Advertisement for orthosearch.org.uk
Results 1 - 39 of 39
Results per page:
Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_9 | Pages 25 - 25
1 Oct 2020
Kayani B Tahmassebi J Ayuob A Konan S Oussedik S Haddad FS
Full Access

Introduction. The objectives of this study were to compare the systemic inflammatory reaction, localised thermal response and macroscopic soft tissue injury outcomes in conventional jig-based total knee arthroplasty (conventional TKA) versus robotic total knee arthroplasty (robotic TKA). Methods. This prospective randomised controlled trial included 30 patients with symptomatic knee osteoarthritis undergoing conventional TKA versus robotic TKA. Predefined serum markers of inflammation and localised knee temperature were collected preoperatively and postoperatively at 6 hours, day 1, day 2, day 7, and day 28 following TKA. Blinded observers used the Macroscopic Soft Tissue Injury (MASTI) classification system to grade intraoperative periarticular soft tissue injury and bone trauma. Plain radiographs were used to assess the accuracy of achieving the planned limb alignment and implant positioning in both treatment groups. Results. Conventional TKA and robotic TKA had comparable changes in the postoperative systemic inflammatory reaction and localised thermal response at 6 hours, day 1, day 2 and day 28 after surgery. Robotic TKA had reduced levels of interleukin-6 (p<0.001), tumour necrosis factor-α (p=0.021), erythrocyte sedimentation rate (p=0.001), C-reactive protein (p=0.004), and creatine kinase (p=0.004) at day 7 after surgery compared to conventional TKA. Robotic TKA was associated with improved intraoperative preservation of the periarticular soft tissue envelope (p<0.001) and reduced bone trauma (p=0.015) compared to conventional TKA. Robotic TKA improved accuracy of achieving the planned limb alignment (p<0.001), femoral component positioning (<0.001), and tibial component positioning (<0.001) compared to conventional TKA. Conclusion. Robotic TKA was associated with a transient reduction in the early (day 7) postoperative inflammatory response but there was no difference in the immediate (<48 hours) or late (day 28) postoperative systemic inflammatory responses compared to conventional TKA. Robotic TKA was associated with decreased iatrogenic periarticular soft tissue injury, reduced bone trauma and improved accuracy of implant positioning compared to conventional TKA


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_4 | Pages 22 - 22
1 Jan 2016
Song E Seon J Seol J
Full Access

Background. Stability of total knee arthroplasty (TKA) is dependent on correct and precise rotation of the femoral component. Multiple differing surgical techniques are currently utilized to perform total knee arthroplasty. Accurate implant position have been cited as the most important factors of successful TKA. There are two techniques of achieving soft gap balancing in TKA; a measured resection technique and a balanced gap technique. Debate still exists on the choice of surgical technique to achieve the optimal soft tissue balance with opinions divided between the measured resection technique and the gap balance technique. In the measured resection technique, the bone resection depends on size of the prosthesis and is referenced to fixed anatomical landmarks. This technique however may have accompanying problems in imbalanced patients. Prediction of gap balancing technique, tries to overcome these fallacies. Our aim in this study was twofold: 1) To describe our methodology of ROBOTIC TKA using prediction of gap balancing technique. 2) To analyze the clinico-radiological outcome our technique comparison of meseaured resection ROBOTIC TKA after 1year. Methods. Patients that underwent primary TKA using a robotic system were included for this study. Only patients with a diagnosis of primary degenerative osteoarthritis with varus deformity and flexion deformity of were included in this study. Patients with valgus deformity, secondary arthritis, inflammatory arthritis, and severe varus/flexion deformity were excluded. Three hundred ten patients (319 knees) who underwent ROBOTIC TKA using measured resection technique from 2004 – 2009. Two hundred twenty (212 knees) who underwent ROBOTIC TKA using prediction of gap balancing technique from 2010 – 2012. Clinical outcomes including KS and WOMAC scores, and ranges of motion and radiological outcomes including mechanical axis, prosthesis alignments, flexion varus/valgus stabilities were compared after 1year. Results. Leg mechanical axes were significantly different at follow-up 1year versus preoperative values, the mean axes in the Robotic-TKA with measured resection technique and Robotic-TKA with prediction of gap balancing technique improved from 9.6±5.0° of varus to 0.5±1.9° of varus, and from 10.6±5.5° to 0.4±1.3° of varus (p<0.001), respectively. However, no significant intergroup differences were found between mechanical axis or coronal alignments of femoral or tibial prostheses (pï¼ï¿½0.05). Mean varus laxities at 90° of knee flexion in measured resection and gap prediction technique group were 6.4° and 5.3°, respectively, and valgus laxities were 6.2 and 5.2 degrees, respectively, with statistical significance (p=0.045 and 0.032, respectively). KS knee and function scores and WOMAC scores were significantly improved at follow-up 1year (pï¼ï¿½0.05). However, no significant difference was found between the Robotic-TKA with measured resection technique and Robotic-TKA with prediction of gap balancing technique for any clinical outcome parameter at follow-up 1year (pï¼ï¿½0.05). Conclusions. Robotic assisted TKA using measured resection or gap prediction technique provide adequate and practically identical levels of flexion stability at 90° of knee flexion with accurate leg and prosthesis alignment. But, Robotic TKA using measured resection technique have less than flexion stability compared with gap prediction technique with statistical significance after follow-up 1year


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_15 | Pages 42 - 42
1 Aug 2017
Gustke K
Full Access

Robotic arm-assisted total knee replacement is performed as a semi-active system in which haptic guidance is used to precisely position and align components. This is based on pre-operative planning based on CT imaging and can be modified as needed throughout the procedure. This technology, as shown with unicompartmental arthroplasty, is more accurate than conventional and even computer navigated instrumentation and will decrease variability. The knee can be planned to a neutral mechanical alignment. Intra-operatively, the computer will demonstrate compartment gap measurements to assist with soft tissue balancing. Alternatively, limb and component alignment can be accurately adjusted several degrees off the neutral axis to balance the knee and avoid or minimise soft tissue releases. This allows a more constitutional alignment within the alignment parameters accepted by the surgeon. This technique was utilised commonly in the first 60 robotic total knee replacements performed. We will now have the ability to collect accurate component positioning, alignment, and soft tissue balance data that can be correlated to outcomes of total knee replacements


Bone & Joint Research
Vol. 8, Issue 10 | Pages 438 - 442
1 Oct 2019
Kayani B Haddad FS


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_13 | Pages 30 - 30
7 Aug 2023
Mayne A Rajgor H Munasinghe C Agrawal Y Pagkalos I Davis E Sharma A
Full Access

Abstract

Introduction

There is increasing adoption of robotic surgical technology in Total Knee Arthroplasty - The ROSA® knee system can be used in either image-based mode (using pre-operative calibrated radiographs) or imageless modes (using intra-operative bony registration). The Mako knee system is an image-based system (using a pre-operative CT scan). This study aimed to compare surgical accuracy between the ROSA and Mako systems with specific reference to Joint Line Height, Patella Height and Posterior Condylar Offset.

Methodology

This was a retrospective review of a prospectively-maintained database of the initial 100 consecutive ROSA TKAs and the initial 50 consecutive Mako TKAs performed by two high volume surgeons. To determine the accuracy of component positioning, the immediate post-operative radiograph was reviewed and compared with the immediate pre-operative radiograph. Patella height was assessed using the Insall-Salvati ratio.


