Advertisement for orthosearch.org.uk
Results 1 - 50 of 357
Results per page:
The Bone & Joint Journal
Vol. 106-B, Issue 9 | Pages 892 - 897
1 Sep 2024
Mancino F Fontalis A Kayani B Magan A Plastow R Haddad FS

Advanced 3D imaging and CT-based navigation have emerged as valuable tools to use in total knee arthroplasty (TKA), for both preoperative planning and the intraoperative execution of different philosophies of alignment. Preoperative planning using CT-based 3D imaging enables more accurate prediction of the size of components, enhancing surgical workflow and optimizing the precision of the positioning of components. Surgeons can assess alignment, osteophytes, and arthritic changes better. These scans provide improved insights into the patellofemoral joint and facilitate tibial sizing and the evaluation of implant-bone contact area in cementless TKA. Preoperative CT imaging is also required for the development of patient-specific instrumentation cutting guides, aiming to reduce intraoperative blood loss and improve the surgical technique in complex cases. Intraoperative CT-based navigation and haptic guidance facilitates precise execution of the preoperative plan, aiming for optimal positioning of the components and accurate alignment, as determined by the surgeon’s philosophy. It also helps reduce iatrogenic injury to the periarticular soft-tissue structures with subsequent reduction in the local and systemic inflammatory response, enhancing early outcomes. Despite the increased costs and radiation exposure associated with CT-based navigation, these many benefits have facilitated the adoption of imaged based robotic surgery into routine practice. Further research on ultra-low-dose CT scans and exploration of the possible translation of the use of 3D imaging into improved clinical outcomes are required to justify its broader implementation. Cite this article: Bone Joint J 2024;106-B(9):892–897


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_11 | Pages 34 - 34
1 Nov 2022
Haleem S Malik M Azzopardi C Botchu R Marks D
Full Access

Abstract. Purpose. Intracanal rib head penetration is a well-known entity in dystrophic scoliotic curves in neurofibromatosis type 1. There is potential for spinal cord injury if this is not recognised and managed appropriately. No current CT-based classification system is currently in use to quantify rib head penetration. This study aims to propose and evaluate a novel CT-based classification for rib head penetration primarily for neurofibromatosis but which can also be utilised in other conditions of rib head penetration. Materials and methods. The grading was developed as four grades: normal rib head (RH) position—Grade 0, subluxed ext-racanal RH position—Grade 1, RH at pedicle—Grade 2, intracanal RH—Grade 3. Grade 3 was further classified depending on the head position in the canal divided into thirds. Rib head penetration into proximal third (from ipsilateral side)—Grade 3A, into the middle third—Grade 3B and into the distal third—Grade 3C. Seventy-five axial CT images of Neurofibromatosis Type 1 patients in the paediatric age group were reviewed by a radiologist and a spinal surgeon independently to assess interobserver and intraobserver agreement of the novel CT classification. Agreement analysis was performed using the weighted Kappa statistic. Results. There was substantial interobserver correlation with mean Kappa score (k = 0.8, 95% CI 0.7–0.9) and near perfect intraobserver Kappa of 1.0 (95% CI 0.9–1.0) and 0.9 (95% CI 0.9–1.0) for the two readers. Conclusion. The novel CT-based classification quantifies rib head penetration which aids in management planning


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_12 | Pages 62 - 62
23 Jun 2023
Inaba Y Tezuka T Choe H Ike H
Full Access

Rotational acetabular osteotomy (RAO), one of periacetabular osteotomies, is an effective joint-preserving surgical treatment for developmental dysplasia of the hip. Since 2013, we have been using a CT-based navigation for RAO to perform safe and accurate osteotomy. CT-based navigation allows precise osteotomy during surgery but cannot track the bony fragment after osteotomy. Thus, it is an issue to achieve successful reorientation in accordance with preoperative planning. In this presentation, we introduce a new method to achieve reorientation and evaluate its accuracy. Thirty joints in which CT-based navigated RAO was performed were included in this study. For the first 20 joints, reorientation was confirmed by tracing the lateral aspect of rotated fragment with navigation and checked if it matched with the preoperative planning. For the latter 10 joints, a new method was adopted. Four fiducial points were made on lateral side of the acetabulum in the preoperative 3-dimensional model and intraoperatively, rotation of the osteotomized bone was performed so that the 4 fiducial points match the preoperative plan. To assess the accuracy of position of rotated fragment in each group, preoperative planning and postoperative CT were compared. A total of 24 radial reformat images of postoperative CT were obtained at a half-hour interval following the clockface system around the acetabulum. In every radial image, femoral head coverage of actual postop- and planned were measured to evaluate the accuracy of acetabular fragment repositioning. The 4-fiducial method significantly reduced the reorientation error. Especially in the 12:00 to 1:00 position of the acetabulum, there were significantly fewer errors (p<0.01) and fewer cases with under-correction of the lateral acetabular coverage. With the new method with 4 reference fiducials, reorientation of the acetabulum could be obtained as planned with lesser errors


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_1 | Pages 29 - 29
1 Feb 2020
Abe I Shirai C
Full Access

Background. Accurate acetabular cup positioning is considered to be essential to prevent postoperative dislocation and improve the long-term outcome of total hip arthroplasty (THA). Recently various devices such as navigation systems and patient-specific guides have been used to ensure the accuracy of acetabular cup positioning. Objectives. The present study evaluated the usefulness of CT-based three-dimensional THA preoperative planning for acetabular cup positioning. Methods. This study included 120 hips aged mean 68.3 years, who underwent primary THA using CT-based THA preoperative planning software ZedHip® (LEXI, Tokyo Japan) and postoperative CT imaging (Fig.1). The surgical approach adopted the modified Watson-Jones approach in the lateral decubitus position and Trident HA acetabular cups were used for all cases. Preoperatively the optimum cup size and position in the acetabular were decided using the ZedHip® software, taking into consideration femoral anteversion and to achieve the maximum range of motion in dynamic motion simulation. Radiographic inclination (RI) was selected in the range between 40°∼45° and radiographic anteversion (RA) in the range between 5°∼25°. Three-dimensional planning images of the cup positioning were obtained from the ZedHip® software, and the distances between the edge of the implant and anatomical landmarks such as the edge of the anterior or superior acetabular wall were measured on the three-dimensional images and recorded (Fig.2). Intraoperatively, the RI and RA were confirmed by reference to these distances and the acetabular cup was inserted. Relative positional information of the implant was extracted from postoperative CT imaging using the ZedHip® software and used to reproduce the position of the implant on preoperative CT imaging with the software image matching function. The difference between the preoperative planning and the actual implant position was measured to assess the accuracy of acetabular cup positioning using the ZedHip® software. Results. Actual cup size corresponded with that of preoperative planning in 95% of cases (114 hips). Postoperative mean RI was 42.3° ± 4.2° (95% confidence interval (CI), 41.5° ∼ 43.0°) and mean RA was 16.1° ± 5.9° (95%CI, 15.0° ∼ 17.1°). Deviation from the target RI was 4.2° ± 3.7° (95%CI, 3.5° ∼ 4.9°) and deviation from the target RA was 4.0° ± 3.6° (95%CI, 3.4° ∼ 4.7°). Overall 116 hips (96.7%) were within the RI safe zone (30° ∼ 50°) and 108 hips (90.0%) were within the RA safe zone (5° ∼ 25°), and 105 hips (87.5%) were within both the RI and RA safe zones (Fig.3). Mean cup shift from preoperative planning was 0.0mm ± 3.0mm to the cranial side in the cranio-caudal direction, 2.1mm ± 3.0mm to the anterior side in the antero-posterior direction, and 1.7mm ± 2.1mm to the lateral side in the medio-lateral direction. Conclusion. The accuracy of acetabular cup positioning using our method of CT-based three-dimensional THA preoperative planning was slightly inferior to reported values for CT-based navigation, but obviously superior to those without navigation and similar to those with portable navigation. CT-based three-dimensional THA preoperative planning is effective for acetabular cup positioning, and has better cost performance than expensive CT-based navigation. For any figures or tables, please contact the authors directly


The Bone & Joint Journal
Vol. 98-B, Issue 6 | Pages 786 - 792
1 Jun 2016
Schotanus MGM Sollie R van Haaren EH Hendrickx RPM Jansen EJP Kort NP

Aims. This prospective randomised controlled trial was designed to evaluate the outcome of both the MRI- and CT-based patient-specific matched guides (PSG) from the same manufacturer. Patients and Methods. A total of 137 knees in 137 patients (50 men, 87 women) were included, 67 in the MRI- and 70 in the CT-based PSG group. Their mean age was 68.4 years (47.0 to 88.9). Outcome was expressed as the biomechanical limb alignment (centre hip-knee-ankle: HKA-axis) achieved post-operatively, the position of the individual components within 3° of the pre-operatively planned alignment, correct planned implant size and operative data (e.g. operating time and blood loss). Results. The patient demographics (e.g. age, body mass index), correct planned implant size and operative data were not significantly different between the two groups. The proportion of outliers in the coronal and sagittal plane ranged from 0% to 21% in both groups. Only the number of outliers for the posterior slope of the tibial component showed a significant difference (p = 0.004) with more outliers in the CT group (n = 9, 13%) than in the MRI group (0%). . Conclusion. The post-operative HKA-axis was comparable in the MRI- and CT-based PSGs, but there were significantly more outliers for the posterior slope in the CT-based PSGs. Take home message: Alignment with MRI-based PSG is at least as good as, if not better, than that of the CT-based PSG, and is the preferred imaging modality when performing TKA with use of PSG. Cite this article: Bone Joint J 2016;98-B:786–92


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_12 | Pages 57 - 57
23 Jun 2023
Konishi T Sato T Motomura G Hamai S Kawahara S Hara D Utsunomiya T Nakashima Y
Full Access

Accurate cup placement in total hip arthroplasty (THA) for the patients with developmental dysplasia of the hip (DDH) is one of the challenges due to distinctive bone deformity. Robotic-arm assisted system have been developed to improve the accuracy of implant placement. This study aimed to compare the accuracy of robotic-arm assisted (Robo-THA), CT-based navigated (Navi-THA), and manual (M-THA) cup position and orientation in THA for DDH. A total of 285 patients (335 hips) including 202 M-THAs, 45 Navi-THAs, and 88 Robo-THA were analyzed. The choice of procedure followed the patient's preferences. Horizontal and vertical center of rotation (HCOR and VCOR) were measured for cup position, and radiographic inclination (RI) and anteversion (RA) were measured for cup orientation. The propensity score-matching was performed among three groups to compare the absolute error from the preoperative target position and angle. Navi-THA showed significantly smaller absolute errors than M-THA in RI (3.6° and 5.4°) and RA (3.8° and 6.0°), however, there were no significant differences between them in HCOR (2.5 mm and 3.0 mm) or VCOR (2.2 mm and 2.6 mm). In contrast, Robo-THA showed significantly smaller absolute errors of cup position than both M-THA and Navi-THA (HCOR: 1.7 mm and 2.9 mm, vs. M-THA, 1.6 mm and 2.5 mm vs. Navi-THA, VCOR:1.7 mm and 2.4 mm, vs. M-THA, 1.4 mm and 2.2 mm vs. Navi-THA). Robo-THA also showed significantly smaller absolute errors of cup orientation than both M-THA and Navi-THA (RI: 1.4° and 5.7°, vs. M-THA, 1.5° and 3.6°, vs. Navi-THA, RA: 1.9° and 5.8° vs. M-THA, 2.1° and 3.8° vs. Navi-THA). Robotic-arm assisted system showed more accurate cup position and orientation compared to manual and CT-based navigation in THA for DDH. CT-based navigation increased the accuracy of cup orientation compared to manual procedures, but not cup position


The Bone & Joint Journal
Vol. 104-B, Issue 10 | Pages 1180 - 1188
1 Oct 2022
Qu H Mou H Wang K Tao H Huang X Yan X Lin N Ye Z

Aims. Dislocation of the hip remains a major complication after periacetabular tumour resection and endoprosthetic reconstruction. The position of the acetabular component is an important modifiable factor for surgeons in determining the risk of postoperative dislocation. We investigated the significance of horizontal, vertical, and sagittal displacement of the hip centre of rotation (COR) on postoperative dislocation using a CT-based 3D model, as well as other potential risk factors for dislocation. Methods. A total of 122 patients who underwent reconstruction following resection of periacetabular tumour between January 2011 and January 2020 were studied. The risk factors for dislocation were investigated with univariate and multivariate logistic regression analysis on patient-specific, resection-specific, and reconstruction-specific variables. Results. The dislocation rate was 13.9% (n = 17). The hip COR was found to be significantly shifted anteriorly and inferiorly in most patients in the dislocation group compared with the non-dislocation group. Three independent risk factors were found to be related to dislocation: resection of gluteus medius (odds ratio (OR) 3.68 (95% confidence interval (CI) 1.24 to 19.70); p = 0.039), vertical shift of COR > 18 mm (OR 24.8 (95% CI 6.23 to 128.00); p = 0.001), and sagittal shift of COR > 20 mm (OR 6.22 (95% CI 1.33 to 32.2); p = 0.026). Conclusion. Among the 17 patients who dislocated, 70.3% (n = 12) were anterior dislocations. Three independent risk factors were identified, suggesting the importance of proper restoration of the COR and the role of the gluteus medius in maintaining hip joint stability. Cite this article: Bone Joint J 2022;104-B(10):1180–1188


