header advert
Results 1 - 9 of 9
Results per page:
Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_3 | Pages 38 - 38
1 Mar 2021
Tavakoli A Faber K Langohr G
Full Access

Total shoulder arthroplasty (TSA) is an effective treatment for end-stage glenohumeral arthritis. The use of high modulus uncemented stems causes stress shielding and induces bone resorption of up to 63% of patients following TSA. Shorter length stems with smaller overall dimensions have been studied to reduce stress shielding, however the effect of humeral short stem varus-valgus positioning on bone stress is not known. The purpose of this study was to quantify the effect of humeral short stem varus-valgus angulation on bone stresses after TSA.

Three dimensional models of eight male cadaveric humeri (mean±SD age:68±6 years) were created from computed tomography data using MIMICS (Materialise, Belgium). Separate cortical and trabecular bone sections were created, and the resulting bone models were virtually reconstructed three times by an orthopaedic surgeon using an optimally sized short stem humeral implant (Exactech Preserve) that was placed directly in the center of the humeral canal (STD), as well as rotated varus (VAR) or valgus (VAL) until it was contacting the cortex. Bone was meshed using a custom technique which produced identical bone meshes permitting the direct element-to-element comparison of bone stress. Cortical bone was assigned an elastic modulus of 20 GPa and a Poisson's ratio of 0.3. Trabecular bone was assigned varying stiffness based on CT attenuation. A joint reaction force was then applied to the intact and reconstructed humeri representing 45˚ and 75˚ of abduction. Changes in bone stress, as well as the expected bone response based on change in strain energy density was then compared between the intact and reconstructed states for all implant positions.

Both varus and valgus positioning of the humeral stem altered both the cortical and trabecular bone stresses from the intact states. Valgus positioning had the greatest negative effect in the lateral quadrant for both cortical and trabecular bone, producing greater stress shielding than both the standard and varus positioned implant. Overall, the varus and standard positions produced values that most closely mimicked the intact state.

Surprisingly, valgus positioning produced large amounts of stress shielding in the lateral cortex at both 45˚ and 75˚ of abduction but resulted in a slight decrease in stress shielding in the medial quadrant directly beneath the humeral resection plane. This might have been a result of direct contact between the distal end of the implant and the medial cortex under loading which permitted load transfer, and therefore load-reduction of the lateral cortex during abduction. Conversely, when the implant was placed in the varus angulation, noticeable departures in stress shielding and changes in bones stress were not observed when compared to the optimal STD position. Interestingly, for the varus positioned implant, the deflection of the humerus under load eliminated the distal stem-cortex contact, hence preventing distal load transfer thus precluding the transfer of load.


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_1 | Pages 1 - 1
1 Feb 2021
Tavakoli A Faber K Langohr G
Full Access

Introduction

Total shoulder arthroplasty (TSA) is an effective treatment to restore shoulder function and alleviate pain in the case of glenohumeral arthritis [1]. Stress shielding, which occurs when bone stress is reduced due to the replacement of bone with a stiffer metallic implant, causes bone resorption of up to 9% of the humeral cortical thickness following TSA [2]. Shorter length stems and smaller overall geometries may reduce stress shielding [3], however the effect of humeral head backside contact with the resection plane has not yet been fully investigated on bone stress. Therefore, the purpose of this study was to quantify the effect of humeral head contact conditions on bone stresses following TSA.

Methods

3D models of eight male left cadaveric humeri (68±6 years) were generated from CT data using MIMICS. These were then virtually prepared for reconstruction by an orthopaedic surgeon to accept a short-stem humeral implant (Exactech Equinoxe® Preserve) that was optimally sized and placed centrally in the humeral canal. The humeral head was positioned in the inferior-medial position such that contact was achieved on the medial cortex, and no contact existed on the lateral cortex. Three different humeral head backside contact conditions were investigated (Figure 1); full backside contact (FULL), contact with only the inferior-medial half of the resection (INF), and contact with only the superior-lateral half of the resection (SUP). Cortical bone was assigned an elastic modulus of 20 GPa and a Poisson's ratio of 0.3. Trabecular bone was assigned varying stiffness based on CT attenuation [4]. A joint reaction force was then applied representing 45˚ and 75˚ of abduction [5]. Changes in bone stress, as well as the expected bone response based on change in strain energy density [6] was then compared between the intact and reconstructed states.


