Advertisement for orthosearch.org.uk
Results 1 - 50 of 146
Results per page:
Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_13 | Pages 114 - 114
1 Nov 2021
Başal Ö Ozmen O Deliormanli AM
Full Access

Introduction and Objective. Bone is a tissue which continually regenerates and also having the ability to heal after injuries however, healing of large defects requires intensive surgical treatment. Bioactive glasses are unique materials that can be utilized in both bone and skin regeneration and repair. They are degradable in physiological fluids and have osteoconductive, osteoinductive and osteostimulative properties. Osteoinductive growth factors such as Bone Morphogenetic Proteins (BMP), Vascular Endothelial Growth Factor (VEGF), Epidermal Growth Factor (EGF), Transforming Growth Factor (TGF) are well known to stimulate new bone formation and regeneration. Unfortunately, the synthesis of these factors is not cost- effective and, the broad application of growth factors is limited by their poor stability in the scaffolds. Instead, it is wise to incorporate osteoinductive nanomaterials such as graphene nanoplatelets into the structures of synthetic scaffolds. In this study, borate-based 13-93B3 bioactive glass scaffolds were prepared by polymer foam replication method and they were coated with graphene-containing poly (ε-caprolactone) layer to support the bone repair and regeneration. Materials and Methods. Effects of graphene concentration (1, 3, 5, 10 wt%) on the healing of rat segmental femur defects were investigated in vivo using male Sprague–Dawley rats. Fabricated porous bioactive glass scaffolds were coated by graphene- containing polycaprolactone solution using dip coating method. The prepared 0, 1, 3, 5 and 10 wt% graphene nanoparticle-containing PCL-coated composite scaffolds were designated as BG, 1G-P-BG, 3G-P-BG, 5G-P-BG and 10G-P-BG, for each group (n: 4) respectively. Histopathological and immunohistochemical (bone morphogenetic protein, BMP-2; smooth muscle actin, SMA and alkaline phosphatase, ALP) examinations were made after 4 and 8 weeks of implantation. Results. Results showed that after 8-weeks of implantation both cartilage and bone formation were observed in all animal groups. After 4 and 8 weeks of implantation the both osteoblast and osteoclast numbers were significantly higher in the group 4 compared to the control group. Bone formation was significant starting from 1 wt% graphene-coated bioactive glass implanted group and highest amount of bone formation was obtained in group containing 10 wt% graphene (p<0.001). Newly formed vessels expressed this marker and increased vascularization was observed in 8- weeks period compared to the 4-weeks period. In addition, an increase in new vessel formation were observed in graphene-coated scaffold implanted groups compared to the control group. While cartilage tissue was observed in control group, bone formation percentages were significant in graphene-coated scaffold implanted groups. Highest amount of bone formation occurred in group 4 (10 % wt G-C). Conclusions. Additionally, the presence of graphene nanoplatelets enhanced the BMP-2, SMA and ALP levels compared to the bare bioactive glass scaffolds. It was concluded that pristine graphene-coated bioactive glass scaffolds improve osteointegration and bone formation in rat femur defect when compared to bare bioglass scaffolds


Bone & Joint Open
Vol. 5, Issue 8 | Pages 688 - 696
22 Aug 2024
Hanusrichter Y Gebert C Steinbeck M Dudda M Hardes J Frieler S Jeys LM Wessling M

Aims. Custom-made partial pelvis replacements (PPRs) are increasingly used in the reconstruction of large acetabular defects and have mainly been designed using a triflange approach, requiring extensive soft-tissue dissection. The monoflange design, where primary intramedullary fixation within the ilium combined with a monoflange for rotational stability, was anticipated to overcome this obstacle. The aim of this study was to evaluate the design with regard to functional outcome, complications, and acetabular reconstruction. Methods. Between 2014 and 2023, 79 patients with a mean follow-up of 33 months (SD 22; 9 to 103) were included. Functional outcome was measured using the Harris Hip Score and EuroQol five-dimension questionnaire (EQ-5D). PPR revisions were defined as an endpoint, and subgroups were analyzed to determine risk factors. Results. Implantation was possible in all cases with a 2D centre of rotation deviation of 10 mm (SD 5.8; 1 to 29). PPR revision was necessary in eight (10%) patients. HHS increased significantly from 33 to 72 postoperatively, with a mean increase of 39 points (p < 0.001). Postoperative EQ-5D score was 0.7 (SD 0.3; -0.3 to 1). Risk factor analysis showed significant revision rates for septic indications (p ≤ 0.001) as well as femoral defect size (p = 0.001). Conclusion. Since large acetabular defects are being treated surgically more often, custom-made PPR should be integrated as an option in treatment algorithms. Monoflange PPR, with primary iliac fixation, offers a viable treatment option for Paprosky III defects with promising functional results, while requiring less soft-tissue exposure and allowing immediate full weightbearing. Cite this article: Bone Jt Open 2024;5(8):688–696


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_5 | Pages 21 - 21
1 Mar 2017
Mirghasemi S Sadeghi M Hussain Z Gabaran N Eslaminejad M
Full Access

Background. Despite promising results have shown by osteogenic cell-based demineralized bone matrix composites, they need to be optimized for grafts that act as structural frameworks in load-bearing defects. The purpose of this experiment is to determine the effect of bone marrow mesenchymal stem cells seeding on partially demineralized laser-perforated structural allografts that have been implanted in critical femoral defects. Materials and Methods. Thirty-two wistar rats were divided into four groups according to the type of structural bone allograft; the first: partially demineralized only (Donly), the second: partially demineralized stem cell seeded (DST), the third: partially demineralized laser-perforated (DLP), and the fourth: partially demineralized laser-perforated and stem cell seeded (DLPST). Trans-cortical holes were achieved in four rows of three holes approximated cylindrical holes 0.5 mm in diameter, with centres 2.5 mm apart. P3 MSCs were used for graft seeding. Histologic and histomorphometric analysis were performed at 12 weeks. Results. DLP grafts had the highest woven bone formation, where most parts of laser pores were completely healed by woven bone. DST and DLPST grafts surfaces had extra vessel-ingrowth-like porosities. Furthermore, in the DLPST grafts, a distinct bone formation at the interfaces was noted. Conclusion. This study indicated that surface changes induced by laser perforation, accelerated angiogenesis induction by MSCs, which resulted in endochondral bone formation at the interface. Despite non-optimal results, stem cells showed a tendency to improve osteochondrogenesis, and the process might have improved, if they could have been supplemented with the proper stipulations


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_16 | Pages 83 - 83
1 Apr 2013
Sato K Watanabe Y Abe S Harada N Yamanaka K Sakai Y Kaneko T Matsushita T
Full Access

Introduction

what size of defect is optimal for creating an atrophic nonunion animal model has not been well defined. Our aim in this study was to establish a clinically relevant model of atrophic nonunion in rat femur by creation of a bone defect to research fracture healing and nonunion.

Materials and methods

We used 30 male Fischer 344 rats (aged 10–11 weeks), which were equally divided into six groups. The segmental bone defects to a single femur in each rat were performed by double transverse osteotomy, and different sized defects were created by group for each group (1 mm, 2 mm, 3 mm, 4 mm, 5 mm and 6 mm). The defects were measured and maintained strictly by using an original external fixator. The periosteum for each defect was stripped both proximally and distally. Thereafter, these models were evaluated by radiology and histology. Radiographs were taken at baseline and at intervals of two weeks over a period of 8 weeks. Atrophic nonunion was defined as a lack of continuity and atrophy of both defect ends radiologically and histologically at eight weeks.


The Journal of Bone & Joint Surgery British Volume
Vol. 88-B, Issue 6 | Pages 832 - 836
1 Jun 2006
Barker R Takahashi T Toms A Gregson P Kuiper JH

The use of impaction bone grafting during revision arthroplasty of the hip in the presence of cortical defects has a high risk of post-operative fracture. Our laboratory study addressed the effect of extramedullary augmentation and length of femoral stem on the initial stability of the prosthesis and the risk of fracture.

Cortical defects in plastic femora were repaired using either surgical mesh without extramedullary augmentation, mesh with a strut graft or mesh with a plate. After bone impaction, standard or long-stem Exeter prostheses were inserted, which were tested by cyclical loading while measuring defect strain and migration of the stem.

Compared with standard stems without extramedullary augmentation, defect strains were 31% lower with longer stems, 43% lower with a plate and 50% lower with a strut graft. Combining extramedullary augmentation with a long stem showed little additional benefit (p = 0.67). The type of repair did not affect the initial stability. Our results support the use of impaction bone grafting and extramedullary augmentation of diaphyseal defects after mesh containment.


The Journal of Bone & Joint Surgery British Volume
Vol. 66-B, Issue 1 | Pages 32 - 37
1 Jan 1984
Leung P Chow Y

A new method of treating large bony defects of the proximal femur is described. The defect is filled with a large vascular-pedicled bone graft from the iliac crest. The graft, being nourished by the deep circumflex iliac vessels, remains viable and therefore induces rapid healing of the bone. This method of bony replacement encourages adequate excision of potentially malignant bone lesions and provides sufficient mechanical support to allow early walking. Six clinical cases are presented to illustrate its application.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_11 | Pages 22 - 22
7 Jun 2023
Sahemey R Ridha A Stephens A Farhan-Alanie M Riemer B Jozdryk J
Full Access

Revision total hip arthroplasty (rTHA) in the presence of femoral defects can be technically challenging. Reconstruction with long stems is widely accepted as the standard. However long stems can be difficult to insert and can compromise distal bone stock for future revisions. The aims of this study were to identify whether there was a difference in survival and outcomes following rTHA using a long versus standard or short femoral stem. A comprehensive systematic review was performed according to PRISMA guidelines using the MEDLINE, EMBASE, Chochrane Library and Web of Science databases. Inclusion criteria were (i) adult patients >18 years; (ii) randomised controlled trials, joint registry, or cohort studies; (iii) single or staged rTHA for Paprosky 1–3B femoral defects. Exclusion criteria were (i) mixed reporting without subgroup analysis for revision stem length; (ii) ex-vivo studies. Screening for eligibility and assessment of studies was performed by the authors. Out of 341 records, 9 studies met criteria for analysis (including 1 study utilising joint registry data and 1 randomised controlled trial). Across studies there were 3102 rTHAs performed in 2982 patients with a mean age of 67.4 years and a male: female ratio of 0.93. Revision prostheses were long-stemmed in 1727 cases and short or standard in 1375 cases with a mean follow up of 5 years (range, 0-15 years). On subgroup analysis the use of a long cemented stem compared to a long cementless prosthesis was associated with fewer complications and periprosthetic fracture in older patients. Survivorship was 95% with short stems compared to 84% with long stems at 5 years. Moderate quality evidence suggests that in rTHA with Paprosky type 1-3B femoral defects, the use of a short or standard stem can achieve comparable outcomes to long stems with fewer significant complications and revisions. Using a shorter stem may yield a more straightforward surgical technique and can preserve distal bone stock for future revision