The Bone & Joint Journal
Vol. 103-B, Issue 9 | Pages 1497 - 1504
1 Sep 2021
Rotman D Ariel G Rojas Lievano J Schermann H Trabelsi N Salai M Yosibash Z Sternheim A

Aims. Type 2 diabetes mellitus (T2DM) impairs bone strength and is a significant risk factor for hip fracture, yet currently there is no reliable tool to assess this risk. Most risk stratification methods rely on bone mineral density, which is not impaired by diabetes, rendering current tests ineffective. CT-based finite element analysis (CTFEA) calculates the mechanical response of bone to load and uses the yield strain, which is reduced in T2DM patients, to measure bone strength. The purpose of this feasibility study was to examine whether CTFEA could be used to assess the hip fracture risk for T2DM patients. Methods. A retrospective cohort study was undertaken using autonomous CTFEA performed on existing abdominal or pelvic CT data comparing two groups of T2DM patients: a study group of 27 patients who had sustained a hip fracture within the year following the CT scan and a control group of 24 patients who did not have a hip fracture within one year. The main outcome of the CTFEA is a novel measure of hip bone strength termed the Hip Strength Score (HSS). Results. The HSS was significantly lower in the study group (1.76 (SD 0.46)) than in the control group (2.31 (SD 0.74); p = 0.002). A multivariate model showed the odds of having a hip fracture were 17 times greater in patients who had an HSS ≤ 2.2. The CTFEA has a sensitivity of 89%, a specificity of 76%, and an area under the curve of 0.90. Conclusion. This preliminary study demonstrates the feasibility of using a CTFEA-based bone strength parameter to assess hip fracture risk in a population of T2DM patients. Cite this article: Bone Joint J 2021;103-B(9):1497–1504


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_10 | Pages 16 - 16
1 Aug 2021
Gupta V Thomas C Parsons H Metcalfe A Foguet P King R
Full Access

Total hip arthroplasty (THA) is one of the most successful surgical procedures of modern times, however debate continues as to the optimal orientation of the acetabular component and how to reliably achieve this. We hypothesised that functional CT-based planning with patient specific instruments using the Corin Optimised Positioning System (OPS) would provide more accurate component alignment than the conventional freehand technique using 2D templating. A pragmatic single-centre, patient-assessor blinded, randomised control trial of patients undergoing THA was performed. 54 patients (age 18–70) were recruited to either OPS THA or conventional THA. All patients received a cementless acetabular component. Patients in both arms underwent pre- and post-operative CT scans, and four functional x-rays (standing and seated). Patients in the OPS group had a 3D surgical plan and bespoke guides made. Patients in the conventional group had a surgical plan based on 2D templating x-rays, and the pre-operative target acetabular orientation was recorded by the surgeon. The primary outcome measure was the difference between planned and achieved acetabular anteversion and was determined by post-operative CT scan performed at 6 weeks. Secondary outcome measures included Hip disability and Osteoarthritis Outcome Score (HOOS), Oxford Hip Score (OHS), EQ-5D and adverse events. In the OPS group, the achieved acetabular anteversion was within 10° of the plan in 96% of cases, compared with only 76% of cases in the conventional group. For acetabular inclination, the achieved position in the OPS group was within 10° of the plan in 96% of cases, compared with in only 84% of cases in the conventional group. These differences were not statistically significant. The clinical outcomes were comparable between the two groups. Large errors in acetabular orientation appear to be reduced when functional CT-based planning and patient-specific instruments are used compared to the freehand technique, but no statistically significant differences were seen in the difference between planned and achieved angles. Larger studies are needed to analyse this in more detail and to determine whether the reduced numbers of outliers lead to improved clinical outcomes


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_3 | Pages 140 - 140
1 Feb 2017
Goldberg T Torres A Bush J
Full Access

Introduction. Total Knee Arthroplasty (TKA) is highly successful in treatment of end-stage degenerative arthritis of the knee. CT-based Patient-Specific Instrumentation (PSI) utilizes a CT scan of the lower extremity to create a three-dimensional model of the patient's anatomy, plan the surgery, and provide unique patient-specific resection blocks for the surgery. There are few published studies utilizing CT-PSI. The present study prospectively evaluates clinical, operative, and radiographic outcomes from 100 CT-based TKAs using this technology (MyKnee®, Medacta International S.A., Castel San Pietro, Switzerland). Materials and Methods. 100 consecutive eligible knees (94 patients) of the senior author underwent TKA using CT-based PSI technology. The primary outcome of the study was to compare the planned pre-operative femoral and proximal tibial resections to the actual intra-operative measured resections. Clinical outcomes included pre- and post-operative Knee Society Scores, Range-of-Motion (ROM, measured by goniometer), and complication data. Pre- and 6-week post-operative long-leg standing radiographs were obtained to assess HKA alignment. The femoral component angle (FCA) in the coronal plane, the tibial component angle (TCA), and posterior slope of the tibia were also assessed. Additionally, 10 patients were selected at random to undergo a post-operative CT scan for comparison to radiographic measurements. Results. 94 patients were enrolled representing 51 left and 49 right TKAs. Average follow up was 3.9 years (range 3.5 – 4.4 years). Average Knee Society Score (KSS) improved from 44.3 to 81.8 while KSS Function Score improved from 59.1 to 81.8 at 1 year. ROM arc of the patients was 110.5 (range 0–130) pre-operatively and was 111.3 (range 0–130) post-operatively. Two patients had a post-operative infection requiring surgical intervention. There were no thromboembolic complications and no revisions in study patients. No patient required a manipulation under anesthesia for post-operative stiffness. No intraoperative complications occurred nor were there any cases of abandoning the PSI blocks for standard technique. The actual bony resections achieved during surgery were strongly correlated to the planned resections of all 6 bone fragments measured. Each achieved statistical significance (p<0.001). Average post-operative alignment was 179.36° (range 175°–186°). Alignment was 180 ± 3° in 94% of patients post-operatively. Ten patients underwent a post-operative CT scan for HKA verification. The average post-operative HKA was 179.9° (range, 176.9°–180.9°) with a standard deviation of 1.31°. When comparing our pre-operative alignment by x-ray vs. CT, we found only 0.09° (p<0.001) average difference between them. Post-operatively, we continued to show very similar results showing x-ray HKA measurement of 180.1° vs. CT measurement of 179.9° (p<0.001). Discussion. The pre-operative CT reconstruction can accurately predict the intra-operative resection depths as demonstrated here. All 6 bony resections measured to within 1mm of the predicted value in the aggregate of our series. The restoration of mechanical axis to 179.9° as measured by CT scans demonstrates the efficacy of the blocks. Conclusion. The present study demonstrates efficacy in the use of CT-based PSI - showing that the planning can accurately predict bony resections, be used safely, and achieve precise radiographic outcomes. Consequently, we routinely support the use of CT-based PSI in TKA


Introduction. Robotic-assisted hip arthroplasty helps acetabular preparation and implantation with the assistance of a robotic arm. A computed tomography (CT)-based navigation system is also helpful for acetabular preparation and implantation, however, there is no report to compare these methods. The purpose of this study is to compare the acetabular cup position between the assistance of the robotic arm and the CT-based navigation system in total hip arthroplasty for patients with osteoarthritis secondary to developmental dysplasia of the hip. Methods. We studied 31 hips of 28 patients who underwent the robotic-assisted hip arthroplasty (MAKO group) between August 2018 and March 2019 and 119 hips of 112 patients who received THA under CT-based navigation (CT-navi group) between September 2015 and November 2018. The preoperative diagnosis of all patients was osteoarthritis secondary to developmental dysplasia of the hip. They received the same cementless cup (Trident, Stryker). Robotic-assisted hip arthroplasty were performed by four surgeons while THA under CT-based navigation were performed by single senior surgeon. Target angle was 40 degree of radiological cup inclination (RI) and 15 degree of radiological cup anteversion (RA) in all patients. Propensity score matching was used to match the patients by gender, age, weight, height, BMI, and surgical approach in the two groups and 30 patients in each group were included in this study. Postoperative cup position was assessed using postoperative anterior-posterior pelvic radiograph by the Lewinnek's methods. The differences between target and postoperative cup position were investigated. Results. The acetabular cup position of all cases in both Mako and CT-navi group within Lewinnek's safe zone (RI: 40±10 degree; RA: 15±10 degree) in group were within this zone. Three was no significant difference of RI between Mako and CT-navi group (40.0 ± 2.1 degree vs 39.7± 3.6 degree). RA was 15.0 ± 1.2 degree and 17.0 ± 1.9 degree in MAKO group and in CT-navi group, respectively, with significant difference (p<0.001). The differences of RA between target and postoperative angle were smaller in MAKO group than CT-navi group (0.60± 1.05 degree vs 2.34± 1.40 degree, p<0.001). The difference or RI in MAKO group was smaller than in CT-navi, however, there was no significance between them (1.67± 1.27 degree vs 2.39± 2.68 degree, p=0.197). Conclusions. Both the assistance of the robotic arm and the CT-based navigation system were helpful to achieve the acetabular cup implantation, however, MAKO system achieved more accurate acetabular cup implantation than CT-based navigation system in total hip arthroplasty for the patients with OA secondary to DDH. Longer follow-up is necessary to investigate the clinical outcome


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_34 | Pages 365 - 365
1 Dec 2013
Kaneko H Hoshino Y Saito Y Tsuji T Tsukimura Y Abe H Chiba K
Full Access

Introduction:. Since2007, we have used CT-based fluoroscopy-matching navigation system (Vector Vision Hip Ver.3.5.2, BrainLAB, Germany) in revision total hip arthroplasty. This system completes the registration procedure semi-automatically by matching the contours of fluoroscopic images and touching 3 adequate points to the contours of 3D bone model created in the computer. Registration procedure using fluoroscopic figures has finished before making surgical incision. It needs no elongation time during the operation. The objective of this study was to evaluate the accuracy of CT-based fluoroscopy-matching navigation system in revision THA. Material and method:. We analysed the acetabular cup in consecutive 33 hips with both intra-operative and post-operative alignment data (based on navigation system and CT evaluation) We further compared these measurements with results from primary THA. Data for primary THA were therefore obtained from 40 consecutive patients who underwent primary THA between August 2007 and May 2013 using the same navigation system by postero-lateral approach. We aimed the cup angle for Revision THA as following, the inclination: 40 degrees, the anteversion: 20 degrees Anteversion on the navigation system must be adjusted by the pelvic tilt. Results:. There was one dislocation in 33 Revision THAs. There was no other obvious complication (nerve palsy, VTE and Infection). The all cup alignments were within 7 degrees from the preoperative orientation. In the Revision THA group the differences between the intra- and post-operative measurement of cup inclination were 2.3 ± 1.9 degrees. The differences of cup anteversion were 2.7 ± 2.5 degrees. In the primary THA group, the differences between the intra- and post-operative measurement of cup inclination were 1.9 ± 2.1 degrees. The differences of cup anteversion were 2.1 ± 2.5 degrees. There was no significant difference with two groups. Discussion:. CT-based navigation THA is very useful for severe deformity of hip osteoarthritis. We had used CT-based navigation system (landmark matching) since 2003. It needs some technical skills to improve the accuracy of landmark matching. The registration with CT-based fluoroscopy-matching navigation system is much easier and more simple than with landmark matching navigation system. CT images of revision patients included metal artifacts caused by implants. However this system is not so affected by metal artifacts. And we found this system provided high accuracy even in revision THA


The Journal of Bone & Joint Surgery British Volume
Vol. 90-B, Issue 8 | Pages 1025 - 1031
1 Aug 2008
Mizu-uchi H Matsuda S Miura H Okazaki K Akasaki Y Iwamoto Y

We compared the alignment of 39 total knee replacements implanted using the conventional alignment guide system with 37 implanted using a CT-based navigation system, performed by a single surgeon. The knees were evaluated using full-length weight-bearing anteroposterior radiographs, lateral radiographs and CT scans. The mean hip-knee-ankle angle, coronal femoral component angle and coronal tibial component angle were 181.8° (174.2° to 188.3°), 88.5° (84.0° to 91.8°) and 89.7° (86.3° to 95.1°), respectively for the conventional group and 180.8° (178.2° to 185.1°), 89.3° (85.8° to 92.0°) and 89.9° (88.0° to 93.0°), respectively for the navigated group. The mean sagittal femoral component angle was 85.5° (80.6° to 92.8°) for the conventional group and 89.6° (85.5° to 94.0°) for the navigated group. The mean rotational femoral and tibial component angles were −0.7° (−8.8° to 9.8°) and −3.3° (−16.8° to 5.8°) for the conventional group and −0.6° (−3.5° to 3.0°) and 0.3° (−5.3° to 7.7°) for the navigated group. The ideal angles of all alignments in the navigated group were obtained at significantly higher rates than in the conventional group. Our results demonstrated significant improvements in component positioning with a CT-based navigation system, especially with respect to rotational alignment