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_6 | Pages 45 - 45
1 Jul 2020
Langohr G DeDecker S Khayat A Johnson J King GJ Medley J
Full Access

Joint hemiarthroplasty replaces one side of a synovial joint and is a viable alternative to total joint arthroplasty when one side of the joint remains healthy. Most hemiarthroplasty implants used in current clinical practice are made from stiff materials such as cobalt chrome or ceramic. The substitution of one side of a soft cartilage-on-cartilage articulation with a rigid implant often leads to damage of the opposing articular cartilage due to the resulting reductions in contact area and increases in cartilage stress. The improvement of post-operative hemiarthroplasty articular contact mechanics is of importance in advancing the performance and longevity of hemiarthroplasty. The purpose of the present study was to investigate the effect of hemiarthroplasty surface compliance on early in-vitro cartilage wear and joint contact mechanics.

Cartilage wear tests were conducted using a six-station pin-on-plate apparatus. Pins were manufactured to have a hemispherical radius of curvature of 4.7 mm using either Bionate (DSM Biomedical) having varying compliances (80A [E=20MPa], 55D [E=35MPa], 75D [E=222MPa], n=6 for each), or ceramic (E=310GPa, n=5). Cartilage plugs were cored from fresh unfrozen bovine knee joints using a 20 mm hole saw and mounted in lubricant-containing chambers, with alpha calf serum diluted with phosphate buffer solution to a protein concentration of 17 g/L. The pins were loaded to 30N and given a stroke length of 10 mm for a total of 50,000 cycles at 1.2 Hz. Volumetric cartilage wear was assessed by comparing three-dimensional cartilage scans before and during wear testing. A two-way ANOVA was used for statistical analysis. To assess hemiarthroplasty joint contact mechanics, 3D finite element modelling (ABAQUS v6.12) was used to replicate the wear testing conditions. Cartilage was modeled using neo-Hookean hyper-elastic material properties. Contact area and peak contact stress were estimated.

The more compliant Bionate 80A and 55D pins produced significantly less volumetric cartilage wear compared with the less compliant Bionate 75D and ceramic pins (p 0.05). In terms of joint contact mechanics, the more compliant materials (Bionate 80A and 55D) had significantly lower maximum contact stress levels compared to the less compliant Bionate 75D and ceramic pins (p < 0 .05).

The results of this study show a relationship between hemiarthroplasty implant surface compliance and early in vitro cartilage wear, where the more compliant surfaces produced significantly lower amounts of cartilage wear. The results of the joint contact mechanics analysis showed that the more compliant hemiarthroplasty materials produced lower maximum cartilage contact stresses than the less compliant materials, likely related to the differences in wear observed. More compliant hemiarthroplasty surfaces may have the potential to improve post-operative cartilage contact mechanics by increasing the implant-cartilage contact area while reducing peak contact stress at the implant-cartilage interface, however, such materials must be resistant to surface fatigue and longer-term cartilage wear/damage must be assessed.


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_6 | Pages 13 - 13
1 Apr 2018
Knowles N Langohr G Athwal G Ferreira L
Full Access

BACKGROUND

Stability of the glenoid component is essential to ensure successful long-term outcomes following Total shoulder arthroplasty (TSA), and may be improved through better glenoid component design. As such, this study assessed identical all-polyethylene glenoid components stability, having various fixation types, using component micromotion under simulated joint loading in an osteoarthritic patient cohort.

METHODS

Five all-polyethylene glenoid component designs were compared (Keel, Central-Finned 4-Peg, Peripheral 4-Peg, Cross-Keel, and Inverted-Y). A cement mantle surrounded each fixation type, except the Central-Finned 4-Peg which was surrounded by bone. The humeral component had a non-conforming radius of curvature. Scapular models of six type A1 osteoarthritic male patients (mean: 61 years old, range: 48 to 76 years old) were assigned heterogeneous bone properties based on CT intensity. Each of the 30 scapula models were truncated and fully constrained on the medial scapular border. The bone/cement interface was fully bonded, and the fixation feature/cement interface was frictionally constrained. A ‘worst case’ load magnitude of 125% BW of a 50th percentile male was used. A purely compressive load was applied to the center of the glenoid component, followed by superior, superior-posterior, posterior, inferior-posterior, and inferior loads. Stability of the glenoid component based solely on the fixation type was determined using the mean and maximum normal (liftoff) and tangential (sliding) micromotion in six regions of the glenoid component.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_21 | Pages 6 - 6
1 Dec 2016
Langohr G Giles J Johnson J Athwal G
Full Access