The Bone & Joint Journal
Vol. 104-B, Issue 3 | Pages 368 - 375
1 Mar 2022
Kuijpers MFL Colo E Schmitz MWJL Hannink G Rijnen WHC Schreurs BW

Aims. The aim of this study was to determine the outcome of all primary total hip arthroplasties (THAs) and their subsequent revision procedures in patients aged under 50 years performed at our institution. Methods. All 1,049 primary THAs which were undertaken in 860 patients aged under 50 years between 1988 and 2018 in our tertiary care institution were included. We used cemented implants in both primary and revision surgery. Impaction bone grafting was used in patients with acetabular or femoral bone defects. Kaplan-Meier analyses were used to determine the survival of primary and revision THA with the endpoint of revision for any reason, and of revision for aseptic loosening. Results. The mean age of the patients at the time of the initial THA was 38.6 years (SD 9.3). The mean follow-up of the THA was 8.7 years (2.0 to 31.5). The rate of survival for all primary THAs, acetabular components only, and femoral components only at 20 years’ follow-up with the endpoint of revision for any reason, was 66.7% (95% confidence interval (CI) 60.5 to 72.2), 69.1% (95% CI 63.0 to 74.4), and 83.2% (95% CI 78.1 to 87.3), respectively. A total of 138 revisions were performed. The mean age at the time of revision was 48.2 years (23 to 72). Survival of all subsequent revision procedures, revised acetabular, and revised femoral components at 15 years’ follow-up with the endpoint of revision for any reason was 70.3% (95% CI 56.1 to 80.7), 69.7% (95% CI 54.3 to 80.7), and 76.2% (95% CI 57.8 to 87.4), respectively. A Girdlestone excision arthroplasty was required in six of 860 patients (0.7%). Conclusion. The long-term outcome of cemented primary and subsequent revision THA is promising in these young patients. We showed that our philosophy of using impaction bone grafting in patients with acetabular and femoral defects is a very suitable option when treating young patients. Surgeons should realize that knowledge of the outcome of subsequent revision surgery, which is inevitable in young patients, must be communicated to this group of patients prior to their initial THA. Cite this article: Bone Joint J 2022;104-B(3):368–375


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_2 | Pages 55 - 55
2 Jan 2024
Wehrle E
Full Access

Despite the major advances in osteosynthesis after trauma, there remains a small proportion of patients (<10%) who exhibit delayed healing and/or eventual progression to non-union. While known risk factors exist, e.g. advanced age or diabetes, the exact molecular mechanism underlying the impaired healing is largely unknown and identifying which specific patient will develop healing complications is still not possible in clinical practice. The talk will cover our novel multimodal approaches in small animals, which have the potential to precisely capture and understand biological changes during fracture healing on an individual basis. Via combining emerging omics technologies with our recently developed femur defect loading equipment in mice, we provide a platform to precisely link mechanical and molecular analyses during fracture healing


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_1 | Pages 132 - 132
2 Jan 2024
Dias D Fritsche-Guenther R Chan W Ellinghaus A Duda G Kirwan J Poh P
Full Access

The ability of the body to constantly maintain metabolism homeostasis while fulling the heightened energy and macromolecule demand is crucial to ensure successful tissue healing outcomes. Studies investigating the local metabolic environment during healing are scarce to date. Here, using Type 2 Diabetes (T2D) as a study model, we investigate the impact of metabolism dysregulation on scaffold-guided large-volume bone regeneration. Our study treated wild-type or T2D rats with 5 mm critical-sized femoral defects with 3D-printed polycaprolactone (PCL) scaffolds with 70% porosity. Metabolomics was leveraged for a holistic view of metabolism alteration as healing progress and correlated to regenerated bone tissue volume and quality assessed using micro-computed tomography (µ-CT), histology, and immunohistology. Semi-targeted metabolomics analysis indicated dysregulation in the glycolysis and TCA cycle – the main energy production pathways, in T2D compared to healthy animals. The abundance of metabolites substrates, i.e., amino acids – for protein/ extracellular matrix synthesis was also affected in T2D. Tissue-level metabolites observations aligned with morphological observation with less newly formed bone observed in T2D than wild-type rats. This study enlightens the metabolism landscape during scaffold-guided large-volume bone regeneration in wild-type vs. T2D to further guide the personalization of the scaffold to drive successful regeneration


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_7 | Pages 130 - 130
4 Apr 2023
Shi Y Deganello D Xia Z
Full Access

Bone defects require implantable graft substitutes, especially porous and biodegradable biomaterial for tissue regeneration. The aim of this study was to fabricate and assess a 3D-printed biodegradable hydroxyapatite/calcium carbonate scaffold for bone regeneration. Materials and methods:. A 3D-printed biodegradable biomaterial containing calcium phosphate and aragonite (calcium carbonate) was fabricated using a Bioplotter. The physicochemical properties of the material were characterised. The materials were assessed in vitro for cytotoxicity and ostegenic potential and in vivo in rat intercondylar Φ3mm bone defect model for 3 months and Φ5mm of mini pig femoral bone defects for 6 months. The results showed that the materials contained hydroxyapatite and calcium carbonate, with the compression strength of 2.49± 0.2 MPa, pore size of 300.00 ± 41mm, and porosity of 40.±3%. The hydroxyapatite/aragonite was not cytotoxic and it promoted osteogenic differentiation of human umbilical cord matrix mesenchymal stem cells in vitro. After implantation, the bone defects were healed in the treatment group whereas the defect of controlled group with gelatin sponge implantation remained non-union. hydroxyapatite/aragonite fully integrated with host bone tissue and bridged the defects in 2 months, and significant biodegradation was followed by host new bone formation. After implantation into Φ5mm femoral defects in mini pigs hydroxyapatite/aragonite were completed degraded in 6 months and fully replaced by host bone formation, which matched the healing and degradation of porcine allogenic bone graft. In conclusion, hydroxyapatite/aragonite is a suitable new scaffold for bone regeneration. The calcium carbonate in the materials may have played an important role in osteogenesis and material biodegradation


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_12 | Pages 29 - 29
23 Jun 2023
Briem T Stadelmann VA Rüdiger HA Leunig M
Full Access

Femoroacetabular impingement is a prearthritic deformity frequently associated with early chondral damage. Several techniques exist for restoring larger cartilage defects. While AMIC proved to be an effective treatment in knee and ankle, there are only short-term data available in hip. This study aimed to investigate the mid-term clinical outcome of patients with chondral lesions treated by AMIC and evaluate the quality of repair tissue via MRI. This retrospective, single center study includes 18 patients undergoing surgical hip dislocation for FAI between 2013 and 2016. Inclusion criteria were: cam or pincer-type FAI, femoral or acetabular chondral lesions > 1 cm. 2. , (IRCS III-IV). Due to exclusion criteria and loss-to-follow-up 9 patients (10 hips) could be included. Patient reported outcome measures included Oxford Hip Score (OHS) & Core Outcome Measure Index (COMI)). MRIs were evaluated using the Magnetic Resonance Observation of Cartilage Repair Tissue (MOCART) score. None of the patients underwent revision surgery except screw removals from the greater trochanter. Followup data indicate a satisfactory to good hip function at 5 years: PROMS improved from pre- to postop at 5 years: OHS from 38.1 to 43.4, COMI from to 1.8 and UCLA from 4 to 8.1 respectively. MOCART score was 67.5 postoperatively. Subgrouping showed slightly better results for acetabular defects (Ø 69.4) compared femoral defects (Ø 60). Based on the reported mid-term results, we consider AMIC as a valuable treatment option for larger chondral defects of the hip


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_1 | Pages 10 - 10
2 Jan 2024
Tian X Vater C Raina DB Findeisen L Matuszewski L Tägil M Lidgren L Schaser K Disch A Zwingenberger S
Full Access

Although bone morphogenetic protein 2 (BMP-2) has been FDA-approved for spinal fusion for decades, its disadvantages of promoting osteoclast-based bone resorption and suboptimal carrier (absorbable collagen sponge) leading to premature release of the protein limit its clinical applications. Our recent study showed an excellent effect on bone regeneration when BMP-2 and zoledronic acid (ZA) were co-delivered based on a calcium sulphate/hydroxyapatite (CaS/HA) scaffold in a rat critical-size femoral defect model. Therefore, the aim of this study was to evaluate whether local application of BMP-2 and ZA released from a CaS/HA scaffold is favorable for spinal fusion. We hypothesized that CaS/HA mediated controlled co-delivery of rhBMP-2 and ZA could show an improved effect in spinal fusion over BMP-2 alone. 120, 8-week-old male Wistar rats (protocol no. 25-5131/474/38) were randomly divided into six groups in this study (CaS/HA, CaS/HA + BMP-2, CaS/HA + systemic ZA, CaS/HA + local ZA, CaS/HA + BMP-2 + systemic ZA, CaS/HA + BMP-2 + local ZA). A posterolateral spinal fusion at L4 to L5 was performed bilaterally by implanting group-dependent scaffolds. At 3 weeks and 6 weeks, 10 animals per group were euthanized for µCT, histological staining, or mechanical testing. µCT and histological results showed that the CaS/HA + BMP-2 + local ZA group significantly promoted bone regeneration than other treated groups. Biomechanical testing showed breaking force in CaS/HA + BMP + local ZA group was significantly higher than other groups at 6 weeks. In conclusion, the CaS/HA-based biomaterial functionalized with bioactive molecules rhBMP-2 and ZA enhanced bone formation and concomitant spinal fusion outcome. Acknowledgements: Many thanks to Ulrike Heide, Anna-Maria Placht (assistance with surgeries) as well as Suzanne Manthey & Annett Wenke (histology)