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_4 | Pages 106 - 106
1 Feb 2017
Le D Smith K Mitchell R
Full Access

Introduction. Orientation of the acetabular component in total hip arthroplasty has been shown to influence component wear, stability, and impingement. Freehand placement of the component can lead to widely variable radiographic outcomes. Accurate abduction, in particular, can be difficult in the lateral decubitus position due to limited ability to appreciate and control positional obliquity of the pelvis. A CT-based mechanical navigation device has been shown to decrease cup placement error. This is an independent report of a single-surgeon's radiographic results using the device to control cup abduction. Patients and Methods. Sixty-four (64) consecutive elective THRs in 58 patients were performed via a supercapsular percutaneously-assisted (SuperPATH) surgical approach. Intraoperatively, the acetabular components were aligned with the aid of the CT-based mechanical navigation device (HipXpert; Surgical Planning Associates, Medford, MA). The cup orientation was then further adjusted to ensure that the anterior rim of the acetabular component was not prominent to avoid psoas impingement. Postoperatively, radiographic abduction was measured on standing postoperative radiographs. Results. Measured on standing postoperative radiographs, the cup radiographic abduction angle averaged 42.7° with a standard deviation of ± 3.9° and a range of 35° to 51°. Conclusions. Total hip arthroplasty using a CT-based navigation device as a guide for abduction led to cup implantation within a very narrow abduction range. This navigation device deserves more widespread interest and study, as acetabular component malposition remains a major concern in THR


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_13 | Pages 11 - 11
1 Nov 2019
Mittal S Kumar A Trikha V
Full Access

Introduction. Surgeons fixing scaphoid fractures need to be familiar with its morphological variations and their implications on safe screw placement during fixation of these fractures. Literature has limited data in this regard. The purpose of this CT-based study was to investigate scaphoid morphometry and to analyse the safe trajectories of screw placement in scaphoid. Methods. We measured the coronal and Sagittal widths of scaphoid in CT-scans of 60 patients using CT based data from 50 live subjects with intact scaphoid. Safe placements for screws with diameters of 1.7mm, 2.4mm, 3.5mm and 4mm were studied using trajectories with additional 2mm safety corridor. Results. The mean width of proximal segment in coronal and sagittal plane were 6.39mm (4.5–8.7) and 11.44mm (8.4–14.1) respectively. For the waist region, the mean coronal, sagittal width were 8.03mm (6.3–10.2mm) and 9.02mm (7–11.4mm) respectively. For distal segment, the mean coronal and sagittal width were 10.58mm (8.2–14.6mm) and the 9.59mm (7.3–11.9mm) respectively. The coronal and sagittal widths were significantly different from each other in all three zones. All scaphoid were capable of safely containing single 4mm screw and two parallel 1.7mm screws. Conclusion. Our study shows that there is considerable variation in scaphoid morphometry. Among the parameters, the waist region measurements show the least variation. The screw lengths do not always correlate to the overall longitudinal extent of scaphoid and can be planned preoperatively using CT-scans. Surgeons treating these fractures should opt for a CT-based analysis regarding the screw direction and length and need to be familiar with the variations in scaphoid morphometry


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_3 | Pages 45 - 45
1 Jan 2016
Miyasaka T Kurosaka D Saito M Suzuki H Omori T Marumo K
Full Access

Background. Accuracy of implantation is a recognized prognostic factor for the long-term survival of TKA. The purpose of this study was to analyze the accuracy of component orientation and post-operative alignment of the leg following CT-based navigation-assisted TKA and to compare these parameters with those of a conventional surgical technique. Methods. We retrospectively compared the alignment of 130 total knee arthroplasties performed with a CT-based navigation system with that of 130 arthroplasties done with a conventional alignment guide system. The knee joints were evaluated using full-length weight-bearing antero-posterior and lateral radiographs. Results. The mean hip-knee-ankle angle, the frontal femoral component angle and the frontal tibial component angle were 180.7° (normal angle: 180.0°), 88.8° (90.0°) and 90.6°(90.0°), respectively, for the navigation-assisted arthroplasties and 180.9°(180.0°), 89.8°(90.0°) and 89.3°(90.0°), respectively, for conventional arthroplasties. The mean lateral femoral component angle and the femoral tibial component angle were 0.99° and 89.9°, respectively, for the navigation group and 2.62° and 88.5°, respectively, for the conventional group. All pre-operative leg axes of 10 outliers (HKA<177 or HKA>183) in the navigation group were over 193°, while in the conventional group, 23 outliers’ data were scattered. Conclusions. Our retrospective study with randomly assigned cases (consecutive patients in two separate hospitals) demonstrates significant improvements in component positioning with the CT-based navigation system compared to the conventional alignment guide system. Furthermore, we found that when analyzing cases within each group with pre-operative hip-knee-ankle angles lower and equal 192°, no outliers were found in the navigation group indicating a high level of alignment accuracy in this group. However, in cases with pre-operative hip-knee-ankle angles larger or equal 193°, outliers were found in both groups and no significant difference between the two groups was observed (p = 0.24). A detailed analysis of the outlier cases in the navigation group revealed that the femoral component was placed in the varus position. We thought that pre-operative underestimation of osteophytes of the medial femoral condyle might have led to a lateral shift of the femoral component during its intra-operative placement and was one of the contributing factors causing lower alignment accuracy


Orthopaedic Proceedings
Vol. 93-B, Issue SUPP_IV | Pages 418 - 418
1 Nov 2011
Steppacher S Tannast M Kowal J Zheng G Siebenrock K Murphy S
Full Access

Acetabular component malpositioning increases the risk of impingement, dislocation, and wear. The goal of computer-assisted techniques is to improve the accuracy of component positioning, in particular optimizing the orientation of the acetabular cup. The goal of the current study was to measure accuracy of cup placement in a large clinical series of hips that underwent CT-based computer-assisted THA. 146 hips in 140 patients underwent CT-based computer-assisted THA between 2006 and 2008. In all cases cup orientation was planned according to the individual preoperative CT and the anterior pelvic plane with an inclination of 41° and anteversion of 30°. For the procedure, all patients were placed in the lateral position and the cup was implanted using angled instruments. Intra-operatively all cases were navigated using an optoelec-tronic camera and tracked instruments (Vector Vision prototype, BrainLab, Germany). Post-operatively, cup orientation was measured using a previously validated technique of 2D/3D-matching using the preoperative CT and post-operative radiographs. This technique allows for accurate measurement of cup position from plain radiographs corrected for individual pelvic orientation. The mean accuracy for inclination was −2.5° ± 4.0° (−12° – 10°) and for anteversion it was 0.7° ± 5.3° (−11° – 15°). In 2 hips (1.4%) a deviation of more then 10° in inclination and in 4 hips (2.7%) a deviation of more then 10° in anteversion were found. The current study demonstrates that the acetabular component can routinely be implanted with the assistance of CT-based navigation with reasonable agreement between the navigation measurements of component orientation at the time of surgery. Nonetheless, outliers still occasionally occur. These might be due to unrecognized loosening of the pelvic reference base, inaccurate registration or the use of the ipsilateral surface-based registration algorithms which rely heavily on points near the center of rotation of the hip


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_13 | Pages 119 - 119
1 Nov 2021
Facchini A Troiano E Saviori M Meglio MD Ghezzi R Mondanelli N Giannotti S
Full Access

Introduction and Objective. The aim of this study was to evaluate whether CT-based pre-operative planning, integrated with intra-operative navigation could improve glenoid baseplate fixation and positioning by increasing screw length, reducing number of screws required to obtain fixation and increasing the use of augmented baseplate to gain the desired positioning. Reverse total shoulder arthroplasty (RSA) successfully restores shoulder function in different conditions. Glenoid baseplate fixation and positioning seem to be the most important factors influencing RSA survival. When scapular anatomy is distorted (primitive or secondary), optimal baseplate positioning and secure screw purchase can be challenging. Materials and Methods. Twenty patients who underwent navigated RSA (oct 2018 and feb 2019) were compared retrospectively with twenty patients operated on with a conventional technique. All the procedures were performed by the same surgeon, using the same implant in cases of eccentric osteoarthritis or complete cuff tear. Exclusion criteria were: other diagnosis as proximal humeral fractures, post-traumatic OA previously treated operatively with hardware retention, revision shoulder arthroplasty. Results. The NAV procedure required mean 11 (range 7–16) minutes more to performed than the conventional procedure. Mean screw length was significantly longer in the navigation group (35.5+4.4 mm vs 29.9+3.6 mm; p . .001). Significant higher rate of optimal fixation using 2 screws only (17 vs 3 cases, p . .019) and higher rate of augmented baseplate usage (13 vs 4 cases, p . .009) was also present in the navigation group. Signficant difference there is all in function outcomes, DASH score is 15.7 vs 29.4 and constant scale 78.1 vs 69.8. Conclusions. The glenoid component positioning in RSA is crucial to prevent failure, loosening and biomechanical mismatch, coverage by the baseplate of the glenoid surface, version, inclination and offset are all essential for implant survival. This study showed how useful 3D CT-based planning helps in identifying the best position of the metaglena and the usefulness of receiving directly in the operation theater real-time feedback on the change in position. This study shows promising results, suggesting that improved baseplate and screw positioning and fixation is possible when computer-assisted implantation is used in RSA comparing to a conventional procedure


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_15 | Pages 89 - 89
1 Mar 2013
Kaneko H Hoshino Y Saito Y Utajima D Tsuji T Tsukimura Y Abe H Chiba K
Full Access

Introduction. Since2007, we have used CT-based fluoroscopy-matching navigation system (Vector Vision Hip Ver.3.5.2, BrainLAB, Germany) in Total hip arthroplasty. This system completes the registration procedure semi-automatically by matching the contours of fluoroscopic images and touching 3 adequate points to the contours of 3D bone model created in the computer. Registration procedure using fluoroscopic figures has finished before making surgical incision. It needs no elongation time during the operation. The accuracy of navigation system depends on the techniques of registration used for the navigation and secure fixation of the dynamic reference markers. These could be affected by the different type of approaches. The objective of this study was to evaluate the accuracy of CT-based fluoroscopy-matching navigation system in THA and compare the cup position by anterolateral and posteolateral approaches. Material and method. We analysed the acetabular cup in consecutive 132 hips with both intra-operative and post-operative alignment data (based on navigation system and CT evaluation), including 65 cases with anterolateral approach(Modified Watson Jones) (Group AL) and 67 cases with posterolateral approach(Group PL). We aimed the cup angle for THA as following, the inclination: 40 degrees, the anteversion: 20 degrees. Anteversion on the navigation system must be adjusted by the pelvic tilt. Results. The average of the operative time were 84.8 ± 13.5 in group AL and 89.3 ± 15.1 minutes in group PL. There was one dislocation in group AL. There was no other obvious complication (nerve palsy, VTE and Infection) in these two groups. The all cup alignments were within 8 degrees from the preoperative orientation. The differences between the intra- and post-operative measurement of cup inclination were 1.9 ± 1.6 degrees in group AL and 2.1 ± 1.1 degrees in group PL(N.S.). The differences between the intra- and post-operative measurement of cup anteversion were 2.3 ± 1.4 degrees in group AL and 2.2 ± 1.3 degrees in group PL (N.S.). Discussion. CT-based navigation THA is very useful for severe deformity of hip osteoarthritis. We had used CT-based navigation system(landmark matching) since 2003. It needs some technical skills to improve the accuracy of landmark matching. The registration with CT-based fluoroscopy-matching navigation system is much easier and more simple than with landmark matching navigation system. And we found this system provided high accuracy even in severe deformity cases. There was no significant difference with anterolateral and posterolateral approaches by using CT-based fluoroscopy-matching navigation system


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_6 | Pages 21 - 21
2 May 2024
Palit A Kiraci E Seemala V Gupta V Williams M King R
Full Access

Ideally the hip arthroplasty should not be subject to bony or prosthetic impingement, in order to minimise complications and optimise outcomes. Modern 3d planning permits pre-operative simulation of the movements of the planned hip arthroplasty to check for such impingement. For this to be meaningful, however, it is necessary to know the range of movement (ROM) that should be simulated. Arbitrary “normal” values for hip ROM are of limited value in such simulations: it is well known that hip ROM is individualised for each patient. We have therefore developed a method to determine this individualised ROM using CT scans. CT scans were performed on 14 cadaveric hips, and the images were segmented to create 3d virtual models. Using Matlab software, each virtual hip was moved in all potential directions to the point of bony impingement, thus defining an individualised impingement-free 3d ROM envelope. This was then compared with the actual ROM as directly measured from each cadaver using a high-resolution motion capture system. For each hip, the ROM envelope free of bony impingement could be described from the CT and represented as a 3d shape. As expected, the directly measured ROM from the cadaver study for each hip was smaller than the CT-based prediction, owing to the presence of constraining soft tissues. However, for movements associated with hip dislocation (such as flexion with internal rotation), the cadaver measurements matched the CT prediction, to within 10°. It is possible to determine an individual's range of clinically important hip movements from a CT scan. This method could therefore be used to create truly personalised movement simulation as part of pre-operative 3d surgical planning