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_1 | Pages 33 - 33
1 Feb 2021
Smith B
Full Access

Background

Conventional instrumented total knee arthroplasty uses fixed angles for bony cuts followed by soft tissue releases to achieve balance. Robotic-assisted surgery allows for soft tissue balancing first then bony resection. The changes to the implant position from conventional instrumented surgery were measured and recorded.

Methods

A single center, retrospective study reviewed consecutive total knee replacement surgeries over a 12 month period utilizing robotic pre-planning and balancing techniques. Changes to femoral and tibial varus/valgus and femoral rotation from traditional instrumented surgery positions were analyzed.


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_2 | Pages 9 - 9
1 Feb 2020
Stulberg B Zadzilka J Kreuzer S Long W Kissin Y Liebelt R Campanelli V Zuhars J
Full Access

Introduction

Active robotics for total knee Arthroplasty (TKA) uses a CAD-CAM approach to plan the correct size and placement of implants and to surgically achieve planned limb alignment. The TSolution One Total Knee Application (THINK Surgical Inc., Fremont, CA) is an open-implant platform, CT-based active robotic surgical system. A multi-center, prospective, non-randomized clinical trial was performed to evaluate safety and effectiveness of robotic-assisted TKA using the TSolution One Total Knee Application. This report details the findings from the IDE.

Methods

Patients had to be ≥ 21 years old with BMI ≤ 40, Kellgren-Lawrence Grade ≥ 3, coronal deformity ≤ 20°, and sagital flexion contracture ≤ 15° to participate. In addition to monitoring all adverse events (AE), a pre-defined list of relevant major AEs (medial collateral ligament injury, extensor mechanism disruption, neural deficit, periprosthetic fracture, patellofemoral dislocation, tibiofemoral dislocation, vascular injury) were specifically identified to evaluate safety. Bleeding complications were also assessed. Malalignment rate, defined as the percentage of patients with more than a ± 3° difference in varus-valgus alignment from the preoperative plan, was used to determine accuracy of the active robotic system. Knee Society Scores (KSS) and Short Form 12 (SF-12) Health Surveys were assessed as clinical outcome measures. Results were compared to published values associated with manual TKA.


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_11 | Pages 10 - 10
1 Oct 2019
Stulberg BN Zadzilka JD Kreuzer S Long WJ Kissin YD Liebelt RA Campanelli V Zuhars J
Full Access

Introduction

Active robotics for total knee Arthroplasty (TKA) uses a CAD-CAM approach to plan the correct size and placement of implants and to surgically achieve planned limb alignment. The TSolution One Total Knee Application (THINK Surgical Inc., Fremont, CA) is an open-implant platform, CT-based active robotic surgical system. A multi-center, prospective, non-randomized clinical trial was performed to evaluate the safety and effectiveness of robotic-assisted TKA using the TSolution One Total Knee Application. This report details the findings from the IDE.

Methods

Inclusion criteria for patients receiving robotic TKA were: primary unilateral TKA; Kellgren-Lawrence OA grade 3 or 4; BMI < 40 kg/m2; coronal plane deformity < 20° varus; sagittal flexion contracture < 15°. In addition to monitoring all adverse events (AE), a pre-defined list of relevant major AEs were specifically identified to evaluate safety (Healy et al, 2013): medial collateral ligament injury; extensor mechanism disruption; neural deficit; periprosthetic fracture; patellofemoral dislocation; tibiofemoral dislocation; and vascular injury. Bleeding complications were also assessed. Malalignment rate, defined as the percentage of patients with more than a ± 3° difference in varus-valgus alignment from the preoperative plan, was used to determine accuracy of the active robotic system. Knee Society Scores (KSS) and Short Form 12 (SF-12) Health Surveys were assessed as clinical outcome measures. For each outcome, results were compared to published values associated with manual TKA.


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_1 | Pages 50 - 50
1 Feb 2020
Gustke K
Full Access

Background

Use of a robotic tool to perform surgery introduces a risk of unexpected soft tissue damage due to the uncommon tactile feedback for the surgeon. Early experience with robotics in total hip and knee replacement surgery reported having to abort the procedure in 18–34 percent of cases due to inability to complete preoperative planning, hardware and soft tissue issues, registration issues, as well as concerns over actual and potential soft tissue damage. These can result in significant morbidity to the patient, negating all the desired advantages of precision and reproducibility with robotic assisted surgery. The risk of soft tissue damage can be mitigated by haptic software prohibiting the cutting tip from striking vital soft tissues and by the surgeon making sure there is a clear workspace path for the cutting tool. This robotic total knee system with a semi-active haptic guided technique was approved by the FDA on 8/5/2015 and commercialized in August of 2016. Two year clinical results have not been reported to date.

Objective

To review an initial and consecutive series of robotic total knee arthroplasties for safety in regard to avoidance of known or delayed soft tissue injuries and the necessity to abort the using the robot to complete the procedure. Report the clinical outcomes with robotic total knee replacement at or beyond two years to demonstrate no delayed effect on expected outcome.


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_12 | Pages 24 - 24
1 Oct 2018
Behery OA Stulberg B Kreuzer S Kissin Y Campanelli V Vigdorchik JM Long WJ
Full Access

Objectives

Successful total knee arthroplasty (TKA) is predicated on accurate bony resection, mechanical alignment and component positioning. An active robotic TKA system is designed to achieve reliable and accurate bony resection based upon a preoperatively developed surgical plan. Surgical resections are executed intra-operatively according to this pre-operative plan. The goal of this study was to determine the accuracy of final implant positioning and alignment using this active robotic device, as well as its early clinical outcomes.

Materials and Methods

An FDA prospective study under investigational device exemption was conducted from 2017–2018. Pre-operative CT scans were used to create a pre-operative plan using the TSolution One? Surgical System (THINK Surgical, Inc). TKA was performed using a standard approach, with planned and robotically executed femoral and tibial resections. Subjects completed 3-month follow-up with post-operative CT scans. A validated method was used to compare pre- and post-operative CT scans to determine differences between planned and achieved implant position. Femoral and tibial component sizing, and mean differences in implant position and alignment were compared. Short Form 12 Physical (PCS) and Mental Component Summary (MCS) scores as well as Knee Society (Objective and Functional) scores at 12 weeks post-operatively were compared with pre-operative scores. Paired-sample t-tests were used for comparisons.


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_4 | Pages 68 - 68
1 Apr 2019
Gustke K
Full Access

Background

Use of a robotic tool to perform surgery introduces a risk of unexpected soft tissue damage due to the lack of tactile feedback for the surgeon. Early experience with robotics in total hip and knee replacement surgery reported having to abort the procedure in 18–34 percent of cases due to inability to complete preoperative planning, hardware and soft tissue issues, registration issues, as well as concerns over actual and potential soft tissue damage. These damages to the soft tissues resulted in significant morbidity to the patient, negating all the desired advantages of precision and reproducibility with robotic assisted surgery. The risk of soft tissue damage can be mitigated by haptic software prohibiting the cutting tip from striking vital soft tissues and by the surgeon making sure there is a clear workspace path for the cutting tool. This robotic total knee system with a semi-active haptic guided technique was approved by the FDA on 8/5/2015 and commercialized in August of 2016. One year clinical results have not been reported to date.

