Advertisement for orthosearch.org.uk
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

General Orthopaedics

DO POSTERIOR OSTEOPHYTES MATTER? EFFECT OF POSTERIOR OSTEOPHYTES ON ROBOTIC-ASSESSED GAPS BETWEEN POSE-CAPTURE AND TRIALLING

International Society for Technology in Arthroplasty (ISTA) meeting, 32nd Annual Congress, Toronto, Canada, October 2019. Part 1 of 2.



Abstract

Introduction

Robotic TKA allows for quantifiable precision performing bone resections for implant realignment within acceptable final component and limb alignments. One of the early steps in this robotic technique is after initial exposure and removal of medial and lateral osteophytes, a “pose-capture” is performed with varus and valgus stress applied to the knee in near full extension and 90° of flexion to assess gaps. Component alignment adjustments can be made on the preoperative plan to balance the gaps. At this point in the procedure any posterior osteophytes will still be present, which could after removal change the flexion and extension gaps by 1–3mm. This must be taken into consideration, or changes in component alignment could result in over-correction of gaps can occur.

Objective

The purpose of this study was to identify what effect the posterior osteophyte's size and location and their removal had on gap measurements between pose-capture and after bone cuts are made and gaps assessed during implant trialing.

Methods

This was a retrospective, single center cohort study comparing 100 robotic-assisted TKAs. Preoperative computer tomography was assessed for the presence, size and location of posterior osteophytes. Robotic-assessed gaps at pose capture and trialing were collected. Paired t-tests, independent t-tests and Pearson's correlation were used to examine this relationship.

Results

Posterior osteophytes were present in 87% of cases with 59.3% isolated to the posterior medial femoral condyle. In the sagittal plane, posterior medial femoral condyle (pMFC), posterior lateral femoral condyle (pLFC) and posterior tibial (pT) osteophytes measured 6.75 ± 2.7mm, 5.77 ± 2.8mm, and 6.52 ± 3.14mm respectively. There was a significant increase in medial (17.4 ± 2.7mm vs 19.7 ± 2.2mm, p<0.01) and lateral (19.2 ± 2.2mm vs 20.5 ± 1.9mm, p<0.01) extension gaps from pose-capture to trialing. There was no difference in the delta of medial extension gaps from pose-change to trialing for knees with pMFC osteophytes > or < 5mm (2.1 ± 2.3 mm vs 2.4 ± 2.1mm, p=0.56). Similarly, there was no difference in the change in lateral extension gaps from pose-capture to trialing for knees with lateral posterior osteophytes > or < 5mm (1.2 ± 2.0mm vs 1.73 ± 1.53mm, p = 0.37). There was no statistically significant correlation between medial or lateral osteophyte size and change in medial (r=0.12, p=0.27) or lateral (r=0.11, p=0.36) extension gaps respectively.

Conclusion

While there is a significant change in robotically assessed gaps at pose-capture and trialing, this change is small, our study findings are not able to substantiate that it is solely due to the presence, size or location of posterior osteophytes. A post-hoc power analysis indicates that, in order to detect a difference in gap between pose-capture and trialing of 1mm, over 75 knees with and without posterior osteophytes would be needed.