Aims. Revision total hip arthroplasty in patients with Vancouver type B3 fractures with Paprosky type IIIA, IIIB, and IV femoral defects are difficult to treat. One option for Paprovsky type IIIB and IV defects involves modular cementless, tapered, revision femoral components in conjunction with distal interlocking screws. The aim of this study was to analyze the rate of reoperations and complications and union of the fracture, subsidence of the stem, mortality, and the clinical outcomes in these patients. Methods. A total of 46 femoral components in patients with Vancouver B3 fractures (23 with Paprosky type IIIA, 19 with type IIIB, and four with type IV defects) in 46 patients were revised with a transfemoral approach using a modular, tapered, cementless revision Revitan curved femoral component with distal cone-in-cone fixation and prospectively followed for a mean of 48.8 months (SD 23.9; 24 to 112). The mean age of the patients was 80.4 years (66 to 100). Additional distal interlocking was also used in 23 fractures in which distal cone-in-cone fixation in the isthmus was < 3 cm. Results. One patient (2.2%) died during the first postoperative year. After six months, 43 patients (93.5%) had osseous, and three had fibrous consolidation of the fracture and the bony flap, 42 (91.3%) had bony ingrowth and four had stable fibrous fixation of the stem. No patient had radiolucency around the interlocking screws and no screw broke. One patient had non-progressive subsidence and two had a dislocation. The mean Harris Hip Score increased from of 57.8 points (SD 7.9) three months postoperatively to 76.1 points (SD 10.7) 24 months postoperatively. Conclusion. The 2° tapered, fluted revision femoral component with distal cone-in-cone-fixation, combined with additional distal interlocking in patients with bony deficiency at the isthmus, led to reproducibly good results in patients with a Vancouver B3 fracture and Paprosky type IIIA, IIIB, and IV defects with regard to union of the fracture, subsidence or loosening of the stem, and clinical outcomes. Cite this article: Bone Joint J 2024;106-B(4):344–351


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_10 | Pages 34 - 34
1 Aug 2021
Ramavath A Leong J Siney P Kay P Divecha H Board T
Full Access

Principles of bone preservation and restoration of biomechanical alignment should be followed during revision total hip arthroplasty (THA). Where possible, conservative femoral revision techniques and even reconstructive de-escalation involving using primary stems should be considered. This study aims to investigate the outcome of patients who have undergone conservative femoral revision THA in our Institution. We retrospectively identified patients from our Institution's revision arthroplasty database who had cemented, or un-cemented primary stems implanted during revision THA of a previous stemmed femoral implant. Our primary outcome measure was all-cause re-revision THA with a secondary outcome measure of improvement in Oxford hip score (OHS). Radiographic evidence of stem loosening and post-op complications were recorded. Between 02/12/2014 to 12/12/2019, there were 226 patients identified with a mean follow up of 2 years (1–5 years). The majority of cases were represented by Paprosky type 1 (63%) and type 2 (25%) femoral defects. There were 45 patients (20%) who underwent impaction bone grafting (IBG) and 43 patients (19%) who had a cement in cement (CinC) femoral revision and cemented primary stem in 137 (60%), 1 uncemented stem with no IBG or CinC revision. Kaplan Meier survival for all-cause re-revision THA was 93.7% (95% CI: 88.3 – 100) at 3 years. The reasons for re-revision included 4 periprosthetic fractures, 4 dislocations, 1 deep infection, 1 loosening of femoral component and 1 loosening of acetabular component. Pre- and post-operative OHS scores were available in 137 hips (60%) with a mean improvement of 13. Radiographic review revealed 7% of cases with evidence of loosening in 1 or more Gruen zones. Our early results support the use of conservative femoral revision THA techniques where appropriate, with low complication and re-revision rates. Revisions using primary femoral components, where appropriate, should be considered in surgical planning to avoid unnecessary reconstructive escalation


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_2 | Pages 16 - 16
1 Feb 2018
Thorpe A Freeman C Farthing P Callaghan J Hatton P Brook I Sammon C Le Maitre C
Full Access

Background. We have reported an injectable L-pNIPAM-co-DMAc hydrogel with hydroxyaptite nanoparticles (HAPna) which promotes mesenchymal stem cell (MSC) differentiation to bone cells without the need for growth factors. This hydrogel could potentially be used as an osteogenic and osteoconductive bone filler of spinal cages to improve vertebral body fusion. Here we investigated the biocompatibility and efficacy of the hydrogel in vivo using a proof of concept femur defect model. Methods. Rat sub-cut analysis was performed to investigate safety in vivo. A rat femur defect model was performed to evaluate efficacy. Four groups were investigated: sham operated controls; acellular L-pNIPAM-co-DMAc hydrogel; acellular L-pNIPAM-co-DMAc hydrogel with HAPna; L-pNIPAM-co-DMAc hydrogel with rat MSCs and HAPna. Following 4 weeks, defect site and organs were histologically examined to determine integration, repair and inflammatory response, as well as Micro-CT to assess mineralisation. Results. No inflammatory reactions or toxicity were seen in any animal. Enhanced bone healing was observed in aged exbreeder female rats where hydrogel was injected with increased deposition of collagen type I. Integration of the hydrogel with surrounding bone was observed without the need for delivered MSCs; native cell infiltration was also seen and bone formation was observed within all hydrogel systems investigated. Conclusion. This novel hydrogel is biocompatible, facilitates migration of cells, promotes increased bone formation and integrates with surrounding bone. This system could be injected to fill spaces within and surrounding spinal cages to aid in cage fixation and spinal fusion without the need for harvesting of bone autografts, thus reducing operative risk and surgical cost. Conflicts of Interest: None. Source of Funding: BMRC, MERI Sheffield Hallam University


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_4 | Pages 99 - 99
1 Mar 2021
Procter P Hulsart-Billstrom G Insley G Pujari-Palmer M Wenner D Engqvist H Larsson S
Full Access

An ex vivo biomechanical test model for evaluating a novel bone adhesive has been developed. However, at day 1 in the in vivo pilot, high blood flow forced the study to halt until the solution presented here was developed. The profuse bleeding after bone core removal affected the bond strength and was reflected in the lower mean peak value 1.53N. After considering several options, we were successful in sealing the source of blood flow by pressing adhesive into place after bone core removal. After the initial adhesive had cured additional adhesive was used to secure the bone core in place. The animals were sacrificed after 24 h and a tensile test was undertaken on the bone core to failure. The ex vivo study produced mean peak tensile loads of 7.63N SD 2.39N (n=8, 4 rats 8 femurs). Whilst the mean peak tensile loads in the day 1 in vivo pilot were significantly lower 1.53N SD1.57 (n=8, 6 rats 8 femurs − 4 used for other tests). The subsequent layered adhesive bone cores showed a mean peak tensile force of 6.79N SD =3.13 (n=8, 4 rats 8 femurs). 7/8 failed at the bone to glue interface. This is the first successful demonstration of bonding bone in vivo for this class of adhesives. The development of a double adhesive method of fixing a bone core in the distal femur enabled mean peak tensile forces to be achieved in vivo at 24 hours that were comparable with the ex vivo results previously demonstrated. This method supports application in further animal series and over longer time scales. Biomaterials researchers that intend to use gel or paste like preparations in distal femur defects in the rat should be aware of the risks of biomaterial displacement by local blood flow


The Bone & Joint Journal
Vol. 103-B, Issue 2 | Pages 398 - 404
1 Feb 2021
Christ AB Fujiwara T Yakoub MA Healey JH

Aims. We have evaluated the survivorship, outcomes, and failures of an interlocking, reconstruction-mode stem-sideplate implant used to preserve the native hip joint and achieve proximal fixation when there is little residual femur during large endoprosthetic reconstruction of the distal femur. Methods. A total of 14 patients underwent primary or revision reconstruction of a large femoral defect with a short remaining proximal femur using an interlocking, reconstruction-mode stem-sideplate for fixation after oncological distal femoral and diaphyseal resections. The implant was attached to a standard endoprosthetic reconstruction system. The implant was attached to a standard endoprosthetic reconstruction system. None of the femoral revisions were amenable to standard cemented or uncemented stem fixation. Patient and disease characteristics, surgical history, final ambulatory status. ,. and Musculoskeletal Tumor Society (MSTS) score were recorded. The percentage of proximal femur remaining was calculated from follow-up radiographs. Results. All 14 at-risk native hip joints were preserved at a mean final follow-up of 6.0 years (SD 3.7), despite a short residual femur, often after proximal osteotomies through the lesser trochanter. Overall, 13 of 14 stems had long-term successful fixation. Eight patients required no reoperation. Three patients required reoperation due to implant-related issues, and three patients required reoperation for wound healing problems or infection. There were no dislocations or fractures. At final follow-up the mean MSTS score was 24.9 (SD 4.1). Nine patients required no ambulation aids, and only one had a Trendelenburg gait. Conclusion. This interlocking, reconstruction-mode stem-sideplate reliably preserves native hip joint anatomy and function after large femoral resection with a short remaining proximal femur, both in the primary and revision setting. This is particularly important for preventing or delaying total femoral arthroplasty in young patients after oncological reconstruction. Hip abductor strength and function could be maintained by this method, and the risk of dislocation eliminated. The success of this technique in this modest series should be verified in a larger collaborative study and will be of interest to revision surgeons and oncologists. Cite this article: Bone Joint J 2021;103-B(2):398–404


The Journal of Bone & Joint Surgery British Volume
Vol. 94-B, Issue 11_Supple_A | Pages 61 - 64
1 Nov 2012
Mayle Jr RE Paprosky WG

Revision total hip arthroplasty (THA) is projected to increase by 137% from the years 2005 to 2030. Reconstruction of the femur with massive bone loss can be a formidable undertaking. The goals of revision surgery are to create a stable construct, preserve bone and soft tissues, augment deficient host bone, improve function, provide a foundation for future surgery, and create a biomechanically restored hip. Options for treatment of the compromised femur include: resection arthroplasty, allograft prosthetic composite (APC), proximal femoral replacement, cementless fixation with a modular tapered fluted stem, and impaction grafting. The purpose of this article is to review the treatment options along with their associated outcomes in the more severe femoral defects (Paprosky types IIIb and IV) in revision THA.