Accurate evaluation of lower limb coronal alignment is essential for effective pre-operative planning of knee arthroplasty. Weightbearing hip-knee-ankle (HKA) radiographs are considered the gold standard. Mako SmartRobotics uses CT-based navigation to provide intra-operative data on lower limb coronal alignment during robotic assisted knee arthroplasty. This study aimed to compare the correlation between the two methods in assessing coronal plane alignment. Patients undergoing Mako partial (PKA) or total knee arthroplasty (TKA) were identified from our hospital database. The hospital PACS system was used to measure pre-operative coronal plane alignment on HKA radiographs. This data was correlated to the intraoperative deformity assessment during Mako PKA and TKA surgery. 443 consecutive Mako knee arthroplasties were performed between November 2019 and December 2021. Weightbearing HKA radiographs were done in 56% of cases. Data for intraoperative coronal plane alignment was available for 414 patients. 378 knees were aligned in varus, and 36 in valgus. Mean varus deformity was 7.46° (SD 3.89) on HKA vs 7.13° (SD 3.56) on Mako intraoperative assessment, with a moderate correlation (R= 0.50, p<0.0001). Intraoperative varus deformity of 0-4° correlated to HKA measured varus (within 3°) in 60% of cases, compared to 28% for 5-9°, 17% for 10-14°, and in no cases with >15° deformity. Mean valgus deformity was 6.44° (SD 4.68) on HKA vs 4.75° (SD 3.79) for Mako, with poor correlation (R=0.18, p=0.38). In this series, the correlation between weightbearing HKA radiographs and intraoperative alignment assessment using Mako SmartRobotics appears to be poor, with greater deformities having poorer correlation


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_16 | Pages 9 - 9
1 Oct 2014
Tomita T Futai K Iwamoto K Kii Y Kiyotomo D Murase T Yoshikawa H Sugamoto K
Full Access

Patella resection has been the least controlled element of total knee arthroplasty (TKA). We have developed an intraoperative guide system involving a custom-made surgical template designed on the basis of a three-dimensional computer simulation incorporating computed tomography (CT) data for several years. This time we have applied this intraoperative guide system for the patella resection in TKA. We investigated the accuracy of CT-based patient-specific templating (PST) for patella resection using cadaveric knee joints in vitro. To plan the corrective patella resection, we attempted to simulate a three-dimensional patella resection with the use of computer models of the patella. From CT images of the patella we obtained three-dimensional surface models of the patella by performing a three-dimensional surface generation of the bone cortex. After the patella resection using CT-based custom-made surgical templating instrumentation, CT scan was performed again and we compared the patella shape in three-dimensional patella bone model reconstructed from pre and after cut from CT data. We compared the accuracy of patella cut using three-dimensional patella bone model reconstructed from pre and after cut from CT data. Statistical analysis was performed using paired t test. The difference between patella cut with CT-based custom-made surgical templating instrumentation and pre-operative planning were 0.8±1.2mm (medial side) and 0.1±1.4mm (lateral side). More than 60% resulted within 2mm from the pre-operative planning. There were significant differences both in flexion/extension, external/internal rotation and bone cut depth between CT-based custom-made surgical templating instrumentation and conventional instrument. The results in this study demonstrated the usefulness of CT-based custom-made surgical templating instrumentation for patella resection in TKA


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_3 | Pages 124 - 124
1 Feb 2017
Fujii Y Fujiwara K Endou H Tetsunaga T Miyake T Yamada K Ozaki T Abe N Sugita N Mitsuishi M Takayuki I Nakashima Y
Full Access

Introduction. CT-based navigation system in total hip arthroplasty (THA) is widely used to achieve accurate implant placement. Now, we developed our own CT-based navigation system originally, and since then we have been conducting various analysis in order to use the system more effectively. We compared the accuracy of registration with this navigation system and land mark matching type navigation system. In this study, we evaluated the influence of the surgical approach to the accuracy of registration. Methods. Between June 2015 and February 2016, 28 consecutive uncemented THAs were performed in 26 patients. The preoperative diagnosis was osteoarthritis in 20 hips, osteonecrosis of the femoral hips in 5, and rheumatoid arthritis in 3. The newly developed navigation system was a CT based, surface matching type navigation system. We used newly developed navigation system and commercially available land-mark type CT-based navigation system in the setting of acetabular sockets under the same condition. After we fixed the cementless cup, we measured the cup setting angle of inclination and anteversion on each navigation system. Postoperative assessment was performed using CT one week after the operation, and measured the actual angle of the cup. Approach of operations were performed via posterolateral approach in 14 hips, and Hardinge approach in 14 hips. We calculated the absolute value of the cup angle difference between intra-operative value and post-operative value with each navigation system and compared the accuracy between each navigation system and surgical approach. Results. The mean inclination using the Land-mark type navigation(group L) was 38.3±3.8°, using our navigation system (group S) was 38.7±5.7 °, the mean anteverion on group L was 25.8±5.6°, and group S was 27.3±10.2°. The mean of actual inclination of the implants calculated by postoperative CT was 38.4±7.1°, the mean of actual anteversion was 25.8±8.3°. In comparison with the absolute value of the difference between intra-operative and post-operative date, the mean difference of inclination on group L was 6.5±5.7°, and group L was 3.7±3.1 °, the difference was significant (p<0.05). The mean difference of anteversion of group L was 4.7±4.6 °, group S was 4.0±3.3°. In group L, the mean of absolute value of the difference between intra-operative and post-operative date of inclination via Hardinge approach was 6.0±6.8°, and posterior approach was 7.9±4.5°. In group S, The mean difference of inclination via Hardinge approach was 3.0±1.8°, and posterior approach was 4.5±4.1°. In group L, The mean difference of anteversion of Hardinge approach was 4.2±4.1°, and posterior approach was 5.3±5.3°. In group S, The mean difference of anteversion of Hardinge approach was 3.8±3.5°, and posterior approach was 4.2±3.3°. Discussion. N-navi was superior on inclination of the acetabular socket setting. Considering surgical approach, the accuracy was not good via posterior approach. We should take surface matching points widely around the acetabulum, however, to take points of anterior the acetabulum via posterior approach was difficult because of the femur. It was the reason of decrease the accuracy via posterior approach. We should choose the area of surface matching points according to surgical approach to make the registration more accurate


Orthopaedic Proceedings
Vol. 93-B, Issue SUPP_II | Pages 192 - 192
1 May 2011
Kobayashi A Ishii Y Takeda M Noguchi H Higuchi H
Full Access

Introduction: Preoperative planning is an important part of the total knee arthroplasty(TKA) surgical procedure. In joint arthroplasty, the use of a templating system has been recommended and it is routinely used with most designs. The aim of this study was to compare the accuracy of preoperative templating in TKA between conventional two-dimensional (2D) and computed tomography (CT)-based 3D procedures in order to confirm the necessity of using 3D evaluations for preoperative planning. Method: One-hundred consecutive primary TKAs performed during the period between December 2005 and May 2009 were analyzed. The mean age of the patients was 73.3 years (range, 33 to 90 years). Preoperative templating was performed for each TKA using both conventional 2D radiographs (both anteroposterior and lateral views) which were analyzed by a single senior surgeon. Preoperative CT scans of the knee were performed and a CT-based 3D image model (superimposing the computer aided design model of the implant) was generated using KneeCAS (KneeCAS: Knee Computer-Assisted System) and then was analyzed by a radiology technologist without any knowledge of the 2D procedure. Based on the operation notes, we determined which size implant had been inserted at the time of surgery and used this as the gold standard. The accuracy and reliability were assessed for all measurements of the two different templating procedures (2D and CT-based 3D procedures). The Chi-square test for independence for paired observations was used to analyze the accuracy. The weighted kappa test was used to analyze reliability. Results: 56% of the 2D procedures were found to be an exact match. This increased to 98% for the template sizes within one size above or below that used and 2% were two sizes or more adrift. Otherwise, 59% of the CT-based 3D procedures were an exact match; 98% were within one size and 2% were two sizes or more adrift. The CT-based 3D procedure was slightly more accurate than the 2D procedure. However, the difference was not statistically significant (p = 0.67). The weighted kappa coefficient of the 2D procedure was 0.49 (which indicates a moderate agreement), while that of the CT-based 3D procedure was 0.49 (which indicates a moderate agreement). The results of the weighted kappa coefficients were not statistically significant (p = 0.65). Conclusion: Computer-assisted surgery systems are used often for preoperative planning in TKA. However, our results do not support the superiority of 3D preoperative templating to 2D conventional evaluation in predicting implant size. Thus, 3D templating may not be necessary for preoperative planning in TKA


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_34 | Pages 466 - 466
1 Dec 2013
Olsen M Naudie D Edwards M Sellan M McCalden RW Schemitsch E
Full Access

Introduction:. Alignment of the initial femoral guidewire is critical in avoiding technical errors that may increase the risk of failure of the femoral component. A novel alternative to conventional instrumentation for femoral guidewire insertion is a computed tomography (CT) based alignment guide. The aim of this study was to assess the accuracy of femoral component alignment using a CT-based, patient specific femoral alignment guide. Methods:. Between March 2010 and January 2011, 25 hip resurfacings utilizing a CT-based femoral alignment guide were performed by three surgeons experienced in hip resurfacing. Stem-shaft angle (SSA) accuracy was assessed using minimum 6 week post-operative digital radiographs. A benchside study was also conducted utilizing six pairs of cadaveric femora. Each pair was divided randomly between a group utilizing firstly a conventional lateral pin jig followed by computer navigation and a group utilizing a CT-based custom jig. Guidewire placement accuracy for each alignment method was assessed using AP and lateral radiographs. Results:. In the clinical series, the post-operative SSA differed from the planned SSA by a mean of 1.3° (SD 4.8, range −9–14). The final SSA measured within ± 5° of the planned SSA in 20 of 24 cases (83%). There was no significant difference between surgeons in post-operative SSA accuracy (p = 0.697). In the benchside study, the custom jig (mean error 6.4°, SD 2.9) provided a comparable level of accuracy to that of the conventional jig (mean error 5.5°, SD 3.6, p = 0.851). Guidewire version using the custom jig (mean error 1.0°, SD 0.4) was comparable to computer navigation (mean error 3.9°, SD 2.1, p = 0.101) and was superior to the conventional jig (mean error 5.6°, SD 2.9, p = 0.008). Conclusion:. CT-based, patient specific guidewire alignment jigs provide a satisfactory level of accuracy for alignment of the femoral component. A custom guidewire alignment jig is comparable to computer navigation and may be a better alternative to conventional instrumentation for placement of the initial femoral guidewire in hip resurfacing. Accuracy results of the device approach those previously established for imageless computer navigation in hip resurfacing (1)


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_3 | Pages 125 - 125
1 Feb 2017
Fujiwara K Fujii Y Miyake T Yamada K Tetsunaga T Endou H Ozaki T
Full Access

Objectives. Few reports were shown about the position of the cup in total hip arthroplasty (THA) with CT-based navigation system. We use minimally invasive surgery (MIS) technique when we perform cementless THA and the correct settings of cups are sometimes difficult in MIS. So we use CT-based navigation system for put implants with correct angles and positions. We evaluated the depth of cup which was shown on intra-operative navigation system. Materials and Methods. We treated 30 hips in 29 patients (1 male and 28 females) by navigated THA. 21 osteoarthritis hips, 6 rheumatoid arthritis hips and 3 idiopathic osteonecrosis hips were performed THA with VectorVision Hip navigation system (BrainLAB). Implants were AMS HA cups and PerFix stems (Japan Medical Materials, Osaka). Appropriate angles and positions of cups were decided on the 3D model of pelvis before operation. According to the preoperative planning, we put the implants with navigation system. We correct the pelvic inclination angle and measured the depth of cups with 3D template software. Results. The average distance from the surface of the cup to the edge of medial wall of pelvis was 3.4mm (0.0–8.0mm) on the axial plane which include the center of femoral head on postoperative CT. The average distance from the surface of the cup to the edge of medial wall of pelvis was 6.4mm (1.5–15.0mm) on intraoperative navigation. The average error was 2.9mm (0.0–9.0mm). The cup positions of post operative CT were deeper than that of intraoperative navigation in twenty six hips (86%). Conclusions. The shallow setting of cups caused the instability of cups. Deep setting caused damage of acetabular fossa. The positions of cups on the navigation system tend to be shown shallower than actual positions, so we should take care of deeper setting


Orthopaedic Proceedings
Vol. 87-B, Issue SUPP_III | Pages 281 - 281
1 Sep 2005
Driessen M
Full Access

Image-guided TKR requires a three-dimensional model of the patient, traditionally provided by preoperative CT scans. Recent developments have focused on navigation systems that eliminate the need for preoperative CT scan. This paper aims to assess the comparative accuracy of prosthesis planning using CT-based and CT-free navigation systems. Four half-body cadavers were implanted with fiducial markers, four per limb, to provide accurate registration points. Eight orthopaedic surgeons then proceeded to plan the anatomy on each limb twice, using CT scan. The CT-free planning involved digitalisation of the fiducial markers, followed by attachment of trackers to the femur and tibia. Several kinematic and digitalisation steps were taken to produce a set of anatomical coordinates for each limb. Again each surgeon repeated this procedure twice on each limb. Calculation of reproducibility of the mechanical axis as defined by both methods was thus possible. The overall differences related to varus/valgus placements between the two methods were minor, with a mean of 0.04° (−0.20° to 0.28°) for the femur and 0.19° (−0.009° to 0.39°) for the tibia. The mean angular difference in flexion/extension placement was –0.27° (−0.59° to −0.08°) for the femur and −0.08° (−0.40° to 0.24°) for the tibia. Results for varus/valgus and flexion/extension, as measured by CT-based and CT-free systems, showed a high degree of concordance. There was no observable bias in either system, as shown by the approximately equal spread of data points on either side of the line of equality. The data show a high degree of reproducibility between CT-free navigation systems and CT-based procedures