Objective

To review an initial and consecutive series of robotic total knee arthroplasties for safety in regard to avoidance of known or delayed soft tissue injuries and the necessity to abort the robotic assisted procedure and resort to the use of conventional implantation. Report the clinical outcomes with robotic total knee replacement at or beyond one year to demonstrate satisfactory to excellent performance.


The Bone & Joint Journal
Vol. 105-B, Issue 9 | Pages 961 - 970
1 Sep 2023
Clement ND Galloway S Baron YJ Smith K Weir DJ Deehan DJ

Aims

The primary aim was to assess whether robotic total knee arthroplasty (rTKA) had a greater early knee-specific outcome when compared to manual TKA (mTKA). Secondary aims were to assess whether rTKA was associated with improved expectation fulfilment, health-related quality of life (HRQoL), and patient satisfaction when compared to mTKA.

Methods

A randomized controlled trial was undertaken, and patients were randomized to either mTKA or rTKA. The primary objective was functional improvement at six months. Overall, 100 patients were randomized, 50 to each group, of whom 46 rTKA and 41 mTKA patients were available for review at six months following surgery. There were no differences between the two groups.


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_11 | Pages 8 - 8
1 Oct 2019
Houston NS Star A Hozack WJ
Full Access

Introduction

Our purpose is to analyze the true costs associated with preoperative CT scans performed for robotic assisted TKA planning and also to determine the value of a formal radiologist reading of these studies.

Methods

We reviewed 194 CT scans of 176 sequential patients who underwent primary RTKA by a single surgeon at a suburban teaching hospital. CT radiology reports were reviewed for the presence of incidental findings that might result in change of care to the patient. Actual payments for technical and professional components of the CT scans were retrieved for 170 of the 176 patients. Any patient payments for the CT scan were also recorded.


Orthopaedic Proceedings
Vol. 91-B, Issue SUPP_III | Pages 396 - 396
1 Sep 2009
Park S Song E Seon J Cho S Cho S Yoon T
Full Access

Only limited data exists concerning outcomes after total knee arthroplasty (TKA) using a surgical robot. We conducted this study to evaluate the clinical and radiographical results in robotic-assisted implantation of TKAs with a minimum follow-up of two years.

A total of 50 primary TKAs using ROBODOC were included in this study. The mean duration of follow-up was 28.3 months. The radiographic measurement with regard to the change of mechanical axis, and the inclination of the femoral and tibial components were assessed. The value within ± 3° of optimum was classified to be “acceptable”, and the value exceeding more than ± 3° to be “outlier” results. Also we evaluated clinical results with the range of motion (ROM), Hospital for Special Surgery (HSS) scores, and Western Ontario and McMaster University (WOMAC) scores.

The mechanical axis was changed from 6.57 varus to 0.81 valgus. Mean coronal inclination of the femoral and tibial component were 88.61 and 89.76 at the last follow up. Also, mean sagittal inclination of the femoral and tibial component were 0.82 and 85.49. On the other hand, all prostheses had no radiolucent lines. On the clinical assessment, the range of motion improved from 124.9 to 128.4, and the improvement of HSS score and Womac score were 70.06 to 95.72 and 65.64 to 28.92 in each. No major adverse events related to the use of the robotic system have been observed. However, one case of the formation of seroma around the pin track and two cases of the partial abrasion of patellar tendon occurred in relation to procedures.

A surgical robot system in TKAs provides good clinical and radiographical results at least 2 years follow-up, however further study for the long term follow-up may be needed. A clear advantage of robot-assisted TKA seems to be ability to execute a highly precise preoperative planning and intraoperaive procedures. But current disadvantages such as increased operating times and inability of adjusting the preoperative planning during the procedure have to be resolved in the future.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XLIV | Pages 49 - 49
1 Oct 2012
Song E Seon J Kang K Park C Yim J
Full Access

Recently, axial radiography has received attention for the assessment of distal femur rotational alignment, and satisfactory results have been as compared with the CT method. The purpose of this study was to assess rotational alignment of the femoral component in knee flexion by axial radiography and to compare flexion stabilities achieved by navigational and robotic total knee arthroplasty (TKA). In addition, the authors also evaluated the effects of flexion stability on functional outcomes in these two groups.

Sixty-four patients that underwent TKA for knee osteoarthritis with a minimum of follow-up of 1 year constituted the study cohort. Patients in the navigational group (N = 32) underwent TKA using the gap balancing technique and patients in the robotic group (N = 32) underwent TKA using the measured resection technique. To assess flexion stability using axial radiography a novel technique designed by the authors was used. Rotations of femoral components and mediolateral gaps in the neutral position on flexion radiographs was measured and compared. Valgus and varus stabilities under valgus-varus stress loading, and total flexion stabilities (defined as the sum of valgus and varus stability) were also compared, as were clinical outcomes at final follow up visits.

A significant difference was found between the navigation and robotic groups for mean external rotation of the femoral component (2.1° and 0.4°, respectively; p = 0.003). Mean mediolateral gap in neutral at 90° flexion position was 0.17° in the navigation group and 0.07° in the robotic group (p = 0.126), and mean total stability was 7.82° in the robotic group and 8.10° in the navigation group (p = 0.35). Clinically, no significant intergroup difference was found in terms of ranges of motion, HSS scores, KS scores, or WOMAC scores.

Both navigational and robotic techniques provide excellent clinical and flexion stability results. Furthermore, axial radiography was found to provide a useful, straightforward means of detecting rotational alignment, flexion gaps, and flexion stability.


Purpose. The purpose of this study was to evaluate the postoperative maximal flexion of Robotic assisted TKA which does not increase the posterior condylar offset after surgery and compare CT and conventional radiography in measuring the posterior condylar offset changes. Materials and method. 50 knees of 37 patients who underwent Robotic TKA and underwent follow-up minimal one year were evaluated. CT based preoperative surgical planning system was designed not to increase posterior condylar offset (PCO) after surgery. Maximal flexion angle of the knee was evaluated at 1 year after surgery. The change in PCO and joint line on x-ray and CT were evaluated. Results. The mean preoperative knee flexion was 121° (sd: 9.21; range: 80–135), and it was improved to 125.3° (sd: 4.85; range: 115–140) postoperatively. On radiographic evaluation, the mean preoperative PCO was 26.4 mm (sd: 0.5; range: 14.8 mm to 36.3 mm) and the mean postoperative PCO was 23.0 mm (sd: 0.37; range: 16.0 mm to 34.3 mm). On CT evaluation, the mean medial PCO was 28.7± 2.4 mm preoperatively and 24.9± 2.2 mm postoperatively. The mean lateral PCO was 26.3± 2.4 mm preoperatively and 24.9± 2.2 mm postoperatively. There were no significant correlations between x-ray and CT measurement in PCO and joint line. There were no significant correlations between the changes in the posterior condylar offsets and the postoperative knee flexion. Conclusion. After Robotic assisted TKA which is planned not to increase the medial and lateral posterior condylar offset, satisfactory maximal flexion angle of the knee was gained in all patients. Changes in medial and lateral posterior condylar offsets were not correlated with the postoperative knee flexion angle. And changes in PCO and joint line measured by x-ray did not reflect those of the medial and lateral condyle, and joint line on CT


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XLIV | Pages 86 - 86
1 Oct 2012
Song E Seon J Kang K Park C Yim J
Full Access

The preoperative prediction of gap balance after robotic total knee arthroplasty (TKA) is difficult. The purpose of this study was to evaluate the effectiveness of a new method of achieving balanced flexion-extension gaps during robotic TKA.