Orthopaedic Proceedings
Vol. 90-B, Issue SUPP_I | Pages 60 - 60
1 Mar 2008
Sekundiak T
Full Access

Staged revision arthroplasty for the periprosthetic hip infection is the accepted mode of treatment. Unfortunately, the first stage revision compromises the patient’s function secondary to inability to weight-bear. Pros-theses coated with antibiotic-loaded cement have been adapted to improve function but have failed in larger femoral defects. This implant and technique described improves patient mobility and decreases morbidity as compared to conventional techniques. The purpose of this study was to find an implant to accommodate most femoral defects and to be readily available for managing periprosthetic hip infections. A prospective study was performed comparing the PROSTALAC(DePuy, IN) implant (Group I) to a Solution(DePuy, IN) implant (Group II) covered in antibiotics for management of the first stage. All patients had a confirmed pyogenic gram positive or gram negative infection. Fifty-two patients were compared with each group being matched by their femoral defect type (Paprosky: Type I and II: 24, Type III:20, Type IV: 8). Follow-up was for a minimum of thirty-six months. All patients were encouraged to weight bear as tolerated. One recurrence of infection occurred after a second stage revision in Group I. Cost of the implant averaged $700 cheaper in Group II. More significant was the fact that the average length of hospital stay was decreased in Group II by seven days and forty-seven days for the Type III and Type IV femurs respectively. All patients in Group I received a second stage revision. Five of the Group II patients refused a second stage revision secondary to their satisfactory function and had better post-op function. An alternative treatment for staged periprosthetic hip infections is proposed which can decrease hospital stay, improve function, and allow routine implant use for its implementation


The Journal of Bone & Joint Surgery British Volume
Vol. 94-B, Issue 5 | Pages 615 - 618
1 May 2012
ten Have BLEF Brouwer MD RW van Biezen FC Verhaar JAN

The purpose of this prospective study was to evaluate the long-term clinical and radiological outcomes of revision of the femoral component of a total hip replacement using impaction bone grafting. Femoral revision with an impacted allograft was performed on 29 patients (31 hips). In all, 21 hips (68%) had grade III or IV femoral defects according to the Endo-Klinik classification. A total of 11 patients (12 hips) died before the ten-year follow-up period. Of the remaining patients, 18 patients (19 hips) were followed for 10 to 15 years; three further patients died during this time. None of the 31 stems underwent further revision of their stem. However, four stems showed extensive subsidence (> 15 mm). One of these patients had a femoral fracture that required fixation. Three other patients had a femoral fracture, two of which required fixation and the other was treated conservatively. Patients with a femoral fracture and/or severe subsidence had significantly more grade IV defects (six of seven hips; p = 0.004). One patient needed a closed reduction for dislocation. Impaction allografting in revision hip surgery gives good long-term results for femora with grades I, II and III Endo-Klinik-classified defects. Extensive subsidence and femoral fractures were seen mainly in patients with grade IV damaged femora


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_22 | Pages 54 - 54
1 Dec 2016
Hozack W
Full Access

Revision hip surgery is about simplification. As such, a single revision stem makes sense. The most important advantage of Tapered Conical Revision (TCR) stem is versatility - managing ALL levels of femoral bone loss (present before revision or created during revision). The surgeon and team quickly gain familiarity with the techniques and instruments for preparation and implantation and subsequently master its use for a variety of situations. This ability to use the stem in a variety of bone loss situations eliminates intraoperative shuffle (changes in the surgical plan resulting in more instruments being opened), as bone loss can be significantly underestimated preoperatively or may change intraoperatively. Furthermore, distal fixation can be obtained simply and reliably. Paprosky 1 femoral defects can be treated with a primary-type stem for the most part. All other femoral defects can be treated with a TCR stem. Fully porous coated stems also work for many revisions but why have two different revision stem choices available when the TCR stems work for ALL defects?. TCR stems can be modular or monolithic but there are common keys to success. First and foremost, proper exposure is essential to assess bone defects and to safely prepare the femur. An extended osteotomy is often useful. Reaming distally to prepare a cone for fixation of the conical stem is a critical requirement to prevent subsidence (true for all revision stems). Restoration of hip mechanics (offset, leg length and stability) is fundamental to the clinical result. TCR stems have instrumentation and techniques that ensure this happens, since all this occurs AFTER distal stability is achieved. Modular TCR versions have some advantages. The proximal body size and length can be adjusted AFTER stem insertion if the stem goes deeper than the trial. Any proximal/distal bone size mismatch can be accommodated. If the surgeon believes that proximal bone ingrowth is important to facilitate proximal bone remodeling, modular TCR stems can more easily accomplish this. Further, proximal bone contact and osseointegration will protect the modular junction from stress and possible risk of fracture. Monolithic TCR versions also have some advantages. Modular junction mechanical integrity cannot accommodate smaller bone sizes. Shorter stem lengths are not available in modular versions, and shorter TCR stems are an option in many revision cases. The possibility of modular junction corrosion is eliminated and fracture of the stem at that junction, of course, is not possible. The monolithic stem option is less expensive as well. Consider Modular TCR stems in your learning curve, if you feel proximal bone osseointegration is important and if proximal/distal size mismatch is present. Consider Monolithic TCR stems after your learning curve to reduce cost, when a short stem works, and if a small stem is needed. Both Modular and Monolithic stems can be used for ALL cases with equal quality of result


Bone & Joint Research
Vol. 2, Issue 2 | Pages 41 - 50
1 Feb 2013
Cottrell JA Keshav V Mitchell A O’Connor JP

Objectives. Recent studies have shown that modulating inflammation-related lipid signalling after a bone fracture can accelerate healing in animal models. Specifically, decreasing 5-lipoxygenase (5-LO) activity during fracture healing increases cyclooxygenase-2 (COX-2) expression in the fracture callus, accelerates chondrogenesis and decreases healing time. In this study, we test the hypothesis that 5-LO inhibition will increase direct osteogenesis. Methods. Bilateral, unicortical femoral defects were used in rats to measure the effects of local 5-LO inhibition on direct osteogenesis. The defect sites were filled with a polycaprolactone (PCL) scaffold containing 5-LO inhibitor (A-79175) at three dose levels, scaffold with drug carrier, or scaffold only. Drug release was assessed in vitro. Osteogenesis was assessed by micro-CT and histology at two endpoints of ten and 30 days. Results. Using micro-CT, we found that A-79175, a 5-LO inhibitor, increased bone formation in an apparent dose-related manner. Conclusions. These results indicate that 5-LO inhibition could be used therapeutically to enhance treatments that require the direct formation of bone


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_7 | Pages 52 - 52
1 Apr 2017
Hozack W
Full Access

Modern modular revision stems employ tapered conical (TCR) distal stems designed for immediate axial and rotational stability with subsequent osseo-integration of the stem. Modular proximal segments allow the surgeon to achieve bone contact proximally with eventual ingrowth that protects the modular junction. The independent sizing of the proximal body and distal stem allows for each portion to obtain intimate bony contact and gives the surgeon the ability precisely control the femoral head center of rotation, offset, version, leg length, and overall stability. The most important advantage of modular revision stems is versatility - the ability to manage ALL levels of femoral bone loss (present before revision or created during revision). Used routinely, this allows the surgeon to quickly gain familiarity with the techniques and instruments for preparation and implantation and subsequently master the use for all variety of situations. This also allows the operating room staff to become comfortable with the instrumentation and components. Additionally, the ability to use the stem in all bone loss situations eliminates intra-operative shuffle (changes in the surgical plan resulting in more instruments being opened), as bone loss can be significantly under-estimated pre-operatively or may change intra-operatively. Furthermore, distal fixation can be obtained simply and reliably. Paprosky 1 femoral defects can be treated with a primary-type stem for the most part. All other femoral defects can be treated with a TCR stem. Fully porous coated stems also work for many revisions but why have two different revision stem choices available when the TCR stems work for ALL defects?. The most critical advantage is the ability to separate completely the critical task of fixation from other important tasks of restoring offset, leg length, and stability. Once fixation is secured, the surgeon can concentrate on hip stability and on optimization of hip mechanics (leg length and offset). The ability to do this allows the surgeon to maximise patient functionality post-operatively. Modular tapered stems have TWO specific advantages over monolithic stems in this important surgical task. The proximal body size and length can be adjusted AFTER stem insertion if the stem goes deeper than the trial. Further, proximal/distal bone size mismatch can be accommodated. The surgeon can control the diameter of the proximal body to ensure proper bony apposition independent of distal fitting needs. If the surgeon believes that proximal bone ingrowth is important to facilitate proximal bone remodeling, modular TCR stems can more easily accomplish this. The most under-appreciated advantage is the straightforward instrumentation system that makes the operation easier for the staff and the surgeon, while enhancing the operating room efficiency and reducing cost. Also, although the implant itself may result in more cost, most modular systems allow for a decrease in inventory requirements, which make up the cost differential. One theoretical disadvantage of modular revision stems is modular junction fracture, which can happen if the junction itself is not protected by bone. Ensuring proximal bone support can minimise this problem. Once porous ingrowth occurs proximally, the risk of junction fracture is eliminated. Even NON-modular stems fracture when proximal bone support is missing. Another theoretical issue is modular junction corrosion but this not a clinical one, since both components are titanium. One can also fail to connect properly the two parts during surgery


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_6 | Pages 13 - 13
1 Jul 2020
Wildeman B Bormann N Beuttel E Pobloth A Duda GN
Full Access

Despite the increasing availability of bone grafting materials, the regeneration of large bone defects remains a challenge. Especially infection prevention while fostering regeneration is a crucial issue. Therefore, loading of grafting material with antibiotics for direct delivery to the site of need is desired. This study evaluates the concept of local delivery using in vitro and in vivo investigations. We aim at verifying safety and reliability of a perioperative enrichment procedure of demineralized bone matrix (DBM) with gentamicin. DBM (DBMputty, DIZG, Germany) was mixed with antibiotic using a syringe with an integrated mixing propeller (Medmix Systems, Switzerland). Gentamicin, as powder or solution, was mixed with DBM at different concentrations (25 −100 mg/g DBM), release and cytotoxicity was analyzed. For in vivo analysis, sterile drill hole defects (diameter: 6 mm, depth: 15 mm) were created in diaphyseal and metaphyseal bones of sheep (Pobloth et al. 2016). Defects (6 – 8 per group and time point) were filled with DBM or DBM enriched with gentamicin (50 mg/g DBM) or left untreated. After three and nine weeks, defect regeneration was analyzed by µCT and histology. The release experiments revealed a burst release of gentamicin from DBM independent of the used amount, the sampling strategy, or the formulation (powder or solution). Gentamicin was almost completely released after three days in all set-ups. Eluates showed an antimicrobial activity against S. aureus over at least three days. Eluates had no negative effect on viability and alkaline phosphatase activity of osteoblast-like cells (partially published Bormann et al. 2014). µCT and histology of the drill hole defects revealed a reduced bone formation with gentamicin loaded DBM. After nine weeks significantly less mineralized tissue was detectable in metaphyseal defects of the gentamicin group. Histological evaluation revealed new bone formation starting at the edges of the drill holes and growing into the center over time. The amount of DBM decreased over time due to the active removal by osteoclasts while osteoblasts formed new bone. Using this mixing procedure, loading of DBM was fast, reliable and possible during surgical setting. In vitro experiments revealed a burst and almost complete release after three days, antimicrobial activity and good biocompatibility of the eluates. Gentamicin/DBM concentration was in the range of clinically used antibiotic-loaded-cement for prophylaxis and treatment in joint replacement (Jiranek et al. 2006). The delayed healing seen in vivo was unexpected due to the good biocompatibility found in vitro. A reduced healing was also seen in spinal fusion where DBM was mixed with vancomycin (Shields et al. 2017), whereas DBM with gentamicin or DBM/bioactive glass with tobramycin had no negative effect on osteoinductivity or femur defect healing, respectively (Lewis et al. 2010, Shields et al. 2016). In conclusion, loading of DBM with gentamicin showed a proper antibiotic delivery over several days, covering the critical phase shortly after surgery. Due to the faster and complete release of the antibiotic compared to antibiotic loaded cement, the amount of antibiotic should be much lower in the DBM compared to cement