Bone & Joint Research
Vol. 1, Issue 2 | Pages 13 - 19
1 Feb 2012
Smith MD Baldassarri S Anez-Bustillos L Tseng A Entezari V Zurakowski D Snyder BD Nazarian A

Objectives. This study aims to assess the correlation of CT-based structural rigidity analysis with mechanically determined axial rigidity in normal and metabolically diseased rat bone. Methods. A total of 30 rats were divided equally into normal, ovariectomized, and partially nephrectomized groups. Cortical and trabecular bone segments from each animal underwent micro-CT to assess their average and minimum axial rigidities using structural rigidity analysis. Following imaging, all specimens were subjected to uniaxial compression and assessment of mechanically-derived axial rigidity. Results. The average structural rigidity-based axial rigidity was well correlated with the average mechanically-derived axial rigidity results (R. 2. = 0.74). This correlation improved significantly (p < 0.0001) when the CT-based Structural Rigidity Analysis (CTRA) minimum axial rigidity was correlated to the mechanically-derived minimum axial rigidity results (R. 2. = 0.84). Tests of slopes in the mixed model regression analysis indicated a significantly steeper slope for the average axial rigidity compared with the minimum axial rigidity (p = 0.028) and a significant difference in the intercepts (p = 0.022). The CTRA average and minimum axial rigidities were correlated with the mechanically-derived average and minimum axial rigidities using paired t-test analysis (p = 0.37 and p = 0.18, respectively). Conclusions. In summary, the results of this study suggest that structural rigidity analysis of micro-CT data can be used to accurately and quantitatively measure the axial rigidity of bones with metabolic pathologies in an experimental rat model. It appears that minimum axial rigidity is a better model for measuring bone rigidity than average axial rigidity


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_13 | Pages 18 - 18
1 Nov 2021
Troiano E Facchini A Meglio MD Peri G Aiuto P Mondanelli N Giannotti S
Full Access

Introduction and Objective. In recent years, along with the extending longevity of patients and the increase in their functional demands, the number of annually performed RSA and the incidence of complications are also increasing. When a complication occurs, the patient often needs multiple surgeries to restore the function of the upper limb. Revision implants are directly responsible for the critical reduction of the bone stock, especially in the shoulder. The purpose of this paper is to report the use of allograft bone to restore the bone stock of the glenoid in the treatment of an aseptic glenoid component loosening after a reverse shoulder arthroplasty (RSA). Materials and Methods. An 86-years-old man came to our attention for aseptic glenoid component loosening after RSA. Plain radiographs showed a complete dislocation of the glenoid component with 2 broken screws in the neck of glenoid. CT scans confirmed the severe reduction of the glenoid bone stock and critical bone resorption and were used for the preoperative planning. To our opinion, given the critical bone defect, the only viable option was revision surgery with restoration of bone stock. We planned to use a bone graft harvested from distal bone bank femur as component augmentation. During the revision procedure the baseplate with a long central peg was implanted “on table” on the allograft and an appropriate osteotomy was made to customize the allograft on the glenoid defect according to the CT-based preoperative planning. The Bio-component was implanted with stable screws fixation on residual scapula. We decided not to replace the humeral component since it was stable and showed no signs of mobilization. Results. The new bio-implant was stable, and the patient gained a complete functional recovery of the shoulder. The scheduled radiological assessments up to 12 months showed no signs of bone resorption or mobilization of the glenoid component. Conclusions. The use of bone allograft in revision surgery after a RSA is a versatile and effective technique to treat severe glenoid bone loss and to improve the global stability of the implant. Furthermore, it represents a viable alternative to autologous graft since it requires shorter operative times and reduces graft site complications. There are very few data available regarding the use of allografts and, although the first studies are encouraging, further investigation is needed to determine the biological capabilities of the transplant and its validity in complex revisions after RSA


The Bone & Joint Journal
Vol. 105-B, Issue 9 | Pages 1020 - 1029
1 Sep 2023
Trouwborst NM ten Duis K Banierink H Doornberg JN van Helden SH Hermans E van Lieshout EMM Nijveldt R Tromp T Stirler VMA Verhofstad MHJ de Vries JPPM Wijffels MME Reininga IHF IJpma FFA

Aims

The aim of this study was to investigate the association between fracture displacement and survivorship of the native hip joint without conversion to a total hip arthroplasty (THA), and to determine predictors for conversion to THA in patients treated nonoperatively for acetabular fractures.

Methods

A multicentre cross-sectional study was performed in 170 patients who were treated nonoperatively for an acetabular fracture in three level 1 trauma centres. Using the post-injury diagnostic CT scan, the maximum gap and step-off values in the weightbearing dome were digitally measured by two trauma surgeons. Native hip survival was reported using Kaplan-Meier curves. Predictors for conversion to THA were determined using Cox regression analysis.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXV | Pages 65 - 65
1 Jun 2012
Fujiwara K Endo H Miyake Y Ozaki T Mitani S
Full Access

Objectives. Few reports were shown about the position of the cup in total hip arthroplasty (THA) with CT-based navigation system. We use minimally invasive surgery (MIS) technique when we perform cementless THA and the correct settings of cups are sometimes difficult in MIS. So we use CT-based navigation system for put implants with correct angles and positions. We evaluated the depth of cup which was shown on intra-operative navigation system. Materials and Methods. We treated 30 hips in 29 patients (1 male and 28 females) by navigated THA. 21 osteoarthritis hips, 6 rheumatoid arthritis hips and 3 idiopathic osteonecrosis hips were performed THA with VectorVision Hip 2.5.1 navigation system (BrainLAB). Implants were AMS HA cups and PerFix stems (Japan Medical Materials, Osaka). Appropriate angles and positions of cups were decided on the 3D model of pelvis before operation. According to the preoperative planning, we put the implants with navigation system. We correct the pelvic inclination angle and measured the depth of cups with 3D template software. Results. The average distance from the surface of the cup to the edge of medial wall of pelvis was 3.4mm (0.0-8.0mm) on the axial plane which include the center of femoral head on postoperative CT. The average distance from the surface of the cup to the edge of medial wall of pelvis was 6.4mm (1.5-15.0mm) on intraoperative navigation. The average error was 2.9mm (0.0-9.0mm). The cup positions of post operative CT were deeper than that of intraoperative navigation in twenty six hips (86%). Conclusions. The shallow setting of cups caused the instability of cups. Deep setting caused damage of acetabular fossa. The positions of cups on the navigation system tend to be shown shallower than actual positions, so we should take care of deeper setting


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_1 | Pages 137 - 137
1 Jan 2016
Fujii Y Fujiwara K Endou H Kagawa Y Ozaki T Abe N Sugita N Mitsuishi M Inoue T Nakashima Y
Full Access

Background. CT-based navigation system in total hip arthroplasty(THA) is widely used to achieve accurate implant placement. The purpose of this study was to evaluate the influence of initial error correction according to the differences in the shape of the acetabulum, and correction accuracy associated with operation approach after localization of registration points at anterior or posterior area of the acetabulum. Methods. We set the anterior pelvic plane(APP) as the reference plane, and defined the coordinates as follows: X-axis for external direction, Y-axis for anterior direction, and Z-axis for proximal direction. APP is defined by the anterior superior iliac spines and anterior border of the pubic symphysis. We made a bone model of bilateral acetabular dysplasia of the hip, after rotational acetabulum osteotomy(RAO) on one side, and performed registration using infrared-reflective markers. At first, we registered the initial error on navigation system, and calculated the accuracy of the error correction based on each shape of the acetabulum as we increased the surface matching points. Based on the actual operation approach, we also examined the accuracy of the error correction when concentrating the matching points in anterior or posterior areas of the acetabulum. Results. For the rotational acetabular osteotomy model, the range of possible initial error correction increased as the surface matching points increased on both X-axis and Y-axis: On the X-axis, the range increased from 6mm to 10mm as the surface matching point increased from 10 to 20; and on the Y-axis, the range increased from 2mm to 10mm as the point increased 10 to 50. The range did not increase on the Z-axis. For the acetabular dysplasia model, the range of possible initial error correction increased on the X-axis(the range increased from 2mm to 8mm as the point increased from 10 to 50); however, no increase was observed for the Y- and Z-axis. Furthermore, concentrating the surface matching points in the posterior area around the acetabulum was more effective for the correction of the initial rotational error. Discussion. Because of the different anatomical shapes of the acetabulum, the error directions that were difficult to correct tended to vary between dysplasia and post-RAO. The error correction of Z-axis was difficult on both shapes of the acetabulum. Thus, the careful initial setting on Z-axis is important to minimize the error. Surface matching point on the posterior part of the acetabulum is more effective in correcting the initial rotational error compared with the anterior part of the acetabulum. It was shown that the difference in the error correction was affected by the localization of the registration points around the acetabulum. We presumed that using surface matching points on posterior area of the acetabulum improves the accuracy of the CT-based navigation system on the anterior approach. When using the system, it is important to understand the tendency that the shape of the acetabulum and the localization of the surface matching points have influence on correction of the initial error


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XLIV | Pages 80 - 80
1 Oct 2012
Yanagimoto S Tezuka M Kameyama M Inoue K Nakayama S Komiyama T Okada E Takeda K Fujita Y Funayama A
Full Access

We have used CT-based total hip navigation system from 2003, to set the acetabular socket in optimal position. At first, we had used CT-based land-mark matching system. It needs matching procedure during surgery, touching paired points in surgical exposure. From 2006, we started to use new navigation system, called CT-based fluoroscopy-matching system, which was developed by BrainLAB Company (Vector-vision 2.7.1., 3.5.1.). For this new system, pre-surgical image matching procedure is need. Fluoroscopic images with 2 different directions must be taken in operation room. Then fluoroscopic images and CT reconstructive images were matched in computer with special program. Matching procedure was done before surgical incision. We compared the advantage of these two systems about technical problem, radiation exposure, time need for procedure, and accuracy. And then we discussed how to use these two different systems for THA patients. Accuracy was compared for 241 THA patients using these navigation systems. 152 cases were with CT-based land-mark matching system and 89 patients with CT-based fluoroscopy matching system. Final verification angle of acetabular socket setting in navigation during surgery was recorded for each case. The operative angle, which is referred from Murray, is used to show the socket setting angle (inclination and anteversion) in these navigation systems. Post-operative CT scan was taken to evaluate the actual socket setting angle. The values between verification angle during surgery and post-operative CT measured angle were calculated and compared statistically. Results were followed. New CT-based fluoroscopy matching method (F method): Average setting angle (operative angle) of socket in these 89 cases were 42.9 +/− 5.1 degree in inclination angle, and 28.5 +/− 7.9 degree in anteversion angle. The absolute difference in 89 cases between final verification angle and post-operative CT measurement angle was 2.9 degree (on average) +/− 2.5 degree in inclination angle, and 2.8 degree (on average) +/− 2.6 degree in anteversion angle. Conventional CT-based land-mark matching method (L method): The absolute difference in 152 cases between final verification angle and post-operative CT measurement angle was 4.2 degree (on average) +/− 3.2 degree in inclination angle, and 4.4 degree (on average), +/− 3.7 degree in anteversion angle. Absolute differences of setting angle in fluoroscopy matching groups showed statistically low compared with land-mark matching groups (P<0.01). Technical problems: L method is difficult to learn actual procedure. F method is easy to learn procedure. Image matching was done automatically by computer program. Radiation exposure during surgery: L method needs no additional radiation. F method needs radiation to get 2 fluoroscopic images. Total amount time need for navigation: L method needs extra 10 minutes during surgery in case of skilled-doctor. F method needs extra 20 minutes before starting surgery in case of all kind doctors. The accuracy of acetabular socket setting: Absolute errors in socket setting with theses two systems were within 5 degree together on average. These results showed the usefulness of both systems. Compared the accuracy between these 2 systems, F methods showed high accuracy. The accuracy of F methods is always high. It has no influence with deformity around hip joint, because fluoroscopic image matching was done with lower part of pubic bone, especially around symphysis pubis. For ordinary THA cases with skilled-doctor, CT-based land-mark matching system is useful, because this system is very convenient and needs only extra 10 minutes during surgery. For severe deformed cases with all kind doctors, CT-based fluoroscopy matching system is useful, because this system showed high accuracy even for severe deformed cases. Before surgical incision, fluoroscopic matching procedure has finished. This system needs no extra time after surgery starts


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_28 | Pages 5 - 5
1 Aug 2013
Goldberg T Curry W Bush J
Full Access