Despite reverse total shoulder arthroplasty (RTSA) being primarily indicated for massive rotator cuff tears, it is often possible to repair portions of the infraspinatus and subscapularis of patients undergoing this procedure. However, there is disagreement regarding whether these tissues should be repaired, as their effects remain unclear. Therefore, we investigated the effects of rotator cuff repair and changes in humeral and glenosphere lateralisation (HLat & GLat) on deltoid and joint loading.

Six shoulders were tested on an in-vitro muscle driven active motion simulator. Cuff tear arthropathy was simulated in each specimen, which was then implanted with a custom adjustable RTSA fitted with a six axis load sensor. We assessed the effects of 4 RTSA configurations (i.e. all combinations of 0&10mm of HLat & GLat) on deltoid force, joint load, and joint load angle during abduction with/out rotator cuff repair. Deltoid and joint loads recorded by the load cell are reported as a % of Body Weight (%BW). Repeated measures ANOVAs and pairwise comparisons were performed with p<0.05 indicating significance.

Cuff repair interacted with HLat & GLat (p=0.005, Fig. 1) such that with no HLat, GLat increased deltoid force without cuff repair (8.1±2.1%BW, p=0.012) and this effect was significantly increased with cuff repair (12.8±3.2%BW, p=0.010). However, adding HLat mitigated this such that differences were not significant. HLat and GLat affected deltoid force regardless of cuff status (−2.5±0.7%BW, p=0.016 & +7.7±2.3%BW, p=0.016, respectively). Rotator cuff repair did significantly increase joint load (+11.9±2.1%BW, p=0.002), as did GLat (+13.3±1.5%BW, p<0.001).

The increases in deltoid and joint load caused by rotator cuff repair confirm that it acts as an adductor following RTSA and increases deltoid work. Additionally, cuff repair's negative effects are exacerbated by GLat, which strengthens its adduction affect, while Hlat increases the deltoid's abduction effect thus mitigating the cuff's antagonistic effects. Cuff repair increases concavity compression within the joint; however, Hlat produces a similar effect by wrapping the deltoid around the greater tuberosity – which redirects its force – and does so without increasing the magnitude of muscle and joint loading. The long-term effects of increased joint loading due to rotator cuff repair are unknown, however, it can be postulated that it may increase implant wear, and the risk of deltoid fatigue. Therefore, RTSA implant designs which improve joint compression without increasing muscle and joint loading may be preferable to rotator cuff repair.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_21 | Pages 47 - 47
1 Dec 2016
Stoesser H Padmore C Nishiwaki M Gammon B Langohr G Lalone E Johnson J King G
Full Access

Wrist motion is achieved primarily via rotation at the radiocarpal and midcarpal joints. The contribution of each carpal bone to total range of motion has been previously investigated, although there is no consensus regarding the influence of each structure to global wrist motion. The objective of this comprehensive in-vitro biomechanical study was to determine the kinematics of the capitate, scaphoid and lunate during unconstrained simulated wrist flexion-extension. In addition, this study examined the effect of motion direction (i.e. flexion or extension) on the kinematics and contribution of the carpal bones.

Seven fresh frozen cadaveric upper limb specimens (age: 67±18 yrs) were amputated mid-humerus, and the wrist flexors/extensors were exposed and sutured at their musculotendinous junctions. Each specimen was mounted on a wrist motion simulator in neutral forearm rotation with the elbow at 90° flexion. Passive flexion and extension motion of the wrist was simulated by moving a K-wire, inserted into the third metacarpal, through the flexion/extension motion arc at a speed of ∼5 mm/sec under muscle tone loads of 10N. Carpal kinematics were captured using optical tracking of bone fixated markers. Kinematic data was analysed from ±35° flexion/extension.