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_16 | Pages 73 - 73
1 Nov 2018
Ribeiro C Correia D Rodrigues I Guardão L Guimarães S Soares R Lanceros-Méndez S
Full Access

The potential of piezoelectric biomaterials for bone tissue engineering is demonstrated. This work proves that the use of piezoelectric poly(vinylidene fluoride) (PVDF), able to provide electrical stimuli upon mechanical solicitation to the growing bone cells, enhances the bone regeneration in vivo. Poled and non-poled PVDF films, with and without macroscopic piezoelectric response, respectively and randomly oriented piezoelectric electrospun fiber mats have been used as substitutes for bone to test their osteogenic properties in Wistar rats by analyzing new bone formation in 3 mm bilateral femur defects in vivo. After 4 weeks, the qualification of the regenerated bone was performed according the H&E staining. Defect implanted with poled PVDF films demonstrated significantly more defect closure and bone remodeling, showing the large potential of piezoelectric biomaterials for bone repair, as well as for other electromechanical responsive tissues such as muscle and tendon


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_15 | Pages 48 - 48
1 Nov 2018
Devine D Hayes J Kotsougiani D Evans C
Full Access

Bone has a remarkable capacity to heal. However, in some instances the amount of bone which is needed to heal exceeds its healing capacity. Due to reported issues with current treatments there is continued research into alternative approaches with a view to producing an off the shelf alternative to the gold standard autologous bone transplants. The current investigated the use of a chitosan/hydroxyapatite scaffold, which was used to covalently bone morphogenetic protein and vascular endothelial growth factor using a UV crosslinking process. Results indicate that the incorporation of hydroxyapatite increased the mechanical properties of the scaffold compared to chitosan alone. Furthermore, crosslinking was confirmed using swelling studies and FTIR analysis. Elisa indicated that physiological doses of BMP were released after 10 days while in vitro testing did not indicate a cytotoxic response to the scaffold. In vivo testing in a rat femoral defect model indicated the efficacy of the treatment with scaffolds containing BMP and VEGF in combination resulting in more bone in the defect compared to the scaffold alone 8 weeks post-surgery


The Journal of Bone & Joint Surgery British Volume
Vol. 94-B, Issue 2 | Pages 167 - 172
1 Feb 2012
Buttaro MA Costantini J Comba F Piccaluga F

We determined the midterm survival, incidence of peri-prosthetic fracture and the enhancement of the width of the femur when combining struts and impacted bone allografts in 24 patients (25 hips) with severe femoral bone loss who underwent revision hip surgery. The pre-operative diagnosis was aseptic loosening in 16 hips, second-stage reconstruction in seven, peri-prosthetic fracture in one and stem fracture in one hip. A total of 14 hips presented with an Endoklinik grade 4 defect and 11 hips a grade 3 defect. The mean pre-operative Merle D’Aubigné and Postel score was 5.5 points (1 to 8). The survivorship was 96% (95% confidence interval 72 to 98) at a mean of 54.5 months (36 to 109). The mean functional score was 17.3 points (16 to 18). One patient in which the strut did not completely bypass the femoral defect was further revised using a long cemented stem due to peri-prosthetic fracture at six months post-operatively. The mean subsidence of the stem was 1.6 mm (1 to 3). There was no evidence of osteolysis, resorption or radiolucencies during follow-up in any hip. Femoral width was enhanced by a mean of 41% (19% to 82%). A total of 24 hips had partial or complete bridging of the strut allografts. This combined biological method was associated with a favourable survivorship, a low incidence of peri-prosthetic fracture and enhancement of the width of the femur in revision total hip replacement in patients with severe proximal femoral bone loss


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXV | Pages 199 - 199
1 Jun 2012
Ryan M Fait J Khan A Barnes G
Full Access

Purpose. In revision hip surgery, Type IIIB femurs have presented the greatest historical challenge to achieving stable fixation and osseous integration. This study evaluated the intermediate term outcome of a modular, tapered, distal fixation revision femoral component used in a consecutive revision hip series with special attention to its performance in the defective Type IIIB femur. Methods. Between February 2002 and January 2005, 51 consecutive revision hip arthroplasties were performed using modular, tapered, distal fixation femoral components. The femoral defects at the time of revision surgery were classified using a system previously described by Paprosky. The most recent radiographs were reviewed and clinic notes examined to assess femoral component stability. Results. At a minimum of 4.2 years and a mean of 5.8 years follow-up, 2 patients were lost to follow-up. Revision cases classified by the Paprosky femoral defect classification system included 14 Type IIIB hips (28%). All hips reviewed (100%) had radiographic evidence of bony ingrowth. No stem migrated more than 2mm. There were no failures at the modular junction and no component disassociation.??Conclusion: A modular, tapered distal fixation femoral component had a 100% survival rate at mean 5.8 year follow-up after revision surgery. All femoral components showed successful osseous-integration. The ability with modularity to independently place the diaphyseal segment of a femoral component in the best remaining femoral host bone may have provided the greatest opportunity for osseous-integration. In this consecutive revision hip series there was no instance of modular junction fracture or component related failure in cases with minimal or no proximal bone support


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXV | Pages 145 - 145
1 Jun 2012
Meijerink H Loon CV Malefijt MDW Kampen AV Verdonschot N
Full Access

Introduction. Within the reconstruction of unicondylar femoral bone defects with morselized bone grafts in revision total knee arthroplasty (TKA), a stem extension appears to be critical to obtain adequate mechanical stability. Whether the stability is still secured by this reconstruction technique in bicondylar defects has not been assessed. Long, rigid stem extensions have been advocated to maximize the stability in revision TKAs. The disadvantage of relatively stiff stem extensions is that bone resorption is promoted due to stress shielding. Therefore, we developed a relatively thin intramedullary stem which allowed for axial sliding movements of the articulating part relative to the intramedullary stem. The hypothesis behind the design is that compressive contact forces are directly transmitted to the distal femoral bone, whereas adequate stability is provided by the sliding intramedullary stem. A prototype was made of this new knee revision design and applied to the reconstruction of uncontained bicondylar femoral bone defects. Materials and Methods. Five synthetic distal femora with a bicondylar defect were reconstructed with impacted bone grafting (IBG) and this new knee revision design. A custom-made screw connection between the stem and the intercondylar box was designed to lock or initiate the sliding mechanism, another screw (dis)connected the stem. A cyclically axial load of 500 N was applied to the prosthetic condyles to assess the stability of the reconstruction. Radiostereometry was used to determine the migrations of the femoral component with a rigidly connected stem, a sliding stem and no stem extension. Results. We found a stable reconstruction of the bicondylar femoral defects with IBG in case of a rigidly connected stem. After disconnecting the stem, the femoral component showed substantially more migrations. With a sliding stem rotational migrations were similar to those of a rigidly connected stem. However, the sliding stem allowed proximal migration of the condylar component, thereby compressing the IBG. Discussion. A stable reconstruction of uncontained bicondylar femoral defects could be created with IBG and a TKA with a thin stem extension. It appeared that the presence of a functional stem extension was important for the stability of the bicondylar reconstruction. In an effort to reduce stress shielding, we developed a sliding stem mechanism. This sliding stem provided adequate stability, while compressive contact forces are still transmitted to the distal femoral bone. Clinical studies have to confirm that our sliding stem mechanism leads to long term bone maintenance after revision TKAs


Bone & Joint Research
Vol. 3, Issue 6 | Pages 187 - 192
1 Jun 2014
Penn-Barwell JG Rand BCC Brown KV Wenke JC

Objectives. The purpose of this study was to refine an accepted contaminated rat femur defect model to result in an infection rate of approximately 50%. This threshold will allow examination of treatments aimed at reducing infection in open fractures with less risk of type II error. Methods . Defects were created in the stablised femurs of anaethetised rats, contaminated with Staphylococcus aureus and then debrided and irrigated six hours later. After 14 days, the bone and implants were harvested for separate microbiological analysis. This basic model was developed in several studies by varying the quantity of bacterial inoculation, introducing various doses of systemic antibiotics with and without local antibiotics. Results . The bacterial inoculation associated with a 50% infection rate was established as 1 × 10. 2. colony forming units (CFU). With an initial bacterial inoculum of 1 × 10. 5. CFU, the dose of systemic antibiotics associated with 50% infection was 5 mg/Kg of cafazolin injected sub-cutaneously every 12 hours, starting at the time of the first debridment and continuing for 72 hours (seven doses). The systemic dose of cafazolin was lowered to 2 mg/Kg when antibiotic polymethyl methacrylate beads were used concurrently with the same amount of bacterial inoculation. Conclusion. This model of open fracture infection has been further refined with potential for local and systemic antibiotics. This is a versatile model and with the concepts presented herein, it can be modified to evaluate various emerging therapies and concepts for open fractures. Cite this article: Bone Joint Res 2014;3:187–92


The Bone & Joint Journal
Vol. 96-B, Issue 1 | Pages 137 - 142
1 Jan 2014
Nayagam S Davis B Thevendran G Roche AJ