Fifty one osteoarthritic patients undergoing cruciate retaining TKA using robotic system were included in this prospective study. Preoperative planning was based on the amount of lateral laxity in extension and flexion using varus stress radiograph. After complete milling by the robot and soft tissue balancing, intra-operative extension and flexion gaps were measured using a tensioning device. Knees were subdivided into three groups based on lateral laxities in 0° and 90° of flexion, as follows; the tight extension group (≥ 2mm smaller in extension than flexion laxity), the tight flexion group (≥ 2mm smaller in flexion than extension laxity), and the balanced group (< 2mm difference between laxities). In addition, intra-operative gap balance results were classified as acceptable (0–3mm larger in flexion than in extension), tight (larger in extension than in flexion) or loose (> 3mm larger in flexion than in extension) based on differences between extension and flexion gaps.

During preoperative planning, 34 cases were allocated to the balanced group, 16 to the tight extension group and 1 case was allocated to the tight flexion group. Intra-operative gap balance was acceptable in 46 cases, 4 cases had a tight result, and one case had a loose flexion gap.

We concluded that preoperative planning based on the amount of lateral laxity determined using varus stress radiographs may be useful for predicting intraoperative gap balance and help to achieve precise gap balance during robotic TKA.


Background

There are limited previous findings detailed biomechanical properties following implantation with mechanical and kinematic alignment method in robotic total knee arthroplasty (TKA) during walking. The purpose of this study was to compare clinical and radiological outcomes between two groups and gait analysis of kinematic, and kinetic parameters during walking to identify difference between two alignment method in robotic total knee arthroplasty.

Methods

Sixty patients were randomly assigned to undergo robotic-assisted TKA using either the mechanical (30 patients) or the kinematic (30 patients) alignment method. Clinical outcomes including varus and valgus laxities, ROM, HSS, KSS and WOMAC scores and radiological outcomes were evaluated. And ten age and gender matched patients of each group underwent gait analysis (Optic gait analysis system composed with 12 camera system and four force plate integrated) at minimum 5 years post-surgery. We evaluated parameters including knee varus moment and knee varus force, and find out the difference between two groups.


Background

There are limited previous findings detailed biomechanical properties following implantation with mechanical and kinematic alignment method in robotic total knee arthroplasty (TKA) during walking. The purpose of this study was to compare clinical and radiological outcomes between two groups and gait analysis of kinematic, and kinetic parameters during walking to identify difference between two alignment method in robotic total knee arthroplasty.

Methods

Sixty patients were randomly assigned to undergo robotic-assisted TKA using either the mechanical (30 patients) or the kinematic (30 patients) alignment method. Clinical outcomes including varus and valgus laxities, ROM, HSS, KSS and WOMAC scores and radiological outcomes were evaluated. And ten age and gender matched patients of each group underwent gait analysis (Optic gait analysis system composed with 12 camera system and four force plate integrated) at minimum 5 years post-surgery. We evaluated parameters including knee varus moment and knee varus force, and find out the difference between two groups.


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_2 | Pages 12 - 12
1 Feb 2020
King C Jordan M Edgington J Wlodarski C Tauchen A Puri L
Full Access

Introduction. This study sought to evaluate the patient experience and short-term clinical outcomes associated with the hospital stay of patients who underwent robotic arm-assisted total knee arthroplasty (TKA). These results were compared to a cohort of patients who underwent TKA without robotic assistance performed by the same surgeon. Methods. A cohort of consecutive patients undergoing primary TKA for the diagnosis of osteoarthritis by a single fellowship trained orthopaedic surgeon over a 39-month period was identified. Patients who underwent TKA during the year this surgeon transitioned his entire knee arthroplasty practice to robotic assistance were excluded to eliminate selection bias and control for the learning curve. A final population of 538 TKAs was identified. Of these, 314 underwent TKA without robotic assistance and 224 underwent robotic arm-assisted TKA. All patients received the same prosthesis and post-operative pain protocol. Patient demographic characteristics and short-term clinical data were analyzed. Results. Robotic arm-assisted TKA was associated with shorter length of stay (2.3 versus 2.6 days, p< 0.001), a 50% reduction in morphine milligram equivalent utilization (from 213 to 105, p< 0.001), decreased visual analog scale pain score on post-op day 1 and 2 (p< 0.001), and a mean increase in procedure time of 8.2 minutes (p=0.08). There were no post-operative infections in either cohort. Additionally, there were no significant differences in rates of manipulation under anesthesia, emergency department visits, readmissions, or return to the operating room. Conclusions. This analysis corroborates existing literature suggesting that robotic arm-assisted TKA can be correlated with improved short-term clinical outcomes. This study reports on a single surgeon's experience with regard to analgesic requirements, length of stay, pain scores, and procedure time following a complete transition to robotic arm-assisted TKA. These results underscore the importance of continued evaluation of clinical outcomes as robotic arthroplasty technology continues to grow. For any figures or tables, please contact authors directly


The Bone & Joint Journal
Vol. 103-B, Issue 1 | Pages 113 - 122
1 Jan 2021
Kayani B Tahmassebi J Ayuob A Konan S Oussedik S Haddad FS

Aims. The primary aim of this study was to compare the postoperative systemic inflammatory response in conventional jig-based total knee arthroplasty (conventional TKA) versus robotic-arm assisted total knee arthroplasty (robotic TKA). Secondary aims were to compare the macroscopic soft tissue injury, femoral and tibial bone trauma, localized thermal response, and the accuracy of component positioning between the two treatment groups. Methods. This prospective randomized controlled trial included 30 patients with osteoarthritis of the knee undergoing conventional TKA versus robotic TKA. Predefined serum markers of inflammation and localized knee temperature were collected preoperatively and postoperatively at six hours, day 1, day 2, day 7, and day 28 following TKA. Blinded observers used the Macroscopic Soft Tissue Injury (MASTI) classification system to grade intraoperative periarticular soft tissue injury and bone trauma. Plain radiographs were used to assess the accuracy of achieving the planned postioning of the components in both groups. Results. Patients undergoing conventional TKA and robotic TKA had comparable changes in the postoperative systemic inflammatory and localized thermal response at six hours, day 1, day 2, and day 28 after surgery. Robotic TKA had significantly reduced levels of interleukin-6 (p < 0.001), tumour necrosis factor-α (p = 0.021), ESR (p = 0.001), CRP (p = 0.004), lactate dehydrogenase (p = 0.007), and creatine kinase (p = 0.004) at day 7 after surgery compared with conventional TKA. Robotic TKA was associated with significantly improved preservation of the periarticular soft tissue envelope (p < 0.001), and reduced femoral (p = 0.012) and tibial (p = 0.023) bone trauma compared with conventional TKA. Robotic TKA significantly improved the accuracy of achieving the planned limb alignment (p < 0.001), femoral component positioning (p < 0.001), and tibial component positioning (p < 0.001) compared with conventional TKA. Conclusion. Robotic TKA was associated with a transient reduction in the early (day 7) postoperative inflammatory response but there was no difference in the immediate (< 48 hours) or late (day 28) postoperative systemic inflammatory response compared with conventional TKA. Robotic TKA was associated with decreased iatrogenic periarticular soft tissue injury, reduced femoral and tibial bone trauma, and improved accuracy of component positioning compared with conventional TKA. Cite this article: Bone Joint J 2021;103-B(1):113–122


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_9 | Pages 26 - 26
1 Oct 2020
Gustke KA
Full Access

Introduction

The purpose of this study was to determine if better outcomes occur with use of robotic-arm assistance by comparing consecutive series of non-robotic assisted (NR-TKA) and robotic-arm assisted (NR-TKA) total knee arthroplasties with the same implant.