Scaphoid and lunate motion differed between wrist flexion and extension, but correlated linearly (R‸2=0.99,0.97) with capitate motion. In wrist extension, the scaphoid (p=0.03) and lunate (p=0.01) extended 83±19% & 37±18% respectively relative to the capitate. In wrist flexion, the scaphoid (p=1.0) and lunate (p=0.01) flexed 95±20% and 70±12% respectively relative to the capitate. The ratio of carpal rotation to global wrist rotation decreased as the wrist moved from flexion to extension. The lunate rotates on average 46±25% less than the capitate and 35±31% less than the scaphoid during global wrist motion (p=0.01). The scaphoid rotates on average 11±19% less than the capitate during wrist flexion and extension (p=0.07). There was no difference in the contribution of carpal bone motion to global wrist motion during flexion (p=0.26) or extension (p=0.78).

The capitate, lunate and scaphoid move synergistically throughout planar motions of the wrist. Our study found that both the scaphoid and lunate contributed at a greater degree during wrist flexion compared to extension, suggesting that the radiocarpal joint plays a more critical role in wrist flexion. Our results agree with previous studies demonstrating that the scaphoid and lunate do not contribute equally to wrist motion and do not function as a single unit during planar wrist motion. The large magnitude of differential rotation observed between the scaphoid and lunate may be responsible for the high incidence of scapholunate ligament injuries relative to other intercarpal ligaments. An understanding of normal carpal kinematics may assist in developing more durable wrist arthroplasty designs.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_20 | Pages 53 - 53
1 Nov 2016
Stoesser H Padmore C Nishiwaki M Gammon B Langohr G Lalone E Johnson J King G
Full Access

Wrist motion is achieved primarily via rotation at the radiocarpal and midcarpal joints. The contribution of each carpal bone to total range of motion has been previously investigated, although there is no consensus regarding the influence of each structure to global wrist motion. The objective of this comprehensive in-vitro biomechanical study was to determine the kinematics of the capitate, scaphoid and lunate during unconstrained simulated wrist flexion-extension. In addition, this study examined the effect of motion direction (i.e. flexion or extension) on the kinematics and contribution of the carpal bones.

Seven fresh frozen cadaveric upper limb specimens (age: 67±18 yrs) were amputated mid-humerus, and the wrist flexors/extensors were exposed and sutured at their musculotendinous junctions. Each specimen was mounted on a wrist motion simulator in neutral forearm rotation with the elbow at 90° flexion. Passive flexion and extension motion of the wrist was simulated by moving a K-wire, inserted into the third metacarpal, through the flexion/extension motion arc at a speed of ∼5 mm/sec under muscle tone loads of 10N. Carpal kinematics were captured using optical tracking of bone fixated markers. Kinematic data was analysed from ±35° flexion/extension.

Scaphoid and lunate motion differed between wrist flexion and extension, but correlated linearly (R^2=0.99,0.97) with capitate motion. In wrist extension, the scaphoid (p=0.03) and lunate (p=0.01) extended 83±19% & 37±18% respectively relative to the capitate. In wrist flexion, the scaphoid (p=1.0) and lunate (p=0.01) flexed 95±20% and 70±12% respectively relative to the capitate. The ratio of carpal rotation to global wrist rotation decreased as the wrist moved from flexion to extension. The lunate rotates on average 46±25% less than the capitate and 35±31% less than the scaphoid during global wrist motion (p=0.01). The scaphoid rotates on average 11±19% less than the capitate during wrist flexion and extension (p=0.07). There was no difference in the contribution of carpal bone motion to global wrist motion during flexion (p=0.26) or extension (p=0.78).

The capitate, lunate and scaphoid move synergistically throughout planar motions of the wrist. Our study found that both the scaphoid and lunate contributed at a greater degree during wrist flexion compared to extension, suggesting that the radiocarpal joint plays a more critical role in wrist flexion. Our results agree with previous studies demonstrating that the scaphoid and lunate do not contribute equally to wrist motion and do not function as a single unit during planar wrist motion. The large magnitude of differential rotation observed between the scaphoid and lunate may be responsible for the high incidence of scapholunate ligament injuries relative to other intercarpal ligaments. An understanding of normal carpal kinematics may assist in developing more durable wrist arthroplasty designs.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_20 | Pages 8 - 8
1 Nov 2016
Griffiths M Langohr G Athwal G Johnson J
Full Access

There are a variety of sizes currently available for reverse total shoulder arthroplasty (RTSA) implant systems. Common sizing options include a smaller 36 to 38 mm or a larger 40 to 42 mm glenosphere, and are typically selected based on surgeon preference or patient size. Previous studies have only evaluated the abduction and adduction range of motion within a single plane of elevation, providing a limited view of the joint's possible range of motion. The purpose of this study was to use computer modeling to evaluate the abduction and adduction range of motion across multiple planes of elevation for a range of glenosphere sizes.