We describe the technique and results of medial submuscular plating of the femur in paediatric patients and discuss its indications and limitations. Specifically, the technique is used as part of a plate-after-lengthening strategy, where the period of external fixation is reduced and the plate introduced by avoiding direct contact with the lateral entry wounds of the external fixator pins. The technique emphasises that vastus medialis is interposed between the plate and the vascular structures. . A total of 16 patients (11 male and five female, mean age 9.6 years (5 to 17)), had medial submuscular plating of the femur. All underwent distraction osteogenesis of the femur with a mean lengthening of 4.99 cm (3.2 to 12) prior to plating. All patients achieved consolidation of the regenerate without deformity. The mean follow-up was 10.5 months (7 to 15) after plating for those with plates still in situ, and 16.3 months (1 to 39) for those who subsequently had their plates removed. None developed a deep infection. In two patients a proximal screw fractured without loss of alignment; one patient sustained a traumatic fracture six months after removal of the plate. . Placing the plate on the medial side is advantageous when the external fixator is present on the lateral side, and is biomechanically optimal in the presence of a femoral defect. We conclude that medial femoral submuscular plating is a useful technique for specific indications and can be performed safely with a prior understanding of the regional anatomy. Cite this article: Bone Joint J 2014;96-B:137–42


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_8 | Pages 68 - 68
1 May 2019
Gustke K
Full Access

Stems provide short- and long-term stability to the femoral and tibial components. Poorer epiphyseal and metaphyseal bone quality will require sharing or offloading the femoral and tibial component interfaces with a stem. One needs to use stem technique most appropriate for each individual case because of variable anatomy and bone loss situations. The conflict with trying to obtain stability via the stem is that most stems are cylindrical but femoral and tibial metaphyseal/diaphyseal areas are conical in shape. Viable stem options include fully cemented short and long stems, uncemented long stems, offset uncemented stems, and a hybrid application of a cemented proximal end of longer uncemented diaphyseal engaging stems. Stems are not without their risk. The more the load is transferred to the cortex, the greater the risk of proximal interface stress shielding. A long uncemented stem has similar stress shielding as a short cemented stem. Long diaphyseal engaging stems that are cemented or uncemented have the potential to have end of stem pain, especially if more diaphyseal reaming is done to obtain greater cortical contact. A conical shaped long stem can provide more stability than a long cylindrical stem and avoid diaphyseal reaming. Use of long stems may create difficulty in placement of the tibial and femoral components in an optimal position. If the femoral or tibial components do not allow an offset stem insertion, using a long offset stem or short cemented stem is preferred. The amount of metaphyseal bone loss will drive the choice of stem used. Short cemented stems will not have good stability in poor metaphyseal bone without getting the cement out to the cortex. Long cemented stems provide satisfactory survivorship, however, most surgeons avoid cementing long stems due to the difficulty of removal, if a subsequent revision is required. If the metaphyseal bone is excellent, use of a short cemented stem or long uncemented stem can be expected to have good results. Long fully uncemented stems must have independent stability to be effective, or should be proximally cemented as a hybrid technique. Cases with AOI type IIb and III tibial and femoral defects are best managed with use of metaphyseal cones with short cemented stems or long hybrid straight or offset stems. Some studies also suggest that if the cone is very stable, no stem may be required. My preference is to use a short cemented stem or hybrid conical stem in patients with good metaphyseal bone. If significant metaphyseal bone loss is present, I will use a porous cone with either a short cemented stem, hybrid cylindrical or offset stem depending on the primary stability of the cone and whether the femoral or tibial component can be placed in an optimal position in patients with good metaphyseal bone


Orthopaedic Proceedings
Vol. 88-B, Issue SUPP_I | Pages 69 - 69
1 Mar 2006
Gosens T van Langelaan E
Full Access

We prospectively studied 48 hips in 47 patients with a mean age of 59.6 years and reviewed the results after a mean period of follow up of 9 (range 7 – 12) years following revision arthroplasty for aseptic loosening using a primary HA-coated femoral stem. 1.8 Previous operations per patient were performed, ranging from 1 to 8, all patients had a femoral defect class 1 or 2 according to Paprosky. Clinical outcome was good with a mean postoperative HHS of 90 points. Pain was absent in 89%, a limp was present in 36% and 41% used a walking aid. There were 5 re-operations: 4 recurrent dislocations and 1 progressive PE wear necessitated cup revision. At 6 years, 39% cancellous densifications were seen, especially in non-tightly fitted prostheses, mainly in zone 2 and 6. Cortical thickening was seen in 30%, especially in tightly-fitted prostheses, mainly in zone 3 and 5. These differences in bone behaviour were significant (p‘0.001) and were not related with various clinical parameters. These phenomena started to appear from 6 months onwards with increasing frequency with longer follow up. The stem survival up till 9 years is 100%, no stem is pending revision at the latest follow up. We conclude that the primary Mallory Head HA-coated femoral prosthesis is a suitable prosthesis to use in revision procedures in younger patients with a lower class femoral defect. We also noticed that the radiological remodelling phenomena are not prosthesis related but femoral canal fit dependent


Orthopaedic Proceedings
Vol. 90-B, Issue SUPP_I | Pages 59 - 60
1 Mar 2008
Sekundiak T Hedden D
Full Access

Revision of massive femoral defects in revision hip arthroplasty is extremely difficult. This study assesses defects where bone loss extends to the isthmus of the femur. By using a medial allogeneic femoral graft in a wedge fashion, rotational and axial stability of the femoral implant is augmented, allowing bone ingrowth to occur. The technique is described which is simple, inexpensive and readily available in most institutions. A medial allogeneic femoral strut graft is assessed in hip arthroplasty revision to improve implant stability and thereby promote bony ingrowth into the implant. Thirty-three revision arthroplasties were preformed in twenty-nine patients (avg. age 63.7 yrs) using a fully-porous coated implant of eight or ten inch length. All patients had a Paprosky Type III or IV femoral defect. The implants, by definition were press-fit at or past the isthmus. To aid ingrowth and to decrease axial and rotational stresses, a medial femoral strut graft was wedged into the remaining medial host bone and under the collar of the implant. Cabling was utilized to prevent dislodgement of the graft from the implant and host. A radiographic and clinical comparison to a series of similar defects without grafting was performed for a minimum of thirty-five month follow-up. Twenty-eight of the thirty-three implants had radiographic evidence of ingrowth with migration of only two millimeters (average). Medial femoral strut grafting displayed much better potential for ingrowth and decreased potential for migration. Harris hip scores averaged eighty-one from a preoperative score of thirty-two. Cost of the grafts averaged $2100 cheaper compared to a bulk structural graft which would otherwise have been used in this situation. Medial femoral strut grafts augment initial implant stability to allow for implant in- growth. The advantages of the medial strut grafts are decreased cost, improved stability, and improved implant in- growth potential


The Bone & Joint Journal
Vol. 96-B, Issue 7 | Pages 889 - 895
1 Jul 2014
Fink B Urbansky K Schuster P

We report our experience of revision total hip replacement (THR) using the Revitan curved modular titanium fluted revision stem in patients with a full spectrum of proximal femoral defects. A total of 112 patients (116 revisions) with a mean age of 73.4 years (39 to 90) were included in the study. The mean follow-up was 7.5 years (5.3 to 9.1). A total of 12 patients (12 hips) died but their data were included in the survival analysis, and four patients (4 hips) were lost to follow-up. The clinical outcome, proximal bone regeneration and subsidence were assessed for 101 hips. The mean Harris Hip Score was 88.2 (45.8 to 100) after five years and there was an increase of the mean Barnett and Nordin-Score, a measure of the proximal bone regeneration, of 20.8 (-3.1 to 52.7). Five stems had to be revised (4.3%), three (2.9%) showed subsidence, five (4.3%) a dislocation and two of 85 aseptic revisions (2.3%) a periprosthetic infection. . At the latest follow-up, the survival with revision of the stem as the endpoint was 95.7% (95% confidence interval 91.9% to 99.4%) and with aseptic loosening as the endpoint, was 100%. Peri-prosthetic fractures were not observed. We report excellent results with respect to subsidence, the risk of fracture, and loosening after femoral revision using a modular curved revision stem with distal cone-in-cone fixation. A successful outcome depends on careful pre-operative planning and the use of a transfemoral approach when the anatomy is distorted or a fracture is imminent, or residual cement or a partially-secured existing stem cannot be removed. The shortest appropriate stem should, in our opinion, be used and secured with > 3 cm fixation at the femoral isthmus, and distal interlocking screws should be used for additional stability when this goal cannot be realised. Cite this article: Bone Joint J 2014;96-B:889–95


Orthopaedic Proceedings
Vol. 86-B, Issue SUPP_II | Pages 132 - 132
1 Feb 2004
Piñeiro-Mejuto J González-Massieu L Bencomo-Rodríguez B Friend HI Vázquez-Molini J Pais-Brito JL
Full Access

Introduction and Objectives: We analysed a series of 27 patients who underwent salvage total hip replacement and femoral packing with bone bank allograft for the treatment of femoral defects. We analyzed results clinically and radiographically. Materials and Methods: This study involved 27 hip salvage surgeries in 27 patients. The patients were treated between March 1997 and April 1999 with a follow-up period of 4–6 years. Femoral defects were classified according to AAOS criteria. Clinical results were assessed using the Harris scale. Radiographic studies were performed postoperatively, at 6 months, at one year after treatment, at 4 years, and in 6 cases, at 6 years. We also analysed clinical complications, technical problems, and sinking of the prosthesis into the femoral canal. Results: Of these patients, 80% did not present with pain one year after treatment, and 85% could walk without assistance. The graft was incorporated in 90% of cases. Sinking of the prosthesis without indications of loosening occurred in less than 50% of cases. In one patient is was necessary to repeat treatment due to sinking and loosening of the femoral component, and in another case it was necessary to remove the prosthesis due to infection. Discussion and Conclusions: The method of impaction of morselised cancellous bone into the femoral canal as described by Ling et al. has been shown in recent years to be reliable and reproducible in cases of femoral canal defects resulting from osteolysis and significant losses of cortical bone. Bone stock is restored, thus paving the way for future revisions with distal diaphyseal attachment revision prosthesis. Continued evaluation of the allograft impaction technique in femoral component revision shows optimal results after 5 years of follow up


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXIII | Pages 108 - 108
1 May 2012
Zotti M Kiss G Woodman R Campbell D
Full Access