Methods

80 NR-TKAs and then 101 RA-TKAs were performed consecutively. 70 knees in each group that had a minimum two-year follow-up were retrospectively reviewed. Range of motion, Knee Society (KS) scores, and forgotten joint scores (FJS) were compared using Mann-Whitney U tests.

Tourniquets, used for all cases, had their inflation time recorded. Component realignment to minimize soft tissue releases was used in both groups with the goal to stay within a mechanical alignment of 3° of varus to 2° of valgus. The use of soft tissue releases for balance were compared.


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_8 | Pages 71 - 71
1 May 2019
Chow J
Full Access

The goals of a total knee arthroplasty include approximation of the function of a normal knee and achievement of balance post-surgery. Accurate bone preparation and the preservation of natural ligaments along with a functional knee design, holds the potential to provide a method of restoring close to normal function.

Although conventional knee arthroplasty is considered a successful intervention for end-stage osteoarthritis, some patients still experience reduced functionality and in some cases, require revision procedures. With conventional manual techniques, accurate alignment of the tibial component has been difficult to achieve. Even in the hands of skilled knee surgeons, outliers beyond 2 degrees of the desired alignment may occur in as many as 40%-60% of cases using conventional methods, and the range of component alignment varies considerably.

Similarly, for total knee replacement outliers beyond 2 degrees of the desired alignment may occur in as many as 15% of cases in the coronal plane, going up to 40% of unsatisfactory alignment in the sagittal plane.

Robotics-assisted arthroplasty has gained increasing popularity as orthopaedic surgeons aim to increase accuracy and precision of implant positioning. With advances in computer generated data, with image free data, surgeons have the ability to better predict and influence surgical outcomes. Based on planned implant position and soft tissue considerations, robotics-assisted systems can provide surgeons with virtual tools to make informed decisions for knee replacement, specific to the needs of the patient.

Here, for the first time in a live surgical setting, we assess the accuracy and technique of a novel imageless semiautonomous handheld robotic surgical technique in bi-cruciate retaining total knee arthroplasty (Navio, Smith and Nephew). The system supports image-free anatomic data collection, intraoperative surgical planning and execution of the plan using a combination of robotic burring and saw cut guides.


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_4 | Pages 69 - 69
1 Apr 2019
Blevins K Danoff J Goel R Foltz C Chen AF Hozack W
Full Access

Introduction

The purpose of this study is to compare total and rate of caloric energy expenditure between conventional and robotic-arm assisted total knee arthroplasty (TKA) between a high volume “veteran” surgeon (HV) and a lower volume, less experienced surgeon (LV).

Methods

Two specialized arthroplasty surgeons wore a biometric-enabled shirt and energy expenditure outcomes were measured (total caloric expenditure, kilocalories per minute, heart rate variability, and surgical duration) during 35 conventional (CTKA) and 29 robotic primary total knee arthroplasty (RTKA) procedures.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_8 | Pages 115 - 115
1 May 2016
Koenig J
Full Access

Insall, Laskin and others have taught us that the goal of successful total knee replacement (TKR) is to have well fixed and fitted components in a neutral mechanical axis (MA) with balanced soft tissues. Computer and robotic assisted (C-RAS) TKR with real time validation is an excellent tool to help you to attain these goals. Ritter and others have shown higher early failure rates with TKR's where the final alignment is outside a 3-degree window of the neutral MA. Dalury and Schroer have each shown higher early failure rates in TKR's with postoperative instability and or malalignment. C-RAS TKR helps prevent and significantly lowers the number of TKR outliers that may go on to early aseptic loosening and failure as compared with traditional methods.

This featured video was created to show how surgeons can benefit from real-time validation and the kinematic data provided during C-RAS. The system helps in their intraoperative decision-making process and then guides them to make precise bone cuts and balance the soft tissue envelope in a very time efficient and highly repeatable fashion. Additionally, imageless C-RAS breaks away from the paradigm of pre-operative MRI or CT scan imaging studies by no longer requiring such costly procedures. This relatively easy, simple to learn, and cost-efficient procedure is a valuable asset in the operating room, for both the surgeon and patient. Furthermore, it is highly customizable and easily integrated into any surgeon's workflow, technique, and exposure. The viewer will learn the C-RAS TKR simple workflow of Tracking, Registration, Navigation, and Validation.

The results of the previously published abstract “Influence of Pre-Operative Deformity on Surgical Accuracy and Time in Robotic-Assisted TKA” JA Koenig; C Plaskos; BJJprocs.boneandjoint.org.uk 95-B/SUPP28/62 2013, will also be presented at the end of the video. Finally many have argued that C-RAS TKR is an excellent method to teach the “ART of TKR” to young surgeons, residents and students as they can see with real time validation and data the immediate consequences and effects of their intra-operative actions and maneuvers.


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_20 | Pages 44 - 44
1 Dec 2017
Hampp E Scholl L Prieto M Chang T Abbasi A Bhowmik-Stoker M Otto J Jacofsky D Mont M
Full Access

While total knee arthroplasty has demonstrated clinical success, final bone cut and final component alignment can be critical for achieving a desired overall limb alignment. This cadaver study investigated whether robotic-arm assisted total knee arthroplasty (RATKA) allows for accurate bone cuts and component position to plan compared to manual technique. Six cadaveric specimens (12 knees) were prepared by an experienced user of manual total knee arthroplasty (MTKA), who was inexperienced in RATKA. For each cadaveric pair, a RATKA was prepared on the right leg and a MTKA was prepared on the left leg. Final bone cuts and final component position to plan were measured relative to fiducials, and mean and standard deviations were compared.

Measurements of final bone cut error for each cut show that RATKA had greater accuracy and precision to plan for femoral anterior internal/external (0.8±0.5° vs. 2.7±1.9°) and flexion/extension* (0.5±0.4° vs. 4.3±2.3°), anterior chamfer varus/valgus* (0.5±0.1° vs. 4.1±2.2°) and flexion/extension (0.3±0.2° vs. 1.9±1.0°), distal varus/valgus (0.5±0.3° vs. 2.5±1.6°) and flexion/extension (0.8±0.5° vs. 1.1±1.1°), posterior chamfer varus/valgus* (1.3±0.4° vs. 2.8±2.0°) and flexion/extension (0.8±0.5° vs. 1.4±1.6°), posterior internal/external* (1.1±0.6° vs. 2.8±1.6°) and flexion/extension (0.7±0.6° vs. 3.7±4.0°), and tibial varus/valgus* (0.6±0.3° vs. 1.3±0.7°) rotations, compared to MTKA, respectively, (where * indicates a significant difference between the two operative methods based on 2- Variances testing, with α at 0.05). Measurements of final component position error show that RATKA had greater accuracy and precision to plan for femoral varus/valgus* (0.6±0.3° vs. 3.0±1.4°), flexion/extension* (0.6±0.5° vs. 3.0±2.1°), internal/external (0.8±0.5° vs. 2.6±1.6°), and tibial varus/valgus (0.7±0.4° vs. 1.1±0.8°) than the MTKA control, respectively.