Computed tomography images of four cadaveric specimens (age: 54 ± 24 years) were used to obtain the osseous anatomy to be utilised in the model. Solid-body motion studies of the RTSA models were constructed with varying glenosphere diameters of 33, 36, 39, 42, and 45 mm in Solidworks (Dassault Systems, US). The implant components were scaled, while maintaining a consistent centre of rotation. Simulations encompassing the full range of abduction and adduction were conducted for the planes of elevation between −15˚ and 135˚ at 15˚ intervals, with the motion of the humerus being constrained in neutral internal-external rotation throughout all planes. Angles of elevation were obtained utilising the humeral long axis and the RTSA centre of rotation. Statistical analysis was performed using repeated measures ANOVA.

Glenosphere diameter was found to significantly affect the adduction range of motion (p=0.043), in which the largest size provided approximately 17˚ more adduction range of motion than the smallest. However, abduction range of motion was not found to be significantly affected through the alteration of glenosphere size (p=0.449). The plane of elevation was not found to significantly affect abduction or abduction (p=0.585 & p=0.225, respectively).

Increasing glenosphere diameter resulted in an increased adduction range of motion when averaged across the tested planes of elevation; however the observed influence on abduction was not significant. These are similar to the trends observed in the previous single plane of elevation studies. These findings illustrate the importance of implant sizing related to range of motion. Further studies are required to determine the influence of glenosphere size on internal and external range of motion.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_20 | Pages 9 - 9
1 Nov 2016
Langohr G Haverstock J Johnson J Athwal G
Full Access

Shoulder arthroplasty, both primary (TSA) and reverse (RTSA), are common interventions for arthritis and cuff tear arthropathy. The effect of shoulder arthroplasty on shoulder motion is of particular interest in assessing the effectiveness of the procedure and the development and biomechanical testing of implants. A comparison of the arthroplasty shoulder to that of the non-operated contralateral shoulder provides insight into how well the reconstruction has restored natural shoulder motion. The purpose of this study was to ascertain the shoulder motion of patients who have undergone shoulder arthroplasty and to compare the motion of the reconstructed and contralateral natural sides.

Eleven human subjects (70±9yrs) who had undergone total shoulder arthroplasty wore a custom instrumented shirt for the waking hours of one day. The 3D orientation of each humeral sensor was transformed with respect to the torso to allow for the calculation of humeral elevation and plane of elevation angles. Joint angles for each subject were then discretised, and the operative and contralateral normal (control) shoulders were then compared.

The majority of both the arthroplasty and control shoulder elevation motions took place below 80° of elevation, totaling on average 1910±373 and 1887±312 motions per hour, respectively. Conversely, elevations greater than 80° were significantly less with occurrences totaling only 55±31 and 78±41 motions per hour for the arthroplasty and control shoulders, respectively (p<0.01). Both the arthroplasty and control shoulder were at elevations below 80° for 88±7% and 87±7% of the day, respectively. When the total motion of the arthroplasty and non-operative control shoulders were compared, no statistically significant difference was detected (p=0.8), although the non-operated side exhibited marginally more motion than the operated side, an effect which was larger at higher elevation angles (p=0.3).

This study provides insight into the effects of shoulder arthroplasty on thoraco-humeral motion and compares it to the non-operative side. Interestingly, there were no significant differences measured between the arthroplasty and the control side, which may demonstrate the effectiveness of reconstruction on restoring natural shoulder motion. It is interesting to note that on average, each shoulder arthroplasty elevated above 80° approximately 55 times per hour, corresponding to just under 330,000 motions per year. Similarly, when elevations greater than 60° are extrapolated, the resulting yearly motions total approximately 1.5 million cycles (Mc), which suggests that the ‘duty cycle’ of the shoulder is similar to the hip, approximated to be between 1–2 Mc per year. Arthroplasty wear simulators should be calibrated to simulate these patterns of motion, and component design may be improved by understanding the kinematics of actual shoulder motion.