Osteolysis commonly causes total knee replacement (TKR) failure, often associated with asymptomatic large defects. Detection and size estimation of lytic defects is important for the indications and planning of revision surgery. Our study compares the utility of fluoroscopic-guided plain X-rays and computed topography (CT) in osteolysis detection and volume appreciation. Three cadaveric specimens were imaged at baseline and following the creation of reamed defects (small, medium and large approximately = 1, 5 & 10 cm3 volume respectively) in the tibia and femur with TKR component implantation at each timepoint. Imaging was with fluoroscopic-guided plain X-rays (Anteroposterior & Lateral [APL], Paired Oblique [OBL]) as well as rapid-acquisition spiral Computed Topography [CT] with a beam-hardening artefact removal algorithm. Three arthroplasty surgeons estimated the size of the lesion, if present, and confidence (none=0, fair=1, excellent=2) in their assessment on randomly presented images. Each surgeon performed two assessments of each image one month apart. The accuracy of detecting lesions was determined using the area under the receiver-operating curve (AU-ROC) obtained from a logistic regression with adjustment for assessment sequence, observer, knee and bone. Volume appreciation and assessor confidence were determined using Kappa and the mean average of confidence scores respectively. The AU-ROC using combinations of either APL/OBL/CT (0.83) or OBL/CT (0.83) resulted in superior detection of lesions (p<0.05) compared to APL (0.75) or OBL alone (0.77). Correct volume appreciation was highest with APL/OBL/CT (kappa=0.52), followed by APL/OBL (0.51) and was superior (p<0.05) to APL (0.29) or CT alone (0.31). Small and medium defects were more often missed than large with all modalities (20.3 vs. 39.7 %). Femoral defects were missed more often than tibial defects (40% vs. 28.7%) and small lesions missed more with CT (50%) versus APL (48%) and Oblique (40%). CT missed 19% of large sized defects, attributed mostly to femoral (29.1%) rather than tibial defects (8.3%). Greater confidence was derived from use of CT (1.29) and APL (1.19) [Interquartile range (IQR) 1,2] when compared to OBL (.98, IQR 1,1) [p<.01]. Also, there was greater confidence regarding judgement of tibial defects (1.25, IQR 1,2) compared with femoral defects (1.05, IQR 1,1) [p<.01]. Combining all imaging modalities was synergistic and the most sensitive and specific means of defect detection and volume appreciation. CT provided more confidence, superior detection and volume appreciation when used in combination with APL/OBL versus APL/OBL alone. There is also additional value when APL is combined with OBL


Orthopaedic Proceedings
Vol. 93-B, Issue SUPP_IV | Pages 553 - 553
1 Nov 2011
Gao C Nguyen O Serpooshan V Eichaarani B Nazhat SN Harvey EJ Henderson JE
Full Access

Purpose: Poor bone quality is a common challenge to orthopaedic surgeons and frequently leads to complications such as non union and implant failure, particularly the elderly whose capacity for tissue repair is significantly reduced. The current study was designed to determine if bone marrow derived mesenchymal stem cells (MSC) seeded in dense collagen scaffolds and delivered to a surgically-induced femoral defect will expedite bone healing. Method: Ex Vivo: MSC isolated from four month old donor mice were expanded ex vivo, seeded into hydrated type I collagen, which was subjected to unconfined compression to generate dense collagen scaffolds. The cell-seeded scaffolds were then cultured for up to 21 days. MSC viability was monitored using the AlamarBlue. ®. metabolic assay and differentiation into osteoblasts using alkaline phosphatase (ALP) and von Kossa stain. In Vivo: A 3mm x 1mm window defect was drilled in the femur of elderly recipient C57Bl6 and C3H mice. The C3H mice were assigned to one of two study groups:. LEFT femur drill hole alone; RIGHT femur acellular scaffold. LEFT femur acellular scaffold; RIGHT femur cell-seeded scaffold. The quantity and quality of bone regeneration was assessed after 2 and 4 weeks using micro computed tomography (mCT) and histology. Results: Ex Vivo: The dense collagen scaffold had superior mechanical properties and supported the survival and differentiation of MSC into osteoblasts up to 21 days in culture. Cells in uncompressed gels and those in compressed gels in non-osteogenic medium, had fewer ALP-positive cells at early time point and less mineral deposited at later times compared with those in compressed gels in osteogenic medium. In Vivo: A high incidence of postoperative fracture was seen in C57Bl6 mice compared with age matched C3H mice in the first study group. Furthermore, the empty surgical defect healed more rapidly than that containing the dense collagen scaffold, in which bone volume compared with tissue volume (BV/TV), trabecular number (Tb.N.) and connectivity were lower. In study group two, bone regeneration was evident at 2 weeks post operative and transplantation of MSC-seeded dense collagen scaffolds resulted in higher BV/TV, Tb.N. and trabecular connectivity compared with the acellular dense collagen scaffold. Conclusion: Bone fragility in elderly C57Bl6 mice led to post operative fracture after generation of a non-critical sized drill hole defect in the proximal femur whereas age-matched C3H mice with higher bone mass sustained no fractures. Dense collagen scaffolds supported the survival and osteoblast differentiation of bone marrow derived MSC in 3D culture. Their superior mechanical properties allowed for transplantation into non-critical sized femoral defects, suggesting the approach shows promise as adjunct therapy for use with bone grafts and implants in patients with poor quality bone


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_15 | Pages 95 - 95
1 Aug 2017
Hamilton W
Full Access

Using an institutional database we have identified over 1000 femoral revisions using extensively porous-coated stems. Using femoral re-revision for any reason as an endpoint, the survivorship is 99 ± 0.8% (95% confidence interval) at 2 years, 97 ± 1.3% at 5 years, 95.6 ± 1.8% at 10 years, and 94.5 ± 2.2% at 15 years. Similar to Moreland and Paprosky, we have identified pre-revision bone stock as a factor affecting femoral fixation. When the cortical damage involved bone more than 10cm below the lesser trochanter, the survivorship, using femoral re-revision for any reason or definite radiographic loosening as an endpoint, was reduced significantly, as compared with femoral revisions with less cortical damage. In addition to patients with Paprosky Type 3B and 4 femoral defects, there are rare patients with femoral canals smaller than 13.5mm or larger than 26mm that are not well suited to this technique. Eight and 10 inch stems 13.5 or smaller should be used with caution if there is no proximal bone support for fear of breaking. Patients with canals larger than 18mm may be better suited for a titanium tapered stem with flutes. While a monolithic stem is slightly more difficult for a surgeon to insert than a modular femoral stem there is little worry about taper junction failure


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_10 | Pages 62 - 62
1 Jun 2018
Garbuz D
Full Access

The goals of revision total hip on the femoral side are to achieve long term stable fixation, improve quality of life and minimise complications such as intra-operative fracture or dislocation. Ideally these stems will preserve or restore bone stock. Modular titanium stems were first introduced in North America around 2000. They gained popularity as an option for treating Paprosky 3B and 4 defects. Several studies at our institution have compared modular titanium stems with monoblock cobalt chromium stems. The main outcomes of interest were quality of life. We also looked at complications such as intra-operative fracture and post-operative dislocation. We also compared these 2 stems with respect to restoration or preservation of bone stock. In 2 studies we showed that modular titanium stems gave superior functional outcomes as well as decreased complications compared to a match cohort of monoblock cobalt chromium stems. As mentioned, one of the initial reasons for introduction of these stems was to address larger femoral defects where failure rates with monoblock cobalt chromium stems were unacceptably high. We followed a group of 65 patients at 5–10 years post revision with a modular fluted titanium stem. Excellent fixation was obtained with no cases of aseptic loosening. However, there were 5 cases of fracture of the modular junction. Due to concerns of fracture of the modular junction, more recently, at our institution, we have switched to almost 100% monoblock fluted titanium stems. We recently reviewed our first 100 cases of femoral revision with a monoblock stem. Excellent fixation was achieved with no cases of aseptic loosening. Quality of life outcomes were similar to our previous reported series on modular tapered titanium stems. Both monoblock and modular fluted titanium stems can give excellent fixation and excellent functional outcomes. This leaves a choice for the surgeon. For the low volume revision surgeon modular tapered stems are probably the right choice. Higher volume surgeons or surgeons very comfortable with performing femoral revision may want to consider monoblock stems. If one is making the switch it would be easiest to start with a simple case. Such a case would be one that can be done with a endofemoral approach. In this approach the greater trochanter is available as the key landmark for reaming. After the surgeon is comfortable with this stem more complex cases can easily be handled with the monoblock stem. In summary, both modular and monoblock titanium stems are excellent options for femoral revision. As one becomes more familiar with the monoblock stem it can easily become your workhorse for femoral revision. At our institution we introduced a monoblock titanium stem in 2011. It started out at 50% of cases and now it is virtually used in almost 100% of revision cases


Bone & Joint 360
Vol. 13, Issue 4 | Pages 35 - 37
2 Aug 2024

The August 2024 Oncology Roundup360 looks at: What factors are associated with osteoarthritis after cementation for benign aggressive bone tumour of the knee joint: a systematic review and meta-analysis; Recycled bone grafts treated with extracorporeal irradiation or liquid nitrogen freezing after malignant tumour resection; Intercalary resection of the tibia for primary bone tumours: are vascularized fibula autografts with or without allografts a durable reconstruction?; 3D-printed modular prostheses for the reconstruction of intercalary bone defects after joint-sparing limb salvage surgery for femoral diaphyseal tumours; Factors influencing the outcome of patients with primary Ewing’s sarcoma of the sacrum; The significance of surveillance imaging in children with Ewing’s sarcoma and osteosarcoma; Resection margin and soft-tissue sarcomas of the extremities treated with limb-sparing surgery and postoperative radiotherapy.


Bone & Joint Open
Vol. 3, Issue 5 | Pages 423 - 431
1 May 2022
Leong JWY Singhal R Whitehouse MR Howell JR Hamer A Khanduja V Board TN

Aims

The aim of this modified Delphi process was to create a structured Revision Hip Complexity Classification (RHCC) which can be used as a tool to help direct multidisciplinary team (MDT) discussions of complex cases in local or regional revision networks.