In general, RATKA demonstrated greater accuracy and precision of bone cuts and component placement to plan, compared to MTKA in this cadaveric study. For further confirmation, RATKA accuracy of component placement should be investigated in a clinical setting.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_7 | Pages 91 - 91
1 May 2016
Conditt M Gustke K Coon T Kreuzer S Branch S Bhowmik-Stoker M D'Alessio J Otto J Abassi A
Full Access

Introduction

Preoperative templating of femoral and tibial components can assist in choosing the appropriate implant size prior to TKA. While weight bearing long limb roentograms have been shown to provide benefit to the surgeon in assessing alignment, disease state, and previous pathology or trauma, their accuracy in size prediction is continually debated due to scaling factors and rotated views. Further, they represent a static time point, accounting for boney anatomy only. A perceived benefit of robotic-assisted surgery is the ability to pre-operatively select component sizes with greater accuracy based on 3D information, however, to allow for flexibility in refining based on additional data only available at the time of surgery.

Methods

The purpose of this study was to determine the difference of pre-operative plans in size prediction of the tibia, femur, and polyethylene insert. Eighty four cases were enrolled at three centers as part of an Investigational Device Exemption to evaluate a robotic-assisted TKA. All patients had a CT scan as part of a pre-operative planning protocol. Scans were segmented and implant sizes predicted based on the patients boney morphology and an estimated 2mm cartilage presence. Additional information such as actual cartilage presence and soft tissue effects on balance and kinematics were recorded intra-operatively. Utilizing this additional information, surgical plans were fine tuned if necessary to achieve minimal insert thickness and balance. Data from the Preoperative CT plan sizing and final size were compared to determine the percentage of size and within one size accuracy.


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_1 | Pages 78 - 78
1 Feb 2020
Gustke K Morrison T
Full Access

Introduction. Robotic TKA allows for quantifiable precision performing bone resections for implant realignment within acceptable final component and limb alignments. One of the early steps in this robotic technique is after initial exposure and removal of medial and lateral osteophytes, a “pose-capture” is performed with varus and valgus stress applied to the knee in near full extension and 90° of flexion to assess gaps. Component alignment adjustments can be made on the preoperative plan to balance the gaps. At this point in the procedure any posterior osteophytes will still be present, which could after removal change the flexion and extension gaps by 1–3mm. This must be taken into consideration, or changes in component alignment could result in over-correction of gaps can occur. Objective. The purpose of this study was to identify what effect the posterior osteophyte's size and location and their removal had on gap measurements between pose-capture and after bone cuts are made and gaps assessed during implant trialing. Methods. This was a retrospective, single center cohort study comparing 100 robotic-assisted TKAs. Preoperative computer tomography was assessed for the presence, size and location of posterior osteophytes. Robotic-assessed gaps at pose capture and trialing were collected. Paired t-tests, independent t-tests and Pearson's correlation were used to examine this relationship. Results. Posterior osteophytes were present in 87% of cases with 59.3% isolated to the posterior medial femoral condyle. In the sagittal plane, posterior medial femoral condyle (pMFC), posterior lateral femoral condyle (pLFC) and posterior tibial (pT) osteophytes measured 6.75 ± 2.7mm, 5.77 ± 2.8mm, and 6.52 ± 3.14mm respectively. There was a significant increase in medial (17.4 ± 2.7mm vs 19.7 ± 2.2mm, p<0.01) and lateral (19.2 ± 2.2mm vs 20.5 ± 1.9mm, p<0.01) extension gaps from pose-capture to trialing. There was no difference in the delta of medial extension gaps from pose-change to trialing for knees with pMFC osteophytes > or < 5mm (2.1 ± 2.3 mm vs 2.4 ± 2.1mm, p=0.56). Similarly, there was no difference in the change in lateral extension gaps from pose-capture to trialing for knees with lateral posterior osteophytes > or < 5mm (1.2 ± 2.0mm vs 1.73 ± 1.53mm, p = 0.37). There was no statistically significant correlation between medial or lateral osteophyte size and change in medial (r=0.12, p=0.27) or lateral (r=0.11, p=0.36) extension gaps respectively. Conclusion. While there is a significant change in robotically assessed gaps at pose-capture and trialing, this change is small, our study findings are not able to substantiate that it is solely due to the presence, size or location of posterior osteophytes. A post-hoc power analysis indicates that, in order to detect a difference in gap between pose-capture and trialing of 1mm, over 75 knees with and without posterior osteophytes would be needed


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_1 | Pages 48 - 48
1 Feb 2020
Gustke K Durgin C
Full Access

Background. Intraoperative balancing of total knee arthroplasty (TKA) can be accomplished by either more prevalent but less predictable soft tissue releases, implant realignment through adjustments of bone resection or a combination of both. Robotic TKA allows for quantifiable precision performing bone resections for implant realignment within acceptable final component and limb alignments. Objective. To provide a direct comparison of patient reported outcomes between implant realignment and traditional ligamentous release for soft tissue balancing in TKA. Methods. IRB approved retrospective single surgeon cohort study of prospectively collected operative and clinical data of consecutive patients that underwent TKA with a single radius design utilizing kinematic sensors to assess final balance with or without robotic assistance allowing for a minimum of 12 months clinical follow up. Operative reports were reviewed to characterize the balancing strategy. In surgical cases using robotic assistance, pre-operative plan changes that altered implant placement were included in the implant realignment group. Any patient that underwent both implant realignment and soft tissue releases was analyzed separately. Kinematic sensor data was utilized to quantify ultimate balance to assure that each cohort had equivalent balance. Patient reported outcome data consisting of Knee Society- Knee Scores (KS-KS), Knee Society- Function Scores (KS-FS), and Forgotten Joint Scores (FJS) were prospectively collected during clinical follow up. Results. 182 TKA were included in the study. 3-Month clinical follow up was available for 174/182 knees (91%), 1-Year clinical follow up was available for 167/182 knees (92%) and kinematic sensor data was available for 169/182 knees (93%). Kinetic sensor data showed that on average all of the balancing subgroups achieved clinically equivalent balance. Use of robotic-arm assistance provided the tools and confidence to decrease from ligament release only in 40.8% of non-robotic cases to 3.8% in the robotic group, and the use of component realignment alone increased from 23.7% in the non-robotic cases to 48.1% in the robotic TKA group. KS-KS, KS-FS and FJS scores showed improvements in outcomes at both the 3-month and 1-year time points in the implant realignment cohort compared to the ligamentous release cohort. KS-KS, KS-FS, and FJS at 1-year were 1.6, 7.6, and 17.2 points higher respectively. While none of the comparisons reached statistical significance, KS-FS at 1 year showed a statistically and clinically significant difference (MCID 6.1–6.4) increase of 7.7 points in the implant realignment cohort compared to the ligamentous cohort. The 1-year trend can be further explained by the outperformance (MCID increase of 6.4 points) of the implant realignment robotic cohort at 1-year compared to the non-robotic ligamentous cohort. Conclusions. Directly comparing TKA patients balanced with implant realignment alone versus ligamentous release alone versus combined technique, a trend toward clinical improvement above a minimally clinical significant difference in KS-FS scores benefiting the implant realignment technique was seen at both 3-months and 1-year post-operatively. We hypothesize that the benefit of implant realignment is achieved through decreased soft tissue trauma as well as potentially greater predictability and sustainability of soft tissue balance than with soft tissue releases alone