The present IRB approved study evaluates the early results of 100 TKAs using CT-based Patient-Specific Instrumentation (PSI) (MyKnee®, Medacta International, SA, Castel San Pietro, Switzerland). For this technique, a CT scan of the lower extremity is obtained, and from these images, the knee is reconstructed 3-dimensionally. Surgical and implant-size planning are performed according to surgeon preference, with the goal to create a neutral mechanical axis. Once planned and approved, the blocks are made. Outcomes measured for the present study include surgical factors such as Tourniquet Time (TT) as a measure of surgical efficiency, the actual intraoperative bony resection thicknesses to be compared to the planned resections from the CT scan, and complication data. Furthermore, pre- and post-operative long standing alignment and Knee Society Scores (KSS) were obtained. During surgery, the PSI cutting block is registered on the femur first and secured with smooth pins. No osteophytes are removed as the blocks use the positive topography of the osteophytes for registration. The distal femoral resection is performed directly through the block. An appropriate sized 4-in-1 block is placed and the remaining resections are performed. The tibial resection block is registered and resection performed. Final bone preparation, patella resurfacing, and trialing is performed as is standard to all surgical techniques. There were 50 Left and 50 Right TKA's performed in 61 females and 39 males. All patients had diagnosis of osteoarthritis. The average BMI was 31.1 and average age was 64.5 (range 41–90). 79 patients had pre-operative varus deformities with Hip Knee Angle (HKA) average of 174.7° (range 167°–179.5°). 19 patients had pre-operative valgus deformities averaging 184.4° (range 180.5°–190°). Three patients were neutral. Average TT was 31.2 minutes (range 21–51 minutes). With regard to the bony resections, the actual vs. planned resections for the distal medial femoral resection was 8.7 mm vs. 8.9 mm respectively. Further actual vs. planned femoral resections include distal lateral 7.2 vs. 6.7 mm; posterior medial 8.3 vs. 8.9 mm; and posterior lateral 6.2 vs. 6.8 mm. The actual vs. planned tibial resections recorded include medial 6.4 vs. 6.3 mm and lateral 8.3 vs. 8.2. The planned vs. actual bony cuts are strongly correlated, and highly predictive for all 6 measured cuts (p=<.001). No intraoperative complications occurred. Average KSS improved from 45.9 to 81.4, and KSS Function Score improved from 57.7 to 73.5 at 6 weeks postoperative visit. There were no thromboembolic complications. Two patients had a post-operative infection requiring surgical intervention. Post-operative alignment was 179.36° (range 175°–186°) for all patients. Alignment was neutral, within 3° in 95.9% of patients. There were only 4 outliers with maximal post-operative angulation of 6°. In conclusion, these early results demonstrate efficacy of CT-based PSI for TKA. The surgery can be performed efficiently, accurately, and safely. Furthermore, excellent short term clinical and radiographic results can be achieved


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_34 | Pages 325 - 325
1 Dec 2013
Goldberg T Curry WT Bush JW
Full Access

The present IRB approved study evaluates the early results of 100 TKAs using CT-based Patient-Specific Instrumentation (PSI) (MyKnee®, Medacta International, SA, Castel San Pietro, Switzerland). For this technique, a CT scan of the lower extremity is obtained, and from these images, the knee is reconstructed 3-dimensionally. Surgical and implant-size planning are performed according to surgeon preference, with the goal to create a neutral mechanical axis. Once planned and approved, the blocks are made [Fig. 1]. Outcomes measured for the present study include surgical factors such as Tourniquet Time (TT) as a measure of surgical efficiency, the actual intraoperative bony resection thicknesses to be compared to the planned resections from the CT scan, and complication data. Furthermore, pre- and post-operative long standing alignment and Knee Society Scores (KSS) were obtained. During surgery, the PSI cutting block is registered on the femur first and secured with smooth pins. No osteophytes are removed as the blocks use the positive topography of the osteophytes for registration. The distal femoral resection is performed directly through the block. An appropriate sized 4-in-1 block is placed and the remaining resections are performed. The tibial resection block is registered and resection performed. Final bone preparation, patella resurfacing, and trialing is performed as is standard to all surgical techniques. There were 50 Left and 50 Right TKA's performed in 61 females and 39 males. All patients had diagnosis of osteoarthritis. The average BMI was 31.1 and average age was 64.5 (range 41–90). 79 patients had pre-operative varus deformities with Hip Knee Angle (HKA) average of 174.7° (range 167°–179.5°). 19 patients had pre-operative valgus deformities averaging 184.4° (range 180.5°–190°). Three patients were neutral. Average TT was 31.2 minutes (range 21–51 minutes). With regard to the bony resections, the actual vs. planned resections for the distal medial femoral resection was 8.7 mm vs. 8.9 mm respectively. Further actual vs. planned femoral resections include distal lateral 7.2 vs. 6.7 mm; posterior medial 8.3 vs. 8.9 mm; and posterior lateral 6.2 vs. 6.8 mm. The actual vs. planned tibial resections recorded include medial 6.4 vs. 6.3 mm and lateral 8.3 vs. 8.2. The planned vs. actual bony cuts are strongly correlated, and highly predictive for all 6 measured cuts (p=<.001) [Fig. 3]. No intraoperative complications occurred. Average KSS improved from 45.9 to 81.4, and KSS Function Score improved from 57.7 to 73.5 at 6 weeks postoperative visit. There were no thromboembolic complications. Two patients had a post-operative infection requiring surgical intervention. Post-operative alignment was 179.36° (range 175°–186°) for all patients. Alignment was neutral, within 3° in 95.9% of patients. There were only 4 outliers with maximal post-operative angulation of 6° [Fig. 2]. In conclusion, these early results demonstrate efficacy of CT-based PSI for TKA. The surgery can be performed efficiently, accurately, and safely. Furthermore, excellent short term clinical and radiographic results can be achieved


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_34 | Pages 326 - 326
1 Dec 2013
Curry WT Goldberg T Bush JW
Full Access

Hardware in or about the knee joint presents a number of challenges to the surgeon in performance of Total Knee Arthroplasty (TKA). Conventional instrumentation usually requires a modification of technique or removal of the metallic implants. Computer-Assisted TKA (CAOS) is another option, but adds complexity and time to the procedure. MRI-based Patient-Specific Instrumentation (PSI) cannot be used as metal causes unwanted artifact and renders the images for planning, useless. However, CT scans are not affected by metal and thus CT-based PSI can be used in TKA patients with pre-existing hardware. The present IRB approved study evaluates 12 consecutive knees (10 patients) with pre-existing hardware using CT-based PSI (MyKnee®, Medacta International, SA, Castel San Pietro, Switzerland). In this technique, CT scan of the lower extremity is obtained, and from these images, the knee is reconstructed 3-dimensionally. Surgical and implant-size planning are performed according to surgeon preference, with the goal to create a neutral mechanical axis. Once planned and approved, the blocks are made [Fig 1]. During surgery, the PSI cutting block is registered on the femur first and secured with smooth pins. The distal femoral resection is performed directly through the block. An appropriate sized 4-in-1 block is placed and the remaining femoral resections are performed. The tibial resection block is registered and resection performed. Final bone preparation, patella resurfacing, and trialing is performed as is standard to all surgical techniques. Of the 12 TKAs, there were 5 left and 7 right knees performed in 6 females and 6 males. The average BMI was 33.19 and average age was 53 (range 44–63). All diagnoses were either osteoarthritis or post-traumatic osteoarthritis. Follow-up averaged 59 weeks (range 18.6–113.7). Nine patients had pre-operative varus deformities with HKA deformities average of 171.9° (range 154°–178.5°). One patient had pre-operative valgus deformity of 184.5°. Two patients were neutral (180°). Post-operative alignment for all patients (n = 11) was 179° (range 177°–180°). All patients were within 3° neutral, post operatively. Four patients measured 180°, 4 measured at 179°, 2 measured at 178°, and only one at 177°. Hardware consisted of 5 patients with femur or tibia staples, 3 with plate(s) and screws [Fig. 2], 3 patients with ACL interference screws, and one titanium rod. No hardware was removed unless necessary for implantation. Only 3 patients required some hardware removal. The pre-operative Range of Motion (ROM) averaged 2.9° to 98.3° (Extension range 0–15° and flexion range 30–115°). Post-operative ROM was 2.9° to 101.3°. (Extension range 0–5° and flexion range 65–125°). Knee Society Score (KSS) improved from 42.3 to 82.3, and KSS Function Score improved from 52.1 to 77.5. No intraoperative complications were recorded. Average tourniquet time was 42.1 minutes (range 28–102). Regardless of the deformity, the patient's post-operative mechanical axes HKA averaged 179° (range 177–180). Clinical scores were typical for TKA patients with improvement in both KSS and ROM. In conclusion, early results using PSI in patients with pre-existing hardware in or about the joint, is safe, efficient, and accurate in performance of TKA


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_28 | Pages 4 - 4
1 Aug 2013
Goldberg T Curry W Bush J
Full Access

Hardware in or about the knee joint presents a number of challenges to the surgeon in performance of Total Knee Arthroplasty (TKA). Conventional instrumentation usually requires a modification of technique or removal of the metallic implants. Computer-Assisted TKA (CAOS) is another option, but adds complexity and time to the procedure. MRI-based Patient-Specific Instrumentation (PSI) cannot be used as metal causes unwanted artifact and renders the images for planning, useless. However, CT scans are not affected by metal and thus CT-based PSI can be used in TKA patients with pre-existing hardware. The present IRB approved study evaluates 12 consecutive knees (10 patients) with pre-existing hardware using CT-based PSI (MyKnee®, Medacta International, SA, Castel San Pietro, Switzerland). In this technique, CT scan of the lower extremity is obtained, and from these images, the knee is reconstructed 3-dimensionally. Surgical and implant-size planning are performed according to surgeon preference, with the goal to create a neutral mechanical axis. Once planned and approved, the blocks are made. During surgery, the PSI cutting block is registered on the femur first and secured with smooth pins. The distal femoral resection is performed directly through the block. An appropriate sized 4-in-1 block is placed and the remaining femoral resections are performed. The tibial resection block is registered and resection performed. Final bone preparation, patella resurfacing, and trialing is performed as is standard to all surgical techniques. Of the 12 TKAs, there were 5 left and 7 right knees performed in 6 females and 6 males. The average BMI was 33.19 and average age was 53 (range 44–63). All diagnoses were either osteoarthritis or post-traumatic osteoarthritis. Follow-up averaged 59 weeks (range 18.6–113.7). Nine patients had pre-operative varus deformities with HKA deformities average of 171.9° (range 154°–178.5°). One patient had pre-operative valgus deformity of 184.5°. Two patients were neutral (180°). Post-operative alignment for all patients (n=11) was 179° (range 177°–180°). All patients were within 3° neutral, post operatively. Four patients measured 180°, 4 measured at 179°, 2 measured at 178°, and only one at 177°. Hardware consisted of 5 patients with femur or tibia staples, 3 with plate(s) and screws, 3 patients with ACL interference screws, and one titanium rod. No hardware was removed unless necessary for implantation. Only 3 patients required some hardware removal. The pre-operative Range of Motion (ROM) averaged 2.9° to 98.3° (Extension range 0–15° and flexion range 30–115°). Post-operative ROM was 2.9° to 101.3°. (Extension range 0–5° and flexion range 65–125°). Knee Society Score (KSS) improved from 42.3 to 82.3, and KSS Function Score improved from 52.1 to 77.5. No intraoperative complications were recorded. Average tourniquet time was 42.1 minutes (range 28–102). Regardless of the deformity, the patient's post-operative mechanical axes HKA averaged 179° (range 177–180). Clinical scores were typical for TKA patients with improvement in both KSS and ROM. In conclusion, early results using PSI in patients with pre-existing hardware in or about the joint, is safe, efficient, and accurate in performance of TKA


Orthopaedic Proceedings
Vol. 86-B, Issue SUPP_III | Pages 245 - 245
1 Mar 2004
Schnake K Berth U Schröder R Raschke M Haas N
Full Access

Aims: Various studies could show that computer assisted pedicle screw insertion can reduce pedicle perforation rate. We conducted this study to verify if pedicle screw navigation can also avoid neurological complications. Methods: Within 20 months 112 patients were stabilised with 584 pedicle screws in the thoracolumbar spine (Th1-L5). 333 screws were inserted using a CT-based navigation system, 251 srews with conventional technique. Postoperatively, screw positons were assessed by an independent radiologist using CT-scans. Neurological complications and revision surgery were noted. Results: 47 (14.1%) of navigated screws perforated pedicle wall, 13 (28%) to medial side with 2 screws more than 4 mm. One screw (0.3%) had to be changed due to medial perforation of 6 mm in Th4. In the conventional group 60 (29.9%) screws perforated pedicle wall, 13 (22%) to medial side with 3 screws more than 4 mm. One patient had to be reoperated due to radicular deficit caused by a medial perforated screw in L1 (0.4%)Conclusion: CT-based navigation of pedicle screws decreased pedicle perforation rate significantly. However, considerable medial perforations up to 6 mm could not be avoided entirely. The rate of neurologic complicatons and revision surgery was the same in both computer assisted and conventional group


The Bone & Joint Journal
Vol. 106-B, Issue 4 | Pages 324 - 335
1 Apr 2024
Fontalis A Kayani B Plastow R Giebaly DE Tahmassebi J Haddad IC Chambers A Mancino F Konan S Haddad FS

Aims

Achieving accurate implant positioning and restoring native hip biomechanics are key surgeon-controlled technical objectives in total hip arthroplasty (THA). The primary objective of this study was to compare the reproducibility of the planned preoperative centre of hip rotation (COR) in patients undergoing robotic arm-assisted THA versus conventional THA.