Methods

The RHCC was developed with the help of a steering group and an invitation through the British Hip Society (BHS) to members to apply, forming an expert panel of 35. We ran a mixed-method modified Delphi process (three rounds of questionnaires and one virtual meeting). Round 1 consisted of identifying the factors that govern the decision-making and complexities, with weighting given to factors considered most important by experts. Participants were asked to identify classification systems where relevant. Rounds 2 and 3 focused on grouping each factor into H1, H2, or H3, creating a hierarchy of complexity. This was followed by a virtual meeting in an attempt to achieve consensus on the factors which had not achieved consensus in preceding rounds.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_22 | Pages 51 - 51
1 Dec 2016
Engh C
Full Access

We maintain a database on 1000 femoral revisions using extensively porous-coated stems. Using femoral rerevision for any reason as an endpoint, the survivorship is 99 ± 0.8% (95% confidence interval) at 2 years, 97 ± 1.3% at 5 years, 95.6 ± 1.8% at 10 years, and 94.5 ± 2.2% at 15 years. Similar to Moreland and Paprosky, we have identified prerevision bone stock as a factor affecting femoral fixation. When the cortical damage involved bone more than 10 cm below the lesser trochanter, the survivorship, using femoral rerevision for any reason or definite radiographic loosening as an endpoint, was reduced significantly, as compared with femoral revisions with less cortical damage. In addition to patients with Paprosky type 3B and 4 femoral defects there are rare patients with femoral canals smaller than 13.5 mm or larger than 26 mm that are not well suited to this technique. Eight and 10 inch stems 13.5 mm or smaller should be used with caution if there is no proximal bone support for fear of breaking. Patients with canals larger than 18 mm may be better suited for a titanium tapered stem with flutes. While a monolithic stem is slightly more difficult for a surgeon to insert than a modular femoral stem there is little worry about taper junction failure


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_17 | Pages 96 - 96
1 Nov 2016
Hamilton W
Full Access

Using an institutional database we have identified over 1000 femoral revisions using extensively porous-coated stems. Using femoral re-revision for any reason as an endpoint, the survivorship is 99 ± 0.8% (95% confidence interval) at 2 years, 97 ± 1.3% at 5 years, 95.6 ± 1.8% at 10 years, and 94.5 ± 2.2% at 15 years. Similar to Moreland and Paprosky, we have identified pre-revision bone stock as a factor affecting femoral fixation. When the cortical damage involved bone more than 10 cm below the lesser trochanter, the survivorship, using femoral re-revision for any reason or definite radiographic loosening as an endpoint, was reduced significantly, as compared with femoral revisions with less cortical damage. In addition to patients with Paprosky type 3B and 4 femoral defects, there are rare patients with femoral canals smaller than 13.5 mm or larger than 26 mm that are not well suited to this technique. Eight and 10 inch stems 13.5 or smaller should be used with caution if there is no proximal bone support for fear of breaking. Patients with canals larger than 18 mm may be better suited for a titanium tapered stem with flutes. While a monolithic stem is slightly more difficult for a surgeon to insert than a modular femoral stem there is little worry about taper junction failure


The Bone & Joint Journal
Vol. 104-B, Issue 10 | Pages 1110 - 1117
12 Oct 2022
Wessling M Gebert C Hakenes T Dudda M Hardes J Frieler S Jeys LM Hanusrichter Y

Aims

The aim of this study was to examine the implant accuracy of custom-made partial pelvis replacements (PPRs) in revision total hip arthroplasty (rTHA). Custom-made implants offer an option to achieve a reconstruction in cases with severe acetabular bone loss. By analyzing implant deviation in CT and radiograph imaging and correlating early clinical complications, we aimed to optimize the usage of custom-made implants.

Methods

A consecutive series of 45 (2014 to 2019) PPRs for Paprosky III defects at rTHA were analyzed comparing the preoperative planning CT scans used to manufacture the implants with postoperative CT scans and radiographs. The anteversion (AV), inclination (IC), deviation from the preoperatively planned implant position, and deviation of the centre of rotation (COR) were explored. Early postoperative complications were recorded, and factors for malpositioning were sought. The mean follow-up was 30 months (SD 19; 6 to 74), with four patients lost to follow-up.


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_15 | Pages 96 - 96
1 Aug 2017
Garbuz D
Full Access

The goals of revision total hip on the femoral side are to achieve long term stable fixation, improve quality of life and minimise complications such as intra-operative fracture or dislocation. Ideally these stems will preserve or restore bone stock. Modular titanium stems were first introduced in North America around 2000. They gained popularity as an option for treating Paprosky 3B and 4 defects. Several studies at our institution have compared the modular titanium stems with monoblock cobalt chromium stems. The main outcomes of interest were quality of life. We also looked at complications such as intra-operative fracture and post-operative dislocation. We also compared these 2 stems with respect to restoration or preservation of bone stock. In 2 studies we showed that modular titanium stems gave superior functional outcomes as well as decreased complications compared to a match cohort of monoblock cobalt chromium stems. As mentioned one of the initial reasons for introduction of these stems was to address larger femoral defects where failure rates with monoblock cobalt chromium stems were unacceptably high. We followed a group of 65 patients at 5–10 years post-revision with a modular fluted titanium stem. Excellent fixation was obtained with no cases of aseptic loosening. However, there were 5 cases of fracture of the modular junction. Due to concerns of fracture of the modular junction more recently at our institution we have switched to almost 100% monoblock fluted titanium stems. We recently reviewed our first 100 cases of femoral revision with monoblock stem. Excellent fixation was achieved with no cases of aseptic loosening. Quality of life outcomes were similar to our previous reported series on modular tapered titanium stems. Both monoblock and modular fluted titanium stems can give excellent fixation and excellent functional outcomes. This leaves a choice for the surgeon. For the low volume revision surgeon modular tapered stems are probably the right choice. Higher volume surgeons or surgeons very comfortable with performing femoral revision may want to consider monoblock stems. If one is making the switch it would be easiest to start with a simple case. Such a case would be one that can be done with an endofemoral approach. In this the greater trochanter is available as the key landmark for reaming. After the surgeon is comfortable with this stem more complex cases can easily be handled with the monoblock stem. In summary, both modular and monoblock titanium stems are excellent options for femoral revision. As one becomes more familiar with the monoblock stem it can easily become your workhorse for femoral revision. At our institution we introduced a monoblock titanium stem in 2011. It started out at 50% of cases and now it is virtually used in almost 100% of revision cases


Orthopaedic Proceedings
Vol. 97-B, Issue SUPP_1 | Pages 55 - 55
1 Feb 2015
Della Valle C
Full Access

Revision of the failed femoral component of a total hip arthroplasty can be challenging. Multiple reconstructive options are available and the operation itself can be particularly difficult and thus meticulous preoperative planning is required to pick the right “tool” for the case at hand. The Paprosky Femoral Classification is useful as it helps the surgeon determine what bone stock is available for fixation and hence, which type of femoral reconstruction is most appropriate. Monoblock, fully porous coated diaphyseal engaging femoral components are the “work-horse” of femoral revision. This type of a stem is used in my practice for Type 1–3a femoral defects. These stems are not used, however, in the following situations: The canal diameter is greater than 18mm; There is less than 4cm available for distal fixation in the isthmus; There is proximal femoral remodeling into retroversion. While many surgeons often believe that revision femoral components need to be “long”, they really only need to be long enough to engage 4cm of intact femoral isthmus, which is oftentimes the shortest, “primary length” fully porous coated stem. Advantages of using a shorter revision stem include: Easier surgical technique as you avoid the femoral bow, with a lower risk of fracture and under-sizing; Preserves bone stock for future revisions if required; Easier to remove if required


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_17 | Pages 97 - 97
1 Nov 2016
Garbuz D
Full Access

The goals of revision total hip on the femoral side are to achieve long term stable fixation, improve quality of life and minimise complications such as intra-operative fracture or dislocation. Ideally these stems will preserve or restore bone stock. Modular titanium stems were first introduced in North America around 2000. They gained popularity as an option for treating Paprosky 3B and 4 defects. Several studies at our institution have compared the modular titanium stems with monoblock cobalt chromium stems. The main outcomes of interest were quality of life. We also looked at complications such as intra-operative fracture and post-operative dislocation. We also compared these 2 stems with respect to restoration or preservation of bone stock. In two studies we showed that modular titanium stems gave superior functional outcomes as well as decreased complications compared to a matched cohort of monoblock cobalt chromium stems. As mentioned one of the initial reasons for introduction of these stems was to address larger femoral defects where failure rates with monoblock cobalt chromium stems were unacceptably high. We followed a group of 65 patients at 5–10 years post-revision with a modular fluted titanium stem. Excellent fixation was obtained with no cases of aseptic loosening. However, there were 5 cases of fracture of the modular junction. Due to concerns of fracture of the modular junction more recently, at our institution we have switched to almost 100% monoblock fluted titanium stems. We recently reviewed our first 100 cases of femoral revision with monoblock stem. Excellent fixation was achieved with no cases of aseptic loosening. Quality of life outcomes were similar to our previous reported series on modular tapered titanium stems. Both monoblock and modular fluted titanium stems can give excellent fixation and excellent functional outcomes. This leaves a choice for the surgeon. For the low volume revision surgeon modular tapered stems are probably the right choice. Higher volume surgeons or surgeons very comfortable with performing femoral revision may want to consider monoblock stems. If one is making the switch it would be easiest to start with a simple case. Such a case would be one that can be done through an endofemoral approach. In this the greater trochanter is available as the key landmark for reaming. After the surgeon is comfortable with this system more complex cases can easily be handled with the monoblock stem. In summary, both modular and monoblock titanium stems are excellent options for femoral revision. As one becomes more familiar with the monoblock stem it can easily become your workhorse for femoral revision. At our institution, we introduced a monoblock titanium stem in 2011. It started out at 50% of cases and now it is virtually used in almost 100% of revision cases


Bone & Joint Research
Vol. 10, Issue 7 | Pages 411 - 424
14 Jul 2021
Zhao D Ren B Wang H Zhang X Yu M Cheng L Sang Y Cao S Thieringer FM Zhang D Wan Y Liu C

Aims

The use of 3D-printed titanium implant (DT) can effectively guide bone regeneration. DT triggers a continuous host immune reaction, including macrophage type 1 polarization, that resists osseointegration. Interleukin 4 (IL4) is a specific cytokine modulating osteogenic capability that switches macrophage polarization type 1 to type 2, and this switch favours bone regeneration.

Methods

IL4 at concentrations of 0, 30, and 100 ng/ml was used at day 3 to create a biomimetic environment for bone marrow mesenchymal stromal cell (BMMSC) osteogenesis and macrophage polarization on the DT. The osteogenic and immune responses of BMMSCs and macrophages were evaluated respectively.