed, TP entrapment is associated with complications, ranging from reduced range of ankle movement to instability and pes planus deformities, which require further surgeries including radical treatments such as arthrodesis.

Methods

The inclusion criteria applied in PubMed, Scopus, and Medline database searches were: all adult studies published between 2012 and 2022; and studies written in English. Outcome of TP entrapment in patients with ankle injuries was assessed by two reviewers independently.


Bone & Joint Open
Vol. 5, Issue 1 | Pages 28 - 36
18 Jan 2024
Selmene MA Moreau PE Zaraa M Upex P Jouffroy P Riouallon G

Aims

Post-traumatic periprosthetic acetabular fractures are rare but serious. Few studies carried out on small cohorts have reported them in the literature. The aim of this work is to describe the specific characteristics of post-traumatic periprosthetic acetabular fractures, and the outcome of their surgical treatment in terms of function and complications.

Methods

Patients with this type of fracture were identified retrospectively over a period of six years (January 2016 to December 2021). The following data were collected: demographic characteristics, date of insertion of the prosthesis, details of the intervention, date of the trauma, characteristics of the fracture, and type of treatment. Functional results were assessed with the Harris Hip Score (HHS). Data concerning complications of treatment were collected.


The Bone & Joint Journal
Vol. 106-B, Issue 8 | Pages 842 - 848
1 Aug 2024
Kriechling P Whitefield R Makaram NS Brown IDM Mackenzie SP Robinson CM

Aims

Vascular compromise due to arterial injury is a rare but serious complication of a proximal humeral fracture. The aims of this study were to report its incidence in a large urban population, and to identify clinical and radiological factors which are associated with this complication. We also evaluated the results of the use of our protocol for the management of these injuries.

Methods

A total of 3,497 adult patients with a proximal humeral fracture were managed between January 2015 and December 2022 in a single tertiary trauma centre. Their mean age was 66.7 years (18 to 103) and 2,510 (72%) were female. We compared the demographic data, clinical features, and configuration of those whose fracture was complicated by vascular compromise with those of the remaining patients. The incidence of vascular compromise was calculated from national population data, and predictive factors for its occurrence were investigated using univariate analysis.


Bone & Joint Open
Vol. 4, Issue 5 | Pages 329 - 337
8 May 2023
Khan AQ Chowdhry M Sherwani MKA McPherson EJ

Aims. Total hip arthroplasty (THA) is considered the preferred treatment for displaced proximal femoral neck fractures. However, in many countries this option is economically unviable. To improve outcomes in financially disadvantaged populations, we studied the technique of concomitant valgus hip osteotomy and operative fixation (VOOF). This prospective serial study compares two treatment groups: VOOF versus operative fixation alone with cannulated compression screws (CCSs). Methods. In the first series, 98 hip fixation procedures were performed using CCS. After fluoroscopic reduction of the fracture, three CCSs were placed. In the second series, 105 VOOF procedures were performed using a closing wedge intertrochanteric osteotomy with a compression lag screw and lateral femoral plate. The alignment goal was to create a modified Pauwel’s fracture angle of 30°. After fluoroscopic reduction of fracture, lag screw was placed to achieve the calculated correction angle, followed by inter-trochanteric osteotomy and placement of barrel plate. Patients were followed for a minimum of two years. Results. Mean follow-up was 4.6 years (4.1 to 5.0) in the CCS group and 5.5 years (5.25 to 5.75) in the VOOF group. The mean Harris Hip Score at two-year follow-up was 83.85 in the CCS group versus 88.00 in the VOOF group (p < 0.001). At the latest follow-up, all-cause failure rate was 29.1% in the CCS group and 11.7% in the VOOF group (p = 0.003). The total cost of the VOOF technique was 7.2% of a THA, and total cost of the CCS technique was 6.3% of a THA. Conclusion. The VOOF technique decreased all-cause failure rate compared to CCS. The total cost of VOOF was 13.5% greater than CCS, but 92.8% less than a THA. Increased cost of VOOF was considered acceptable to all patients in this series. VOOF technique provides a reasonable alternative to THA in patients who cannot afford a THA procedure. Cite this article: Bone Jt Open 2023;4(5):329–337


Bone & Joint Open
Vol. 5, Issue 2 | Pages 123 - 131
12 Feb 2024
Chen B Duckworth AD Farrow L Xu YJ Clement ND

Aims

This study aimed to determine whether lateral femoral wall thickness (LWT) < 20.5 mm was associated with increased revision risk of intertrochanteric fracture (ITF) of the hip following sliding hip screw (SHS) fixation when the medial calcar was intact. Additionally, the study assessed the association between LWT and patient mortality.

Methods

This retrospective study included ITF patients aged 50 years and over treated with SHS fixation between 2019 and 2021 at a major trauma centre. Demographic information, fracture type, delirium status, American Society of Anesthesiologists grade, and length of stay were collected. LWT and tip apex distance were measured. Revision surgery and mortality were recorded at a mean follow-up of 19.5 months (1.6 to 48). Cox regression was performed to evaluate independent risk factors associated with revision surgery and mortality.


Bone & Joint Open
Vol. 5, Issue 3 | Pages 227 - 235
18 Mar 2024
Su Y Wang Y Fang C Tu Y Chang C Kuan F Hsu K Shih C

Aims

The optimal management of posterior malleolar ankle fractures, a prevalent type of ankle trauma, is essential for improved prognosis. However, there remains a debate over the most effective surgical approach, particularly between screw and plate fixation methods. This study aims to investigate the differences in outcomes associated with these fixation techniques.

Methods

We conducted a comprehensive review of clinical trials comparing anteroposterior (A-P) screws, posteroanterior (P-A) screws, and plate fixation. Two investigators validated the data sourced from multiple databases (MEDLINE, EMBASE, and Web of Science). Following PRISMA guidelines, we carried out a network meta-analysis (NMA) using visual analogue scale and American Orthopaedic Foot and Ankle Score (AOFAS) as primary outcomes. Secondary outcomes included range of motion limitations, radiological outcomes, and complication rates.