Methods

This prospective randomized controlled trial (RCT) included 60 patients with symptomatic hip osteoarthritis undergoing conventional THA (CO THA) versus robotic arm-assisted THA (RO THA). Patients in both arms underwent pre- and postoperative CT scans, and a patient-specific plan was created using the robotic software. The COR, combined offset, acetabular orientation, and leg length discrepancy were measured on the pre- and postoperative CT scanogram at six weeks following surgery.


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_11 | Pages 231 - 231
1 Jul 2014
Lu H Kuo C Lin C Lu T
Full Access

Summary Statement. The current study introduced the effects of projection errors on ankle morphological measurements using CT-based simulated radiographs by correlation analysis between 2D/3D dimensions and reliability analysis with randomised perturbations while measuring planar parameters on radiographs. Introduction. Clinical success of total ankle arthroplasty (TAA) depends heavily on the available anatomy-based information of the morphology for using implants of precisely matched sizes. Among the clinically available medical imaging modalities, bi-planar projective radiographs are commonly used for this purpose owing to their convenience, low cost, and low radiation dose compared with other modalities such as MRI or CT. However, the intrinsic articular surface of the ankle joint is not symmetrical and oblique which implies that it is difficult to describe all the anatomical dimensions in detail with only one radiograph, thereby hindering the determination of accurate ankle morphometric parameters. The purposes of this study were to compare the measurements of ankle morphology using 3D CT images with those on planar 2D images; and to quantify the repeatability of the 2D measurements under simulated random perturbations. Patients & Methods. Fifty-eight fresh frozen cadaveric ankle specimens were used in the current study. Each specimen was fixed in the neutral position with a plastic frame. After fixation, the specimen-fixation construct was scanned using a 16-slice spiral CT scanner (GE BrightSpeed 16, C&G Technologies, USA) with a slice thickness of 0.625 mm. A global coordinate system was embedded in the ankle specimen with the origin at the geometric center of the talus, the anteroposterior (A/P) axis in parallel to the base-plate, the superoinferior (S/I) axis perpendicular to the base-plate, and the mediolateral (M/L) axis as the line perpendicular to both the A/P and S/I axes. Fourteen 3D morphological parameters were automatically determined using a house-developed program in MATLAB R2010a (The MathWorks, Inc., USA). A simulated standard digital radiography system, in which the X-ray focus was 1 meter away from the image plane, was also introduced to determine the planar 2D morphological parameters for comparing with those determined in 3D. Reliability with randomised perturbations during measurements was also assessed in terms of the intra-class correlation coefficients using a 2-way mixed-effects average model (ICC3, k) for intra-examiner assessments. All statistical analysis was performed using SPSS 13.0 (SPSS Inc., USA). Results. Most of the morphological parameters had high correlation and reliability, except for the maximal tibial thickness (MTiTh), distance between most vertex of tibial mortise to the level of MTiTh (MDV) and radius of trochlea tali (TaR) had moderate to low correlation which were 0.54, 0.37 and 0.09 respectively. The ICC coefficients indicated that the MDV, talus width (TaW) and inclination angle between two most vertex points of trochlea tali (MLATa) had moderate and poor reliability which were 0.59, 0.49 and 0.07 respectively. Discussion/Conclusion. The current study introduced the effects of projection errors on ankle morphological measurements using CT-based simulated radiographs by correlation analysis between 2D/3D dimensions and reliability analysis with randomised perturbations while measuring planar parameters on radiographs. MTiTh and MDV are the important parameters to help surgeon pre-surgical decision-making. TaW is one of the critical parameters for choosing accurate sise of TAA implant. It implies that the respectively accurate pose of ankle is critical during bi-planar radiography


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_2 | Pages 46 - 46
1 Jan 2016
Kelly B Hoeffel DP Harvey R Giveans MR
Full Access

Introduction. Computed tomography (CT) can be utilized to design patient specific instruments (PSI) for total knee arthroplasty (TKA). The PSI preoperative plans predict bone resection, anterior-posterior implant position, implant rotation and implant size. The purpose of this study was to compare preoperatively predicted implant sizes (tibia and femur) to the actual implanted sizes. Data were compiled from two surgeons, one in the United Kingdom (Surgeon 1, cruciate retaining) and one in the United States (Surgeon 2, posterior stabilizing). Both used the same primary TKA implant systems (Sigma® and Attune®; DePuySynthes®, Warsaw, Indiana). This is the largest comparison of CT-based PSI size accuracy between two implant systems. Methods. An international cohort of 396 CT-based PSI-TKA preoperative plans (TruMatch®)were compared to postoperative implant records. Data were retrospectively analyzed for Sigma®(n=351) and Attune® (n=45), both as separate cohorts and as a combined cohort (Sigma® + Attune®). Three analyses were performed: Tibia and femur plan accuracy, major size changes (femoral size change or tibial size change resulting in a femoral size change) and minor size changes (tibial size change not impacting femoral size). Inter-rater reliability analyses using ICC (intra-class correlation) and the Kappa statistic were performed to determine reliability and agreement among the groups. Combined TKA implant data (Sigma® + Attune®) for surgeons 1 and 2 were compared for accuracy between users utilizing different implant designs, cruciate retaining (CR) versus posterior stabilized (PS). Results. In the combined system analysis (Sigma® + Attune®) femoral implant prediction was 97.0% accurate and combined tibial implant size accuracy was 79.5%. There were no significant differences between the systems for tibial or femoral accuracy. See Table 1. There were 12 major size changes, 11 downsized femoral implants and 1 upsized femoral implant (all femoral changes were with Sigma® system). There were 81 minor size changes. Per Kappa, the plans were in excellent agreement with the femoral implant size and had substantial agreement with tibial implant size (p<.01). See Table 2. Comparing size accuracy between Surgeon 1 and Surgeon 2, Surgeon 1 had significantly greater tibial accuracy (p<.01), while femoral accuracy showed no significant difference (p=0.49). See Table 3. Discussion. In this combined data set of two surgeons, we report high implant sizing accuracy overall. This accuracy was noted across implant systems (Sigma® and Attune®) and across surgeons (1 and 2) utilizing different implant designs (CR vs. PS) using TruMatch® PSI. In all cohorts, the femur was more accurately predicted than the tibia. Accurate size reconstitution and reconstruction of the femur is critical for maintenance of posterior condylar offset, avoidance of anterior compartment overstuffing and avoidance of anterior femoral cortical notching. This study demonstrates the reproducibility of CT-based PSI TKA across different implant systems (Sigma® and Attune®), implant designs (CR and PS) and different surgeons. The ability to accurately predict implant size can also contribute system efficiencies: improved implant inventory management, development of size-focused instrumentation sets and potentially reduced workload for sterile processing departments


Orthopaedic Proceedings
Vol. 91-B, Issue SUPP_I | Pages 64 - 64
1 Mar 2009
Dandachli W Kanaan V Richards R Sauret V Hall-Craggs M Witt J
Full Access

INTRODUCTION Assessing femoral head coverage is a crucial element in acetabular surgery for hip dysplasia. CT has proven to be more accurate, practical and informative than plain radiography at analysing hip geometry. Klaue et al first used a computer-assisted model to indirectly derive representations of femoral head coverage. Jansen et al then described a CT-based method for measuring centre edge angle of Wiberg at 10 rotational increments. Haddad et al used that method to look at dysplastic hips pre- and post-acetabular osteotomy. We present a novel CT-based method that automatically gives an image of the head with the covered area precisely represented. We used this technique to accurately measure femoral head coverage (FHC) in normal hips and in a prospective study of patients with hip dysplasia undergoing peri-acetabular osteotomy. The impact of surgery on acetabular anteversion and inclination was also assessed. METHODS Using a custom software programme, anatomical landmarks for 25 normal and 26 dysplastic hips were acquired on the 3D reconstructed CT image and used to define the frame of reference. Points were then assigned on the femoral head surface and the superior half of the acetabular rim after aligning the pelvis in the anterior pelvic plane. The programme then automatically produced an image representing the femoral head and its covered part along with the calculated femoral head coverage. To do so, the software represents the femoral head by a best-fit sphere, and the sphere and the acetabular contour are then projected onto a plane in order to calculate the load bearing fraction and area. RESULTS In the normal hips FHC averaged 73% (SD 4), whereas anteversion and inclination averaged 16° (SD 7°) and 44° (SD 4°) respectively. In the dysplastic group the mean FHC was 50% (SD 6), with a mean anteversion of 19° (SD 10°) and mean inclination of 53° (SD 5°). Peri-acetabular osteotomy has been performed on 16 hips so far, and the FHC for those averaged 66% (SD 5), a mean improvement of 32%. The respective anteversion and inclination post-operatively were 18° (SD 12°) and 40° (SD 8°). DISCUSSION This is the first study to our knowledge that has used a reliable and practical measurement technique to give an indication of the percent coverage of the femoral head by the acetabulum in normal hips. When this is applied to assessing coverage in surgery to address hip dysplasia it gives a clearer understanding of where the corrected hip stands in relation to a normal hip, and this should allow for better determination of the likely outcome of this type of surgery. The versatility of the method gives it significant attraction for acetabular surgeons and makes it useful not only for studying dysplastic hips but also other hip problems such as acetabular retroversion


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_34 | Pages 313 - 313
1 Dec 2013
Fujiwara K Endou H Okada Y Kagawa Y Ozaki T
Full Access

Objectives. The setting angle of the cup is important for achieving the stability and avoiding the dislocation after total hip arthroplasty (THA). It is difficult to set the cup at correct angle in minimally invasive THA by modified Watson-Jones approach. So we use CT-based navigation system. We evaluated the accuracy of with post-operative CT data. Materials and Methods. We treated 30 hips in 30 patients (7 male and 23 females) by navigated THA. 26 osteoarthritis hips, 2 rheumatoid arthritis hips and 2 idiopathic osteonecrosis hips were performed THA with VectorVision Hip 3.5.2 navigation system (BrainLAB). Implants were AMS HA cups and PerFix stems (Kyocera Medical, Osaka). Appropriate angles and positions of cups were decided on the 3D model of hip joint before operation. According to the preoperative planning, we put the cups with navigation system and stems without navigation system. We measured the anteversion angle with post-operative CT data and 3-dimensional template software. Results. The average angle of cup inclination was 35.2 degrees on navigation system in operation. The average angle was 37.4 degrees in post-operative CT data. We calculated the deference between the inclination angle of intra-operative navigation data and the angle of post-operative CT data. The average of error was 2.2 degrees. The average angle of cup anteversion was 24.2 degrees on navigation system in operation. The average angle was 27.5 degrees in post-operative CT data. The average of error was 3.5 degrees. Conclusions. There are some reports of complications in minimally invasive THA by modified Watson-Jones approach. Anteversion angle of cup are tend to insert from relative anterior direction with this approach. We could make the error of cup setting minimize with CT-based navigation system


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_10 | Pages 139 - 139
1 May 2016
Yanagimoto S Yabuki Y Tuzuka M Kameyama M Nakayama S Komiyama T Okada E Morisita M Kimura Y
Full Access

Introduction. We have used CT-based navigation system for THA from 2004 (Fig, 1). The purpose is to set acetabular socket in optimal position. We have used two different matching methods in these navigation THA surgeries. The old one is Land-mark matching method (L-method), using conventional paired point matching procedure during surgery. The new one is CT-based fluoroscopy-matching system (F-method), that is new technology of image matching procedure before starting surgery (Fig. 2). We compared the accuracy of socket setting angle with these two systems and discuss the usefulness of navigation system. Material. Materials were 477 THA patients using these navigation systems. 273 cases were with L method and 204 patients were with F method. The values between verification angle by navigation system during surgery and post-operative measured angle (by X-ray or CT scan) were calculated and compared. Results. The absolute difference in L method (273 cases) was on average 3.9 +/− 3.1 degree in inclination, and 4.0 +/− 3.4 degree in anteversion. The absolute difference in F method (204 cases) was on average 2.8 +/− 2.3 degree in inclination, and 2.9 degree +/− 2.6 in anteversion. The values in F method groups showed high accuracy (P<0.01). Discussion. Accurate socket setting in THA is essential for preventing dislocation and ensuring long term usage of prosthesis. Absolute errors in socket setting with theses two navigation systems were within 4 degree on average. These results showed the usefulness of both navigation systems. F method is new technology using image matching procedure of fluoroscopy and CT-scan doing on computer (Fig. 3). F method is easy to learn actual procedure and showed high accuracy. L method is conventional procedure and needs skill to use correctly. But it needs short additional time and so it is convenient for skilled-doctor


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXVIII | Pages 43 - 43
1 Sep 2012
Olsen M Edwards M Sellan M Crookshank MC Bristow L Schemitsch EH
Full Access