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_12 | Pages 71 - 71
1 Oct 2018
Cool CL Mont MA Jacofsky DJ
Full Access

Introduction. Robotic assisted Total Knee Arthroplasty (rTKA), provides surgeons with preoperative planning and real-time data allowing for continuous assessment of ligamentous tension and range-of-motion. Using this technology, soft tissue protection, reduced early post-operative pain and improved patient satisfaction have been shown. These advances have the potential to enhance surgical outcomes and may also reduce episode-of-care (EOC) costs for patients, payers, and hospitals. The purpose of this study was to compare robotic assisted vs. manual total knee arthroplasty: 1) 90-day episode-of-care (EOC) costs; 2) index costs; 3) lengths-of-stay (LOS); 4) discharge disposition; and 5) readmission rates. Methods. TKA procedures were identified using the Medicare 100% Standard Analytic Files including; Inpatient, Outpatient, Skilled Nursing (SNF) and Home Health. Members included patients with rTKA or manual TKA (mTKA) between 1/1/2016-3/31/2017. To account for potential baseline differences, propensity score matching (PSM) was performed in a 1-to-5 ratio, robotic to manual based on age, sex, race, geographic division, and comorbidities. After PSM, 519 rTKA and 2,595 mTKA were identified and included for analysis. Ninety-day episode-of-care cost, index cost, LOS, discharge disposition and readmission rates were assessed. Results. Overall 90-day EOC costs were $2,391 less for rTKA patients ($18,568 vs. $20,960; p<.0001). Index facility cost and LOS were also less for rTKA patients by $640 ($12,384 vs. $13,024; p=.0001) and 0.7 days (p<.0001). Additionally, rTKA patients were discharged to SNF less frequently (12.52% vs. 21.70%; p<.0001) and home with health aid (56.65% vs. 46.67%; p<.0001) or self-care (27.55% vs. 23.62%; p=.0566) more frequently and had a 90-day readmission reduction of 33% (p=.0423). Conclusion. Robotic assisted TKA resulted in an overall lower 90-day episode-of-care cost when compared to manual TKA. The 90-day EOC cost savings of rTKA were driven by reduced facility costs, LOS and readmissions, and an economically beneficial discharge destination


Bone & Joint Open
Vol. 4, Issue 10 | Pages 791 - 800
19 Oct 2023
Fontalis A Raj RD Haddad IC Donovan C Plastow R Oussedik S Gabr A Haddad FS

Aims

In-hospital length of stay (LOS) and discharge dispositions following arthroplasty could act as surrogate measures for improvement in patient pathways, and have major cost saving implications for healthcare providers. With the ever-growing adoption of robotic technology in arthroplasty, it is imperative to evaluate its impact on LOS. The objectives of this study were to compare LOS and discharge dispositions following robotic arm-assisted total knee arthroplasty (RO TKA) and unicompartmental arthroplasty (RO UKA) versus conventional technique (CO TKA and UKA).

Methods

This large-scale, single-institution study included patients of any age undergoing primary TKA (n = 1,375) or UKA (n = 337) for any cause between May 2019 and January 2023. Data extracted included patient demographics, LOS, need for post anaesthesia care unit (PACU) admission, anaesthesia type, readmission within 30 days, and discharge dispositions. Univariate and multivariate logistic regression models were also employed to identify factors and patient characteristics related to delayed discharge.


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_1 | Pages 138 - 138
1 Feb 2020
Schwarzkopf R Chow J Burkhardt J Gittins M Kaper B Fabi D Hanson B Kopjar B
Full Access

Background. The JOURNEY™ II Cruciate-Retaining Total Knee System (JIICR) and the JOURNEY™ II Bi-Cruciate Stabilized Total Knee System (JIIBCS) (both, Smith & Nephew, Memphis, TN, USA) are used for the treatment of end-stage degenerative knee arthritis. Belonging to the JOURNEY family of knee implants, the relatively new devices are designed to provide guided motion. Studies suggest that long-term outcomes of robotic-assisted navigation in total knee arthroplasty (TKA) are superior to the classical approach. This is the first report describing early postoperative outcomes of the NAVIO® robotic-assisted surgical navigation using the JOURNEY™ II family of knee implants. Materials & Methods. In this ongoing study, six investigational sites in the US prospectively enrolled 122 patients (122 TKAs, 64 JIIBCS and 58 JIICR). Patients underwent TKA using the NAVIO system (Figure 1), a next-generation semi-autonomous tool that uses handheld miniaturized robotic-assisted instrumentation that the surgeon manipulates in 6 degrees of freedom, but restricts cutting to within the confines of the pre-designated resection area of the patient's bone. The primary outcome was postoperative mechanical alignment on long leg X-ray at one month postoperative compared to operative target alignment. Alignment within ±3 degrees of the target alignment was considered a success. Results. Average age was 65.7 years (range, 39–79); 60.7% were females. All patients underwent patella resurfacing. Two patients had revision prior to the one-month follow-up visit; two patients withdrew from the study. 95% (112/118) attended the one-month follow-up. Four patients were missing either baseline or follow-up long leg X-ray, resulting in 108 evaluated TKAs. Overall, 92.6% (100/108) of TKAs were within 3 degrees of the target alignment. Of these, 24.1%, 39.8-, 19.4%, and 9.3% were at 0, 1, 2, and 3 degrees of the target alignment, respectively. There were two revisions, one at 18 days postoperative and the second at 27 days postoperative. Discussion. At the one-month follow-up, the NAVIO™ Robotic Assisted TKA procedures resulted in a very high success rate of 92.6% in achieving planned mechanical alignment compared to standard instruments as historical control (73.4%) based on literature. 1. This demonstrates the improved accuracy and reliability of the NAVIO™ Robotic Assisted Surgical System for TKA procedures. For any figures or tables, please contact the authors directly


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_11 | Pages 12 - 12
1 Oct 2019
Cool CL Gregory DA Lavernia CJ
Full Access

Introduction. Previous studies on Medicare populations have shown improved outcomes and decreased 90-day episode-of-care costs with robotic assisted total knee arthroplasty (rTKA). The purpose of this study was to evaluate the expenditures and utilization following rTKA in the under 65 y/o population. Methods. TKA procedures were identified using the OptumInsights Inc. database. A two-year window was studied. The procedures were stratified in two groups: the rTKA or manual (mTKA) cohorts. Propensity score matching (PSM) was performed at 1:5. Utilization and associated costs were analyzed for 90 days following the index procedure. 357 rTKA and 1785 mTKA were included in this analysis. Results. Within the 90 days following the surgery, patients who had robotic assisted procedures were less likely to utilize inpatient services (2.24 vs. 4.37%; p=0.0444) and skilled nursing visits (SNF) (1.68 vs. 6.05%; p<0.0001). No patients in the robotic TKA group went to inpatient rehab while 0.90% of the manual cases went to an inpatient rehabilitation facility. Patients who utilized a home health aide in the rTKA arm utilized significantly fewer days of home health (5.33 vs. 6.36 days; p=0.0037). Cost associated with the utilization of these services was lower in the rTKA arm; the overall post-surgery expenditures were $1,332 less in the rTKA arm ($6,857 vs. $8,189; p=0.0018). The 90-day global expenditures (index plus post-surgery) were $4,049 less in the rTKA arm ($28,204 vs. $32,253; p<0.0001). Lastly, length of stay (LOS) after surgery was nearly a day less for the rTKA arm (1.80 vs. 2.72 days; p<0.0001). Conclusion. Robotic assisted TKA was associated with shorter LOS, reduced utilization of services and reduced 90-day payer costs when compared to the manual TKA. For figures, tables, or references, please contact authors directly


The Bone & Joint Journal
Vol. 106-B, Issue 7 | Pages 680 - 687
1 Jul 2024
Mancino F Fontalis A Grandhi TSP Magan A Plastow R Kayani B Haddad FS

Aims

Robotic arm-assisted surgery offers accurate and reproducible guidance in component positioning and assessment of soft-tissue tensioning during knee arthroplasty, but the feasibility and early outcomes when using this technology for revision surgery remain unknown. The objective of this study was to compare the outcomes of robotic arm-assisted revision of unicompartmental knee arthroplasty (UKA) to total knee arthroplasty (TKA) versus primary robotic arm-assisted TKA at short-term follow-up.

Methods

This prospective study included 16 patients undergoing robotic arm-assisted revision of UKA to TKA versus 35 matched patients receiving robotic arm-assisted primary TKA. In all study patients, the following data were recorded: operating time, polyethylene liner size, change in haemoglobin concentration (g/dl), length of inpatient stay, postoperative complications, and hip-knee-ankle (HKA) alignment. All procedures were performed using the principles of functional alignment. At most recent follow-up, range of motion (ROM), Forgotten Joint Score (FJS), and Oxford Knee Score (OKS) were collected. Mean follow-up time was 21 months (6 to 36).


The Bone & Joint Journal
Vol. 103-B, Issue 6 Supple A | Pages 67 - 73
1 Jun 2021
Lee G Wakelin E Randall A Plaskos C

Aims

Neither a surgeon’s intraoperative impression nor the parameters of computer navigation have been shown to be predictive of the outcomes following total knee arthroplasty (TKA). The aim of this study was to determine whether a surgeon, with robotic assistance, can predict the outcome as assessed using the Knee Injury and Osteoarthritis Outcome Score (KOOS) for pain (KPS), one year postoperatively, and establish what factors correlate with poor KOOS scores in a well-aligned and balanced TKA.

Methods

A total of 134 consecutive patients who underwent TKA using a dynamic ligament tensioning robotic system with a tibia first resection technique and a cruciate sacrificing ultracongruent TKA system were enrolled into a prospective study. Each TKA was graded based on the final mediolateral ligament balance at 10° and 90° of flexion: 1) < 1 mm difference in the thickness of the tibial insert and that which was planned (n = 75); 2) < 1 mm difference (n = 26); 3) between 1 mm to 2 mm difference (n = 26); and 4) > 2 mm difference (n = 7). The mean one-year KPS score for each grade of TKA was compared and the likelihood of achieving an KPS score of > 90 was calculated. Finally, the factors associated with lower KPS despite achieving a high-grade TKA (grade A and B) were analyzed.


Bone & Joint Open
Vol. 2, Issue 6 | Pages 397 - 404
1 Jun 2021
Begum FA Kayani B Magan AA Chang JS Haddad FS

Limb alignment in total knee arthroplasty (TKA) influences periarticular soft-tissue tension, biomechanics through knee flexion, and implant survival. Despite this, there is no uniform consensus on the optimal alignment technique for TKA. Neutral mechanical alignment facilitates knee flexion and symmetrical component wear but forces the limb into an unnatural position that alters native knee kinematics through the arc of knee flexion. Kinematic alignment aims to restore native limb alignment, but the safe ranges with this technique remain uncertain and the effects of this alignment technique on component survivorship remain unknown. Anatomical alignment aims to restore predisease limb alignment and knee geometry, but existing studies using this technique are based on cadaveric specimens or clinical trials with limited follow-up times. Functional alignment aims to restore the native plane and obliquity of the joint by manipulating implant positioning while limiting soft tissue releases, but the results of high-quality studies with long-term outcomes are still awaited. The drawbacks of existing studies on alignment include the use of surgical techniques with limited accuracy and reproducibility of achieving the planned alignment, poor correlation of intraoperative data to long-term functional outcomes and implant survivorship, and a paucity of studies on the safe ranges of limb alignment. Further studies on alignment in TKA should use surgical adjuncts (e.g. robotic technology) to help execute the planned alignment with improved accuracy, include intraoperative assessments of knee biomechanics and periarticular soft-tissue tension, and correlate alignment to long-term functional outcomes and survivorship.


The Bone & Joint Journal
Vol. 103-B, Issue 3 | Pages 507 - 514
1 Mar 2021
Chang JS Kayani B Wallace C Haddad FS

Aims

Total knee arthroplasty (TKA) using functional alignment aims to implant the components with minimal compromise of the soft-tissue envelope by restoring the plane and obliquity of the non-arthritic joint. The objective of this study was to determine the effect of TKA with functional alignment on mediolateral soft-tissue balance as assessed using intraoperative sensor-guided technology.

Methods

This prospective study included 30 consecutive patients undergoing robotic-assisted TKA using the Stryker PS Triathlon implant with functional alignment. Intraoperative soft-tissue balance was assessed using sensor-guided technology after definitive component implantation; soft-tissue balance was defined as intercompartmental pressure difference (ICPD) of < 15 psi. Medial and lateral compartment pressures were recorded at 10°, 45°, and 90° of knee flexion. This study included 18 females (60%) and 12 males (40%) with a mean age of 65.2 years (SD 9.3). Mean preoperative hip-knee-ankle deformity was 6.3° varus (SD 2.7°).


Bone & Joint Research
Vol. 9, Issue 6 | Pages 279 - 281
1 Jun 2020
Clement ND Deehan DJ


The Journal of Bone & Joint Surgery British Volume
Vol. 94-B, Issue 11 | Pages 1457 - 1461
1 Nov 2012
Krishnan SP Dawood A Richards R Henckel J Hart AJ

Improvements in the surgical technique of total knee replacement (TKR) are continually being sought. There has recently been interest in three-dimensional (3D) pre-operative planning using magnetic resonance imaging (MRI) and CT. The 3D images are increasingly used for the production of patient-specific models, surgical guides and custom-made implants for TKR.

The users of patient-specific instrumentation (PSI) claim that they allow the optimum balance of technology and conventional surgery by reducing the complexity of conventional alignment and sizing tools. In this way the advantages of accuracy and precision claimed by computer navigation techniques are achieved without the disadvantages of additional intra-operative inventory, new skills or surgical time.

This review describes the terminology used in this area and debates the advantages and disadvantages of PSI.