Purpose. Computer navigation for hip resurfacing has been shown to reduce the incidence of technical error during femoral head preparation and provides increased accuracy compared to conventional instrumentation for insertion of the initial femoral guidewire. Limitations to the widespread use of navigation in hip resurfacing include access and cost. A novel, patient specific nylon jig has been developed as a cost effective alternative for placement of the initial guidewire. The purpose of this study was to compare the accuracy of femoral guidewire insertion between imageless navigation, conventional instrumentation and a new type of CT-based custom jig. Method. Six pairs of cadaveric femora were used in the study. Each pair was divided randomly between a group utilizing firstly a conventional lateral pin jig (BHR, Smith & Nephew Inc.) followed by navigation (Vector Vision SR, BrainLAB) and a group utilizing a CT-based, patient specific custom jig (Visionaire, Smith & Nephew Inc.). A single surgeon inserted all guidewires. The planned guidewire position was approximately 10 degrees of relative valgus to the native neck-shaft angle in the coronal plane and neutral version in the sagittal plane. The same coronal alignment angle was used between paired femora. Femurs were positioned in a draped synthetic foam hip model prepared with a standard posterior approach. Guidewire insertion time and placement accuracy for each of the three alignment methods was assessed. Guidewire placement accuracy for coronal inclination and version was assessed by anteroposterior and lateral digital radiographs and was defined as the mean deviation from the planned alignment value. Results. Imageless navigation was more accurate than both the custom and the conventional jigs in coronal guidewire inclination (mean 1.3 degrees, SD 1.2, p<0.047). The custom jig (mean 6.4 degrees, SD 2.9) provided a comparable level of accuracy to that of the conventional jig (mean 5.5 degrees, SD 3.6, p=0.851). Guidewire version using the custom jig (mean 1.0 degrees, SD 0.4) was comparable to imageless navigation (mean 3.9 degrees, SD 2.1, p=0.101) and was superior to the conventional jig (mean 5.6 degrees, SD 2.9, p=0.008). The time required for guidewire insertion using the custom alignment jig was significantly reduced compared to both the conventional jig and imageless computer navigation (p<0.001), with imageless navigation requiring more time than the conventional jig (p=0.038). Conclusion. The CT-based custom alignment jig was superior to conventional instrumentation for guidewire version while providing a similar level of accuracy for coronal guidewire inclination. Imageless navigation provided the highest level of accuracy for coronal guidewire placement. A custom alignment jig may be a better alternative to conventional instrumentation for placement of the initial femoral guidewire in hip resurfacing


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_10 | Pages 18 - 18
1 May 2016
Scheerlinck T Polfliet M Dekleck R Van Gompel G Buls N Vandemeulebroucke J
Full Access

Accurate detection of migration of hip arthroplasty stems without the burden of bone markers and stereo-radiographic equipment is of interest. This would facilitate the study of stem migration in an experimental setting, but more importantly, it would allow assessing stem loosening in patients with a painful hip outside a study protocol. We developed and validated a marker-free automated CT-based spatial analysis method (CTSA) to quantify stem-bone migration in successive CT scan acquisitions. First, we segmented the bone and stem within both three-dimensional images, then we pairwise registered those elements (Fig. 1). By comparing the rigid transformations of stem and bone, we calculated the migration of the stem with reference to the bone and transferred the three translation and three rotation parameters to an anatomic coordinate system. Based on the rigid transformation, we also calculated the point of the stem that presented the maximal migration (PMM). Accuracy was assessed in a stem-bone model (Fig. 2) by imposing 39 predefined stem rotations and translations, and by comparing those with values calculated with the CTSA tool. In all cases, differences were below 0.20 mm for translations and 0.19° for rotations (95% tolerance interval (95% TI) below 0.22 mm and 0.20°, largest standard deviation of the signed error (SDSE) 0.081 mm and 0.057°). Precision was defined as stem migration calculated in eight clinical relevant zero-migration scenarios. In all cases, precision was below 0.05 mm and 0.08° (95% TI below 0.06 mm and 0.08°, largest SDSE 0.012 mm and 0.020°). The largest displacement of the PMM on the stem was 0.169mm. The precision estimated in five patients was very dependent on the CT scan resolution and was below 0.48 mm and 0.37° (95% TI below 0.59 mm and 0.61°, largest SDSE 0.202 mm and 0.279°, largest displacement of the PMM 0.972 mm). In optimized conditions, the precision in patients improved largely and was below 0.040 mm and 0.111° (largest SDSE 0.202 mm and 0.279°, largest displacement of the PMM 0.156 mm). Our marker-free automated CT-based spatial analysis can detect hip stem migration with an accuracy and precision comparable to that of radiostereometric analysis (RSA), but without the burden of bone markers and the cost of stereo-radiographic equipment. As such, we believe our tool could make accurate measurement of stem migration available to departments without access to RSA and boost this type of research. Moreover, as CTSA does not rely on bone makers, it is applicable to all-comers with a painful hip arthroplasty. Indeed, in those patients with a reference CT scan after hip replacement, a new CT scan could demonstrate stem migration. If no initial CT scan is available, a reference scan could be taken during a first visit and repeated later. Additionally, a “stress test” of the hip could be performed. During such test, comparing CT images acquired during forced maximal intern and external rotation could demonstrate stem loosening


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_3 | Pages 97 - 97
1 Jan 2016
Ogawa T Takao M Sakai T Nishii T Sugano N
Full Access

Puropose. Three-dimensional (3D) templating based on computed tomography (CT) in total hip arthroplasty improves the accuracy of implant size. However, even when using 3D-CT preoperative planning, getting the concordance rate between planned and actual sizes to reach 100% is not easy. To increase the concordance rate, it is important to analyze the causes of mismatch; however, no such studies have been reported. This study had the following two purposes: to clarify the concordance rate in implant size between 3D-CT preoperative planning and actual size; and to analyze risk factors for mismatch. Materials and Methods. A single surgeon performed 149 THAs using Trident Cup and Centpillar Stem (Stryker) with CT-based navigation between September 2008 and August 2011. Minimal follow-up was 2 years. Patients with incomplete postoperative CT were excluded from this study. Based on these criteria, the study examined 124 hips in 111 patients (mean age, 60 years, mean BMI 23.2 kg/m2). The preoperative diagnosis was primary osteoarthritis in 8 hips, secondary osteoarthritis in 102 hips, osteonecrosis in 9 hips, rapidly destructive coxopathy in 4 hips and rheumatoid arthritis in 1 hip. We compared cup and stem sizes between preoperative planning and intraoperatively used components. Radiological evaluations were cortical index and canal flare index on preoperative X-rays. We evaluated preoperative planning and postoperative components for cup orientation, cup position, and stem alignment (anteversion, flexion and varus angle) on the CT-navigation system. Fixation of the stem was evaluated by X-ray radiography at 2 years postoperatively according to Engh's criteria. Statistical analysis was performed with the Mann-Whitney U test, and values of P<0.05 were considered statistically significant. Results and Discussion. The concordance rate in cup size between preoperative planning and used implants was 94.4% (117/124 hips) (CS group). A one-size larger cup was used in 4 hips (CO group), and a one-size smaller cup was implanted in 3 hips (CU group). No significant difference was seen between the CS group and the CO or CU groups in change of cup orientation and cup position from planning (P>0.05) (Table 1). The concordance rate of stem size between preoperative planning and used stem was 85.5% (106/124 hips) (SS group). A one-size larger stem than the plan was used in two hips (SO group), and a one-size smaller stem than the plan was implanted in 16 hips (SU group). Significant differences were seen between the SU and SS groups in flexion angle, varus angle, and canal flare index (P<0.05, Table 2). Extension or varus of the stem, or an increase in canal flare index, were risk factors for the used stem size being smaller than planned. On the latest follow-up X-rays, all 124 hips showed bone ingrown stability of the implants. Conclusion. The accuracy of implant size selection was 94.4% and 85.5% for the cup and stem, respectively. No factors associated with cup size mismatch were identified. Flexion angle, varus angle, and canal flare index were associated with stem size mismatch between preoperative planning and the actual used size


Orthopaedic Proceedings
Vol. 88-B, Issue SUPP_II | Pages 209 - 210
1 May 2006
Abe N Fujiwara K Yoshitaka T Nasu Y Date H Sakoma Y Ozaki T Inoue H
Full Access

Purpose: Minimally invasive surgery (MIS) total knee arthroplasty (TKA) makes faster rehabilitation in many cases, but it was sometimes difficult to performed the precise osteotomy and place the implants correctly due to loss of view or orientation for its small exposure. The computer-assisted navigation TKA system (CAS) was reported to achieve the optimal alignment and placement. However, it had disadvantages of longer operation time and wider exposure to acquire the reference points than these of the conventional method. Now MIS technique needs the accuracy of implant placement, on the other hand, CAS needs less-invasive methods. Among CAS methods, CT-based navigation system would have the potential for MIS because it would be referred to preoperative CT images. This study examined the accuracy of the registration with CT-based navigation system and the possibility of its application for MIS. Material and Methods: CT data were obtained from the femur and tibia of “Sawbone” (synthetic bone, Pacific Research Laboratories, Vashon, WA, USA) with a slice thickness of 1 mm. These data were transferred to Vector Vision Knee 1.5 (BrainLab Inc, Heimstettenm, Germany) and reconstructed to three-dimensional model. Two registrations were performed by a surface-matching algorithm. One is the conventional method as Vector Vision protocol; another is MIS approach which was allowed the limited area around the femoral notch and joint surface of tibia for registration. The accuracy of registration with these two methods was evaluated by Vector Vision Knee. And these registration points of these different methods were measured using a coordinate measuring machine, 3D surface scanner (Mitsutoyo, JAPAN) and were analyzed and calculated the distribution of points. Results and Discussion: There was a high degree of reproducibility of the MIS approach compared with the conventional method in the femur. However, the reference points in the distal tibia were deviated 1.5 cm to medial and thus 2.39 degree in varus would be happened at the proximal tibia in both methods. Now this software should be improving to be more accurate


Orthopaedic Proceedings
Vol. 92-B, Issue SUPP_I | Pages 110 - 111
1 Mar 2010
Iwaki H Minoda Y Ikebuchi M Fukunaga K Iida T Takaoka K
Full Access

Cup orientation of total hip arthroplasty (THA) is critical for dislocation, range of motion, polyethylene wear, pelvic osteolysis, and component migration. But, substantial error under manual technique has been reported. Therefore, various navigation systems were introduced to reduce outliers. CT based navigation (CTN) was reported to reduce outliers in cup orientation. Recently, a noble technique, fluoroscopy-CT-based navigation (FCTN), has recently been developed using 2D-3D matching technique. Because of much less registration points, FCTN might be friendly to MIS THA and cases with sever bone deformity. Between October 2006 and April 2008, 33 THAs were performed through MIS approach with navigations.

We prospectively randomized those into two groups, CTN and FCTN groups. We implanted cementless hemispherical cups in 18 hips using CTN (VectorVision CT Hip 3.1) and in 15 hips using FCTN (VectorVision CT Hip 3.5). For all the patients, volumetric post-operative CT scan was performed to measure 3D cup orientation. using 3D image-processing software (JMM, Japan). The difference from target angles of anteversion was 2.7 ± 2.4 degrees in FCTN group, and 12.1 ± 5.7 degrees in CTN group (p < 0.001). The absolute value of difference from target angles of inclination was 2.7 ± 2.4 degrees in FCTN group, and 6.5 ± 4.5 degrees in CTN group (p = 0.006). FCTN does not need surface registration around acetabulum, which is great advantage to MIS THA. Our study clearly showed that FCTN significantly improved a cup orientation to CTN.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXV | Pages 146 - 146
1 Jun 2012
Miyake Y Fujiwara K Endo H Ozaki T Mitani S
Full Access

Objectives. Many reports were shown about the angle of the cup in total hip arthroplasty (THA) with CT-based navigation system. However, there are few reports about the position of the stem. We investigated the position of the stem in navigated THA. We evaluated the position and alignment of stem which were shown on intra-operative navigation system. Materials and Methods. We treated 10 hips in 10 patients (1 male and 9 females) by navigated THA. 7 osteoarthritis hips and 3 idiopathic osteonecrosis hips were performed THA with VectorVision Hip 2.5.1 navigation system (BrainLAB). Implants were AMS HA cups and PerFix stems (Japan Medical Materials, Osaka). The positions of stem were decided on the 3D model of femur before operation. According to the preoperative planning, we put the implants with navigation system and recorded the position. We measured the position and alignment of stem with 3D template software after operation. We checked for complications. Results. The average error of stem alignment was 0.9 degrees in anteroposterior direction, 1.2 degrees in mediolateral direction and 3.5 degrees in rotation. The average error of the distance between the tip of greater trochanter and the shoulder of stem was 1.6mm on postoperative CT. Though there were no infections and fractures, 7 cases had postoperative pain on the lesion where we insert tracker pin. Conclusions. The accuracy of longitudinal stem alignment was correct but the anteversion varies widely. We usually perform THA by minimally invasive technique. Therefore the reference points of proximal femur were restricted at narrow area for registration and the landmarks for deciding the rotational alignment were difficult to be picked up correctly